
e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240106, DOI: 10.37190/e-Inf240106

Activity-Based Detection of (Anti-)Patterns:
An Embedded Case Study of the Fire Drill

Sebastian Hönel∗ , Petr Picha∗∗ , Morgan Ericsson∗∗∗ , Premek Brada∗∗∗∗ ,
Welf Löwe∗∗∗∗∗ , Anna Wingkvist∗∗∗∗∗

∗Faculty of Technology, Department of Computer Science and Media Technology,
Linnaeus University, Sweden

∗∗Faculty of Applied Sciences, Department of Computer Science and Engineering,
University of Western Bohemia, Czechia

∗∗∗Faculty of Technology, Department of Computer Science and Media Technology,
Linnaeus University, Sweden

∗∗∗∗Faculty of Applied Sciences, Department of Computer Science and Engineering,
University of Western Bohemia, Czechia

∗∗∗∗∗Faculty of Technology, Department of Computer Science and Media Technology,
Linnaeus University, Sweden

sebastian.honel@lnu.se, ppicha@ntis.zcu.cz, morgan.ericsson@lnu.se,
brada@kiv.zcu.cz, welf.lowe@lnu.se, anna.wingkvist@lnu.se

“While it is certainly useful to study the successful ways people solve problems, the old adage
that we learn from our mistakes suggests that studying failures might be even more fruitful.

– Neill et al.

Abstract

Background: Nowadays, expensive, error-prone, expert-based evaluations are needed to
identify and assess software process anti-patterns. Process artifacts cannot be automatically
used to quantitatively analyze and train prediction models without exact ground truth.
Aim: Develop a replicable methodology for organizational learning from process (anti-)pat-
terns, demonstrating the mining of reliable ground truth and exploitation of process
artifacts.
Method: We conduct an embedded case study to find manifestations of the Fire Drill
anti-pattern in n = 15 projects. To ensure quality, three human experts agree. Their
evaluation and the process’ artifacts are utilized to establish a quantitative understanding
and train a prediction model.
Results: Qualitative review shows many project issues. (i) Expert assessments consistently
provide credible ground truth. (ii) Fire Drill phenomenological descriptions match project
activity time (for example, development). (iii) Regression models trained on ≈ 12–25
examples are sufficiently stable.
Conclusion: The approach is data source-independent (source code or issue-tracking). It
allows leveraging process artifacts for establishing additional phenomenon knowledge and
training robust predictive models. The results indicate the aptness of the methodology
for the identification of the Fire Drill and similar anti-pattern instances modeled using
activities. Such identification could be used in post mortem process analysis supporting
organizational learning for improving processes.

Keywords: Anti-Patterns, Fire-Drill, Case-study

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 03 Mar. 2023; Revised: 4 Jan. 2024; Accepted: 26 Feb. 2024; Available online: 1 Mar. 2024

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7937-1645
https://orcid.org/0000-0002-2409-6030
https://orcid.org/0000-0003-1173-5187
https://orcid.org/0000-0001-5617-6396
https://orcid.org/0000-0002-7565-3714
https://orcid.org/0000-0002-0835-823X

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

1. Introduction

A pattern describes a reoccurring problem and its prototypical solution [2]. If the solution exac-
erbates – rather than ameliorates – a problem, a pattern becomes an anti-pattern [3, 4]. There
exist anti-patterns related to, e.g., software architecture, that have a palpable effect on product
quality. Other types of anti-patterns that have negative repercussions on the process and the
resulting product could be attributed to management malpractices [5, 6]. Nelson summarizes
a number of infamous project failure examples, most of which are the result of ineffective
project management practices. The overall project failure categories are people, technology,
product, and process [7], of which we focus on the latter. The software process is characterized
by certain activities, such as development (e.g., implementation of features and fixing of bugs)
or requirements engineering. The quality of this process depends, among other factors, on an
adequate allocation of time for carrying out each activity. The quality of a software product
was demonstrated to be tied closely to the quality of the software process [8]. Halvorsen
and Conradi [9] even suggest the causal relation Quality(Process) ⇒ Quality(Product).
Therefore, it is worth studying phenomena related to process quality, in order to understand
and improve product quality. Project failure is a frequently embraced opportunity for post
mortem organizational learning [10]. Failure can often be attributed to process anti-patterns,
of which the so-called “Fire Drill” is a prominent example, due to its clearly discernible
symptoms [11, 12]. It is often characterized by “months of monotony [...]” (unsatisfactory early
project progress) that is “[...] followed by a crisis” [4], due to forcing immediate delivery [13].

The Fire Drill is one of many existing management anti-patterns known to exacerbate
software processes fraught with problems [14]. Usage of such anti-patterns for organizational
learning is inhibited by a variety of factors today. The most pronounced problem is perhaps
the lack of a quantitative description: anti-patterns are only described qualitatively using,
e.g., structured templates with elements such as causes, symptoms, or consequences [5]. This
effectively constrains the available methods of analysis to qualitative assessments. The manual
evaluation depends on experts knowledgeable and available in the problem domain [15]. The
problem is further aggravated by the fact that qualitative assessment is labor-intensive and
error-prone because experts are likely to introduce their own subjective bias [16]. Although
software development processes produce a multitude of diverse digital artifacts either as
a by-product (e.g., source code) or based on the use of project or application lifecycle manage-
ment (ALM) tools, most of these data cannot facilitate anti-pattern instance detection [17].
Even though there exist approaches that take advantage of such artifacts by using more formal
and technical models, or thresholds and rules, the scope of their utility is severely limited
to single process aspects, such as progress, variable dependencies, or estimating uncertainty,
e.g., [18–22]. Lastly, scarcely available historical data, that is, data on past projects, impede or
prohibit comprehensive and generalizable learning that results in organizational knowledge.

Many of the existing approaches have software process improvement as the ultimate
goal. They first establish some white-box model and then analyze the effect of the measures
implemented within the model boundaries [23, 24]. In contrast, we first conduct a longitu-
dinal embedded case study [25, 26], which qualitatively evaluates the presence and severity
(i.e., how strongly the phenomenon manifests) of a Fire Drill in n = 15 student projects
collected over a period of three years, to find an accurate ground truth1. Through observer
and data triangulation [29], as well as inter-rater reliability assessment [30], we ensure

1The feasibility of studies under similar constraints of scarce data have previously been successfully
conducted in, e.g., biomedical engineering [27] and material sciences [28].

Article number 240106

2

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

a minimum quality of the observed evidence that makes the foundation for the ground
truth as is required for further analyses [31]. The ground truth is then used to leverage
previously unusable artifacts to establish quantitative measures and to derive knowledge.
An adaptive training of a gray-/black-box model allows predicting the (severity of the)
anti-pattern instances using the implemented measures [32]. Finally, the new insights are
propagated back to the studied case. From the digital project artifacts, we can confidently
derive the carried-out activities, such as adding features or engineering of requirements2.
Then, the Fire Drill is modeled in terms of time spent on (temporal accumulations of) these
activities. We learn that the phenomenon is sensitive to a certain balance of these activities,
that is, how much time on each activity is spent in relation to any other activity, at any
point in time. We argue that this is also the case for many related or similar phenomena.
Therefore, next to the immediate contributions, the intended main contribution is the
methodology that will allow full or partial replication of this study (using, e.g., different
phenomena or modified contexts).

1.1. Data used in the study

Embedded case studies, such as the present one, are characterized by and rely on qualitative
and quantitative data [35]. The study design is split to appropriately study either type
of data. For the remainder of this work, we refer to these as type-I data and type-II data,
respectively. Most data are produced in the development process and related to project plan-
ning, application lifecycle management, version control, and documentation. As either type
contains both qualitative and quantitative artifacts, we define the types of data as follows.
Type-I Data. In addition to archival records, this case study uses direct observations,
memory logs, meeting minutes (e.g., from stand-ups, retrospectives, customer meetings, or
iteration planning), participant observation, team experience reports, customer comments,
mentors’ assessment notes, and wikis (or other types of note collections) maintained by
each team as primary data sources for the qualitative portion. These data are largely
unstructured and were recorded mostly subjectively. The type-I archival data is treated
as a set of distinct data sources; the production and extraction of information related to
these sources are outside the scope of the research method in this study [29].
Type-II Data. For the quantitative part, this study mainly uses out-of-sample testing for
performing model validation and generalization error estimation. The data is structured
and comes from the archives of the ALM tools. It includes version control systems that
hold the source code (and its commits) and raw data from the underlying issue-tracking
tools. The latter are mostly tickets that have been assigned a category and time estimates.
Although there is some uncertainty in these tickets, all other data used in the quantitative
analysis were objectively recorded.

1.2. Objective

Clearly defined objectives are a common element of the research design for case studies [29].
We pursue a single, principal objective refined into research questions to which we offer
some answers. For this case study, the principal objective is defined as follows. Automate
the post mortem Fire Drill severity assessment, by utilizing the qualitatively won ground

2There is a partial semantic overlap between our activities and the so-called disciplines as used in the
(Rational) Unified Process [33, 34].

Article number 240106

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

truth and selected suitable quantitative, objective type-II artifacts. Pursuing this goal will
necessarily result in the extraction and generation of knowledge from the type-II artifacts.
The point of departure for the principal objective is one in which, before conducting the
case study, we are relatively certain that the Fire Drill, given its existing phenomenological
descriptions, is detectable and that some projects will exhibit one. Although this was
the result of our pilot study (see Section 3.2), we are yet uncertain of the quality of
the qualitative evaluation (whether severity can be determined sufficiently accurately).
Although all data were available at the beginning of the study, that is, type-I and type-II
data, we did not know if and how many of the type-II artifacts would be suitable for
automated detection, implemented as a regression model. Also, manual facilitation of the
type-II data is difficult, as the Fire Drill was not previously described from a quantitative
perspective. Manual analysis of quantitative data is further inhibited by the data size (data
points and dimensionality) and possibly non-linear correlations.

1.3. Propositions, hypotheses, research questions

In this section, we will guide the reader through the main aspects of the case by presenting
three sets of propositions, hypotheses, and research questions in a consecutive manner.
For case study research, it is suggested to align the methodology close to these elements
(however, not necessarily in this order, e.g., [29, 36]). The If-Then-styled propositions first
give potential implications, while the generated hypotheses provide structure and detail to
the formulated research questions.

1.3.1. Understand the Fire Drill manifestation

The first set of propositions, hypotheses, and research questions concerns the manifestation
of the Fire Drill in our context directly.
Pr. 1.1: If the Fire Drill phenomenon is described well enough and present in the projects,

then manifestations of it can be found using type-I data only.
Pr. 1.2: If there is agreement between independent raters, then the existing phenomenolog-

ical descriptions of the Fire Drill are sufficient for a qualitative post mortem evaluation.
Pr. 1.3: If there is agreement on the absence of the Fire Drill in a project, then the

evidence that is counter-indicative of the phenomenon (true negatives) can be gathered.
Hyp. 1.1: The type and quality of the type-I data allow for accurate assessment of the

severity of the Fire Drill using qualitative evaluation.
Hyp. 1.2: Projects not affected by the Fire Drill can be used to derive common symptoms

whose presence can indicate its absence.
RQ 1.1: Can the severity of the Fire Drill be accurately determined?
RQ 1.2: What is the nature of the Fire Drill manifestation in each of the student projects?
RQ 1.3: What evidence can be gathered indicating the absence of a Fire Drill?

1.3.2. Establish an understanding using qualitative data

The won ground truth now allows us to access, reason about, and leverage available
quantitative data in an unprecedented way. The second set of propositions, hypotheses,
and research questions was designed to establish a new quantitative understanding. Our
approach here is characterized by instrumental motivation and nomothetic evaluation.
Sets two and three facilitate quantitative project data of the same structure across all

Article number 240106

4

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

projects. While the focus is on the sub-unit of analysis, the projects are examined together
(nomothetically), instead of individually.

In the following, importance refers to the concept (and technique) of (determining)
variable importance for the prediction of a dependent variable (here: severity) [37]. When
the timeline of a project is subdivided into phases, then each feature (variable) is exclusively
assigned to a single phase. Therefore, variable importance allows us to determine and
compare the relative importance of each project phase by aggregating the importance of
each feature.
Pr. 2.1: If a ground truth can be determined accurately enough, then it can be exploited

for the analysis, interpretation, understanding, and comprehension of the quantitative
data.

Hyp. 2.1: Activities closely related to those described by the Fire Drill will display
characteristic behavior that is in accordance with the Fire Drill’s phenomenological
descriptions.

Hyp. 2.2: All project phases will exhibit non-zero importance, with the later phases being
of greater importance (the Fire Drill, supposedly, is more critical towards the project
end).

RQ 2.1: What are typical accumulations of (maintenance) activities characteristic of a Fire
Drill?

RQ 2.2: What phases and activities are most important for predicting the presence or
severity?

1.3.3. Obtain a robust predictive model

The last set of propositions, hypotheses, and research questions was designed primarily
to achieve the main objective (see Section 1.2), namely to automate the post mortem
severity assessment. As a by-product, we will also improve our quantitative understanding,
as continued from the previous set. In the following, stability refers to two criteria simulta-
neously, the first of which is the expected generalization error and the second of which is
the confidence interval regarding the generalization error of a predictive model.
Pr. 3.1: If any type-II data (artifacts) are suitable, training should converge toward

stability with increasing amounts of training data.
Pr. 3.2: If a stable model with acceptable generalization error can be obtained, then

assessing the severity of the phenomenon with it could be instantaneous.
Hyp. 3.1: Type-I ground truth and type-II data from a few projects are apt for training

a regression model with acceptable stability.
Hyp. 3.2: Using either source code or issue-tracking data should yield predictive models of

similar stability, as the former is more objective, while the latter is more closely aligned
with the Fire Drill’s described activities.

RQ 3.1 What source of data, issue-tracking or source code, yields better models?
RQ 3.2: How many data points are required for obtaining a stable predictive model?

1.4. Notions and abbreviations

Activities use an all-caps sans serif font and are abbreviated by a few letters. For example,
the activity development is denoted by DEV. It is also used as a subscript for functions
over time, that is, fDEV. Similarly, empirical observations, symptoms, and consequences

Article number 240106

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

use few letters and a number, in typewriter font. For example, ESC01 is the first empirical
observation of a symptom/consequence.

1.5. Structure of this article

The remainder of this article is structured as follows. The next Section, 2, introduces related
and relevant work. Section 3 provides background information on phenomena described
using a pattern language, with a dedicated focus on anti-patterns and the Fire Drill, as well
as details about the preceding pilot study. The entire design of this study and the underlying
methodology is presented in Section 4. It is followed by Section 5, which is dedicated to
the presentation of the results of the analyses. The validity of our study, the limitations
of its results, their replicability and generalizability, as well as a summary of the results
obtained and how they relate to the established propositions and hypotheses, are discussed
in Section 6. The conclusion and synthesis of all results related to the case studied, as well as
prospects for future work, are given in Section 7.1. At the end of the article, the additional
appendices A through E, providing supplementary details and insights, can be found.

2. Related work

Pattern-like phenomena related to management are not models because they only describe
a well-known solution to some recurring problem [3], but effectively lack efficient operational-
izability (in terms of, e.g., a predictive model for presence and/or severity). Simeckova et
al. [5] have identified a wide semantic gap between the qualitative (textual, unstructured, and
often ambiguous) and quantitative description of pattern-like phenomena, where the latter
is practically impossible to specify. This is because patterns are deliberately left abstract
(or even ”vague“, as Alexander et al. [2] put it). Therefore, a quantitative description would
require, for example, context-specific thresholds or rules according to Simeckova et al.

Currently, no software process improvement model that could adequately represent or
evaluate the presence of a Fire Drill based on quantitative data exists. Brown et al. [11]
started to characterize the Fire Drill anecdotally, describing the problem it portrays,
together with a refactored solution called sheltering (see Section 3.1). They did not attempt
to abstract from this, i.e., there is no list of symptoms, for example. The only possible
form of operationalization would be a manual evaluation of whether and to what degree
the own project matches their description. Although they do not use the example of
a Fire Drill, Laplante and Neill [4] were the first to collect various managerial and cultural
anti-patterns and to represent each in a common, structured template. It included, for
example, the anti-pattern’s central concept, its dysfunction, a short vignette, a plain
explanation of the anti-pattern, clues to alleviate the fallout, and – most importantly
– a yes/no checklist with symptoms for identifying the anti-pattern’s presence. More
recently, Picha and Brada [18] started to collect and consolidate anti-patterns in a common
template. They extract and gather various characteristics from each anti-pattern and
translate some of their peculiarities into actionable symptoms, consequences, and solutions.

Attempts exist to operationalize various (anti-)patterns for software process quality. For
example, next to the informal descriptions, there are more formal models, such as Bayesian
(Belief) networks, ontologies, social networks, and Design structure matrices [6, 19–21]. Of
these, only Bayesian networks are actionable to a limited extent, as they allow for modeling
conditional probability distributions and visualization of dependencies between variables.

Article number 240106

6

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

The other methods are rather concerned with encoding project management knowledge
into machine-readable form. The actionability in Bayesian networks is limited to assessing
uncertainty; that is, it is not suitable for detecting the presence of anti-patterns but rather
a tool for exploring relations [22]. However, they may be used to measure certain aspects
of the process, such as its progress or quality.

There is plenty of other research on quantifying software quality using ALM artifacts. For
example, Draheim and Pekacki [38] focuses on developers’ activity throughout the project
using collaboration, productivity, and evolution metrics. Ramsauer et al. [39] deal with
estimating the maintenance costs in software development, and Tamburri et al. [40] study
the organizational aspects of software projects and communities. Talpová and Čtvrt-
níková [41] use ALM data to investigate Scrum anti-patterns in a case study, though
only as a secondary source of information combined with surveys and interviews. Ha-
chemi [42] explores the reuse of patterns (in a more colloquial sense) in the modeling of
software development processes. Although other researchers also focus on (anti-)patterns,
they do not use ALM data. Frtala and Vranic [43] research organizational patterns and
their adoption in individual organizations and projects using gamified learning techniques.
Settas and Stamelos [20], as well as Stamelos [6] aim specifically at project management
anti-patterns, their knowledge base, and effective communication using heterogeneity
of personalities and character traits of developers. A major part of the research efforts
also deals with the modeling of (anti-)patterns and detection through languages and
ontologies [44], or models like the software process engineering meta-model [5] and the
business process model and notation [45].

To the best of our knowledge, no one has previously attempted to operationalize an
anti-pattern using the approach presented in this study. It was previously shown that
performing post mortems is a viable path to organizational learning [10] and that learning
from anti-patterns is deemed a way to eventually master management knowledge [6]. Also,
it appears that examining and learning from eventuated anti-patterns is not limited to
the context of software development. For example, Awad et al. [46] use them to detect
compliance violations of business processes. Lastly, the Fire Drill is a phenomenon that
can lead to anything between ever-so-slight and severe, negative repercussions, such as
total project failure. Studying project failure typically results in the discovery of many
interrelated symptoms and consequences [47]. Although, compared to the application of
common software process improvement models, we address only a single quality goal, we
observe numerous different symptoms and consequences. It appears that the statement
of Neill et al. [1] about the fruitfulness of studying project failure has become true.

3. Background

This section provides some background information about phenomena described using
a pattern language, with a focus on the Fire Drill anti-pattern. It also gives an overview of
previous work, that served as a pilot study.

3.1. Phenomena described using a pattern language

Generally, patterns are reoccurring and identifiable phenomena [2], that are especially preva-
lent in phases of design, project management, and in software development processes [48].
A pattern provides a general and proven solution to a common problem.

Article number 240106

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

“Each pattern describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice.” – Alexander et al.

However, as the definition by Alexander et al. [2] implies, the descriptions are deliberately
left vague in order to leave room for case-specific applications of the solution the pattern
represents. The definition also highlights the challenge of patterns to date, which lies in
objectively definable and quantifiable problems, and the lack of technical and automated
solutions to these. While efforts for a more technical way of describing patterns have been
undertaken (e.g., [1, 11, 18]), they are predominantly described using a pattern language,
structured text, or a template [6]. Therefore, patterns are most often not described
quantitatively and lack clear connections to quantifiable properties, such as software
metrics.

Anti-Pattern

Pattern

Causes Unbalanced
Forces

Symptoms &
ConsequencesSolution

Context
Situation

Refactored
Solution

<exacerbates>

<ameliorates>

Figure 1. Some common elements of patterns and anti-patterns. The context element
refers to the context (and its problematic situation) of the case study itself (see Section 4.1)

An anti-pattern can be conveyed as a larger concept than a pattern, in a way that it
encompasses the elements of a pattern, but also adds an additional, so-called refactored
solution [4]. The refactored solution is, for example, a restructured, improved, or otherwise
optimized version of the original (regular) solution. The regular solution that comes from
the enclosed pattern is what creates the anti-pattern in the first place because its application
constitutes malpractice that exacerbates the problem, rather than ameliorating it (see
Figure 1). Therefore, the actual mending solution is the refactored solution, rather than the
regular solution. The refactored solution is an element that is known for some anti-patterns,
but not for all. If present, it is commonly included in the pattern language or structured
template (e.g., [14]). As a result, anti-pattern project management phenomena pose threats
to project quality and delivery and are the outcome of human error. The ramifications
include but are not limited to, developer churn, interpersonal and organizational tensions,
a product of poor quality, delayed delivery, or even total project failure. The notion of an
anti-pattern is, therefore, closely related to that of project risk [6].

3.1.1. The Fire Drill

The presence of a Fire Drill is a kind of problematic software project situation. Most recently,
the Fire Drill was described following a common, structured template (see Appendix A).
Rudimentarily speaking, it is construed as a short, desperate, and highly active phase
towards the end of a software development project. It is preceded by a considerably longer,

Article number 240106

8

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

much less productive phase. Often, a disproportionately large amount of the project’s
resources is spent in the first phase, without advancing the project at the required pace.
When management acknowledges the urgency of the imminent due date, the start of the
typical Fire Drill is heralded [3, 11, 12].

While the Fire Drill is a phenomenon that unfolds as the result of poor management
during the development phase of a project, some projects are predestined to exhibit
one due to poor time allocation for the preceding approval and budgeting processes.
This phenomenon is known as the “fuzzy front end” and often results in an aggressive
development schedule from the beginning [49].

3.1.2. Patterns related and similar to the Fire Drill

The Fire Drill is related to other phenomena, some of which it is partially indistinguishable
from. This happens because a certain set of indicators and symptoms and consequences
are similarly indicative of other phenomena. Some related anti-patterns are, for example,
“Analysis Paralysis”3 (a potential cause) or “Collective Procrastination” [18] (a more
generic case). Other anti-patterns, such as “Half Done is Enough”4, or “Brook’s Law” [50]
may constitute typical symptoms associated with an early-/late-stage Fire Drill. The
anti-pattern “Cart Before the Horse” emerged as part of a Fire Drill in some of the affected
projects. While it is a pattern of its own, it is a typical, severe, and frequently occurring
symptom of a Fire Drill (see ESC2 and E20 in Appendix C), that may have high project
risk as one of its consequences. What is furthermore similar, is that these phenomena, in
theory, can also be identified based on the ALM data or ongoing activities.

3.2. Previous work

In an earlier paper that served as a pilot study [51] for this work, we primarily investigated the
type-II data. Next to exploring and visualizing the work carried out in the projects, the goal
was to assess whether a model or a plain decision rule for presence detection can be derived
from the data and applied to future projects. That study did not include a qualitative evalua-
tion of the Fire Drill in each of the projects. Furthermore, the absence of more than two raters
prohibited a proper assessment of the inter-rater agreement and the quality of their findings.
From the pilot study, we conclude that the usage of naive models, whether expert-designed or
purely data-driven, is not beneficial, as a model requires a more adequate representation of
its features. We attempt to represent the time spent on activities in two different ways. After
exploring the data, we explicitly define three activities for issue-tracking that are related to
requirements engineering, development, and descoping (see Section 4.5.1). For source code
data, we predict the so-called maintenance activity [52] that is associated with each com-
mit [53] (see Section 4.5.2). These activities are related to adding features, correcting faults,
and perfective changes (e.g., maintenance). For each instance of an activity, it is always
recorded when it happened. This allows us to detect temporal accumulations of compara-
tively lower and higher density. In issue-tracking, we additionally have access to the duration
(i.e., how much time was spent) of each recorded activity. The duration for commits, however,
remains unknown. For issue-tracking data, we chose a cumulative and normalized represen-
tation, since this data tends to be more scarce (for example, bug tickets are only opened

3Analysis Paralysis. 2017. http://wiki.c2.com/?AnalysisParalysis
4Half Done Is Enough. 2023. http://wiki.c2.com/?HalfDoneIsEnough

Article number 240106

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20171009192034/http://wiki.c2.com/?AnalysisParalysis
https://web.archive.org/web/20230223162916/http://wiki.c2.com/?HalfDoneIsEnough

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

rarely). For source code data, we choose to represent the time spent as continuous-time
random variables. We conclude that the latter representation is the most suitable for either
type of data. Furthermore, we suggest using weighted density estimation for issue-tracking
data, additionally considering the time spent as a weight for the temporal accumulations
of these activities. We recommend using continuous probability densities also for another
reason:It is straightforward to derive two kinds of features from them. First, a density can be
integrated along an interval for estimating the relative amount that was carried out for an
activity. Second, calculating a divergence between two densities is well understood and can
be exploited for identifying disparities between activities. It is likely that common regression
models (mind they require an accurate ground truth) will outperform the pilot study’s
approach using our findings. While a binary decision rule for presence detection can achieve
a respectable accuracy, it is of obviously limited use as a severity assessment device and prone
to producing false positives or negatives. Attempts to create a more fine-nuanced rule failed.

4. Case study design

We perform a single-case embedded case study based on intrinsic and instrumental mo-
tivation. We use qualitative and quantitative data and present the results in a mostly
structured format [26]. From Sjøberg [54, 55] we may understand “a case [...] as a single,
empirical configuration of actors, activities, technologies, and artifacts, all within a context.”
However, while all projects do share the same case, their empirical configuration varies.
This circumstance necessitates the application of an embedded design. For example, in
each project, a different product is developed, by a different group of students, applying
individual practices (to some degree) to achieve their goals (see Appendix B for the full
project setup). Therefore, the multiplicity rather lies in the analysis units (the projects
themselves) and not in the cases, requiring an embedded design. A non-embedded design,
if not studying multiple cases, would be concerned with a single unit of analysis and,
therefore, not be a suitable choice for this work. Embedded case studies propagate the
findings from the analyzed units back to the single case studied. Yin [25] notes that the
project-level data may be highly quantitative, and the original evaluation would become
a project study, i.e., a multiple case study of different projects if there is no investigation at
the level of the original case. Scholz and Tietje [26] note that the multiplicity of evidence
in an embedded case study is investigated partly in the projects, each focusing on different
and salient aspects of the original case. In a multiple case study, each case should serve
a specific purpose within the general scope of the investigation, which does not apply here.
Furthermore, all propositions, hypotheses, and research questions are the same across all
embedded units. Therefore, we only have a single case of study [25].

Multiple case studies follow a replication logic that starts with uncovering a significant
finding that is subsequently replicated using additional case studies. However, our study
is a single evaluation (concerning a single case) across multiple projects. The logical
sub-units (or embedded units) are the selected n = 15 projects, which makes a holistic
design inapplicable and warrants an embedded design instead. It is common for embedded
case studies to facilitate (sampling of) quantitative data and the application of statistical
analyses [35]. The case (subject, or main unit of analysis) is the Fire Drill within a software
engineering course (see Figure 2). The course is the Advanced Software Engineering course

Article number 240106

10

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

at master level5 conducted during the second out of a four-semester study at the University
of West Bohemia in Pilsen. Given the setup of the projects (e.g., agile, iterative, milestones,
etc.), they are naturally subject to the Fire Drill phenomenon. The full context of our
study is given in the next Subsection, 4.1.

CONTEXT

Case: The Fire Drill within a software engineering course

Embedded Unit: An individual, qualitative, and idiographic analysis of each of the
15 projects, as well as a quantitative, nomothetic analysis across all projects.

Figure 2. Case study design

Since we perform an embedded case study in the realm of software engineering, our
method is closely aligned with guidelines from Runeson et al. [29] and Wohlin et al. [56].
The research strategy chosen here is exploratory, explanatory, and of an improving nature.
It is not descriptive, as we are not trying to portray the current state of the Fire Drill
phenomenon [29] (for that, the interested reader is referred to Section 3.1.1, Appendix A,
and [3, 11]). It is, however, exploratory and explanatory since we seek new insights into the
phenomenon’s manifestation within the chosen context. The case is studied to interpret
and explain symptoms, causes, and consequences and establish a connection to quantitative
data that cannot be fully utilized. This is closely connected with the improving nature of
this study as we attempt to add to the current qualitative understanding and establish
a new quantitative awareness.

Wohlin and Rainer [55] provide a case study checklist. The first requirement is an
identifiable case, which we have presented here. The second requirement is that of a real-life
context. It is satisfied since we do not attempt to generalize beyond the chosen context (e.g.,
industrial). The third requirement is that of using multiple data collection methods. The
variety of methods and sources used is described in Section 1.1. The fourth requirement
is the study of a contemporary phenomenon. It is satisfied by us studying the projects
as they occur. The last requirement is that the researchers do not act as change agents
in the projects as they unfold. Although one of the raters was a mentor in most of the
projects, that role was purely passive with respect to at least the Fire Drill phenomenon (see
Section 4.1.3). This is evident because some projects showed strong manifestations of the
phenomenon (or other anti-patterns) regardless. Furthermore, in software engineering, case
studies are expected to establish long-term objective(s) (as opposed to action research that
favors short-term change), which we did (see Section 1.3). We came to the characterization
of our study as a single-case embedded case study, together with these properties, after
discussing its nature and virtues in detail [57]. Although our analysis for the first part
happened post mortem, we do not necessarily apply the full spectrum of software project
post mortems. Therefore, we must separate ourselves from post mortems and processes
as defined in, e.g., [58, 59]. Although our analysis partially resembles what Tiedeman
describes as postmortem planning and design/verification, their conceptual framework is
not applicable here for the above reasons.

5Course homepage. 2023. https://courseware.zcu.cz/portal/studium/courseware/kiv/aswi/?pc_lang=en

Article number 240106

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20230124210437/https://courseware.zcu.cz/portal/studium/courseware/kiv/aswi/?pc_lang=en

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Case studies are “[…] studies of something general, and of something particular […]” [60].
These two different moments are characterized by an idiographic and a nomothetic part.
Therefore, this study is divided into two consecutive parts (see Sections 4.4 and 4.5).
The first qualitative part seeks to gain an understanding of the Fire Drill’s manifestation
in student projects. Here, we make an individual, idiographic effort to understand the
phenomenon in its context. This is also where we assign a severity to each project (the
ground truth). The first part is closely aligned with the first set of propositions, hypotheses,
and research questions as presented in Section 1.3. The motivation here is mainly of what
Scholz and Tietje [26] call intrinsic character, meaning that we have a somewhat personal
incentive to understand this case, as one of the authors has previously been involved in the
conduct of these projects and will continue to be in the future.

4.1. Context

We report the context of this study aligned with the applicable points of the framework,
as suggested by Petersen and Wohlin [61] and Runeson et al. [29]. Specifically, we report
details on the products (what was manufactured in each project), processes (activities,
artifacts), practices (tools and techniques), people (students and researchers), organizations
(the university), and the (hypothetical) market (the customer). Appendix B lists, for each
project, what kind of application was produced, its size, the used programming language(s),
the number of team members, project duration in days, number of iterations and issues,
time logged on issue-tracking activities, and number of commits per maintenance activity.

4.1.1. Product

Each team developed a single product over the course period, commissioned by the customer.
Typically, an individual customer was assigned to each project. It is up to the customer’s
discretion to select an appropriate balance between product maturity and quality and the
number of features. Typically, two-week iterations were used to ensure a certain minimum
level of product completeness, quality, and installability.

4.1.2. Processes and practices

The goal of the projects is to approximate a real-world setting as closely as possible.
The projects typically run for approximately three months, with a typical workload
of ≈ 65–80 hours per student. Each project follows the Unified Software Development
Process [33]. The methodology is influenced by agile practices, with two-week iterations
(“Sprints”) and a final fixed deadline for product delivery. The students manage the projects
autonomously, with a staff member assigned to each project for oversight. For issue tracking
and version control, teams must use common ALM tools, such as Redmine or GitHub.
Most teams use additional tools, such as Wikis, automated testing and deployment (con-
tinuous integration/delivery), or shared documents for, e.g., the requirements specification,
implemented architecture, meeting minutes, or customer communication. We classify the
rich set of artifacts captured during the process into type-I and -II data (see Section 1.1).

Article number 240106

12

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

4.1.3. Students, researchers, customers, and the organization

All students involved studied at the second cycle (master’s level). The number of students
in each project is shown in Appendix B. The customer for each project came either from
the university (the same or another faculty) or an external company. Since the projects
were conducted in an academic context, the organization was the University of Western
Bohemia in Pilsen. Instead of monetary interests, however, the university’s interests are
ensuring high educational standards (especially by studying the outcomes), as well as
preparing the students for a potential future work environment.

Rater 1. The first rater is currently a doctoral student. Their main interest in the
study is the detection of project management anti-patterns through the usage of ALM data.
The first rater has about five years of industry experience working at DHL, predominantly
with help and advice on using ALM tools (e.g., IBM Engineering Lifecycle Management)
and consulting on software processes. They were previously involved in three process audits
for industry, mining ground truth (quality of their processes or compliance to norms; using
similar data plus interviews). These audits lasted for a few months, approximately one year,
and one for approximately four years. The first rater worked as a mentor in the advanced
software engineering course for nine consecutive years. On average, they were in charge of
approximately five projects (with a range of three to eight). It is important to note that
their mentor role is purely passive. They never actively attempted to avoid (or alleviate) the
Fire Drill anti-pattern (or any other malpractice, for that matter). This becomes evident
because some projects showed strong manifestations of the Fire Drill phenomenon (or
other anti-patterns). The students could (and did) choose to ignore mentors’ advice. Some
students have previously failed the course.

Rater 2. The second rater holds a master’s in software engineering and did not
previously participate in the course as a mentor. The second rater is a former doctoral
student with a main focus on project data analysis. They have over three years of industry
experience working at Unicorn6 as a project manager. Rater Two never had any active role
in conducting the software engineering course.

Rater 3. The third rater also holds a master’s degree in software engineering. They
were previously enrolled in a doctoral program for about four years. The main focus of
their third-cycle studies was the compatibility of architecture components. With more
than four years of industry experience, rater three works at the Finnish software company
Yoso7, where the main customer is the Finnish state. Their role is that of an architect
and a lead developer, as well as project analytics and -management (e.q., requirements
analysis). They are also the head of the company’s local branch in Pilsen. Rater Three
never had any active role in conducting the software engineering course.

Assessor. The assessor’s role was to analyze, interpret, and aggregate the raters’ findings
independently. They are currently enrolled in a doctoral program and hold a licentiate
degree. Their main focus of study is software and information quality, with a strong focus
on statistical learning and mathematical optimization. The assessor has approximately four
years of prior, predominantly agile industry experience, working as a systems developer
(at SAP Research8), lead architect, project manager, and product owner (at Softwerk9).
As such, they have first-hand experience with agile product development. The assessor

6Unicorn: About Company. 2023. https://unicorn.com/en/company-profile
7Yoso: Company Homepage. 2023. https://www.yoso.fi/
8SAP: About Innovation and Research. 2023. https://www.sap.com/about/company/innovation.html
9Softwerk: About Company. 2023. https://softwerk.se/en/about-us

Article number 240106

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20230415151814/https://unicorn.com/en/company-profile
https://web.archive.org/web/20230304135239/https://www.yoso.fi/
https://web.archive.org/web/20230527220021/https://www.sap.com/about/company/innovation.html
https://web.archive.org/web/20230326161647/https://softwerk.se/en/about-us

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

also took similar roles as a teaching assistant in two unrelated first- and second-cycle agile
software development courses over the course of three years (assuming a role in between
two and eight projects simultaneously in each course). The assessor never had any active
role in conducting the software engineering course.

4.2. Embedded unit selection

The natural choice for the (sub-)unit of study is student projects. We initially also considered
studying the Fire Drill in open source or industrial projects, but this would probably have
been a purely archival study due to the lack of a real-life context [54, 57]. Furthermore,
the social context of open source projects is hardly observable, and the ALM data are
notoriously incomplete or often absent entirely due to the absence of (proper) project
management. The latter type of project is difficult to obtain, both in quantity and quality.
Since the Fire Drill is a phenomenon that affects a project in its entirety, we regard quantity
as slightly more important (for this reason, we conduct an embedded case study).

The benefit of using the student projects to study our case lies in the accessibility of
the associated ALM data throughout the entire lifecycle of each project. As course runners,
we directly observe and record the day-to-day realities of each project. This additional data
and knowledge are crucial for an accurate assessment of the ground truth. Our data spans
15 projects, four of which were conducted in 2019, five in 2020, and six in 2021, between
March and June each year. We have previously detailed the various data types available
for each project (see Section 1.1). We only included projects that provided full access to
the ALM data. Therefore, a few projects had to be excluded. The non-availability of data
can be primarily ascribed to the usage of external, proprietary ALM tools, sometimes
demanded by industrial customers’ non-disclosure requirements.

4.3. About the data

All data used in this study were previously made available as an anonymized open-access
dataset [62]. It was used and made available only in digital form and was recorded
exclusively digitally. All data are associated with application lifecycle management, that
is, data related to application governance, development, and operations [63]. Therefore,
most of the data are produced automatically by the required usage of ALM tools. The
dataset includes all original artifacts for each project. To avoid introducing translation
bias, textual artifacts recorded in Czech were kept pristine. The dataset also includes data
collected by observation, such as mentor notes, meeting minutes, and retrospective records.
The data was then digitized and added to the set.

The immediate purpose of the data collection was evaluation and grading, and the data
are initially kept for no specific reason other than archival records (the university recommends
keeping such course-related data for administrative purposes). The data are also kept and
accessed while the projects are still running because it needs to be accessible during or after it-
eration reviews. Due to the absence of a specific reason, the recorded data are not specific to the
Fire Drill phenomenon, as everything of potential relevance was kept or recorded. Therefore,
the data can be used in a future study using a different case and/or research questions.

Since the data stem from software engineering projects conducted at a Czech university,
the projects’ and their data are subject to Czech legislation. As for ethical considerations,
the legislation states that any student work done as a course assignment can be freely used

Article number 240106

14

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

by the educational institution for the purposes of its main functions, research obviously
being one of those.

4.4. Qualitative design

Approaching (anti-)patterns like the Fire Drill is first done through the available phe-
nomenological descriptions. The multiplicity of evidence is first investigated qualitatively
on a per-project basis. We draw on methods for data source- and observer-triangulation to
obtain robust ground truth estimates [29, 64].

The primary goal of the qualitative analysis was to understand if, how, and to what
degree the Fire Drill manifests in each of the projects. To achieve this, the type-I data were
subjected to manual and individual inspection by each of the three raters. Before individual
analysis, a common understanding was established based on the available phenomenological
descriptions (see Section 3.1) between the raters. The raters would then go ahead and
extract evidence for the presence (and absence) of a Fire Drill (called the raters’ notes in
the dataset [62]). The notes reflect which symptoms and consequences are present, how
severely they manifested, and how often they were observed. They also include findings
that are counter-indicative of a Fire Drill. To date, the detection of (anti-)patterns has
been subject to qualitative evaluation in practice.

After a complete evaluation of a single project, a rater would then indicate an overall
severity using a linear numeric rating scale of 0–10, where 0 indicates the absence of the
phenomenon and 10 the strongest possible manifestation. This assessment would then
serve as ground truth in the subsequent use of type-II data (e.g., variable importance,
regression model, etc.). We chose to assess the severity on a project level, since a Fire Drill,
according to its existing descriptions, concerns a project over its full lifecycle. Furthermore,
the Fire Drill’s descriptions prohibited the use of a proper ordinal rating scale, such as
a descriptive, verbal rating, or Likert scale. This is because the described symptoms and
consequences (see Appendix C) do not come with a severity attached. For example, the
second symptom/consequence, SC2, reads “only analytical or documentational artifacts for
a long time”. Therefore, in the absence of a proper ordinal scale, the raters’ subjective
severity assessment formed only the basis for three subsequent analyzes.

The first analysis is to measure inter-rater agreement. As the ground truth assessment
of the raters is subjective, the only way to objectively measure the proportion to which they
agree is to use some agreed-upon scale or benchmark. To calculate the inter-rater agreement
between more than two raters, Cohen’s Kappa cannot be used. Instead, for example, one of
Conger’s, Fleiss’, or Gwet’s Kappa coefficients is required. We chose to report Gwet’s “AC1”
Kappa coefficient, which outperforms other coefficients in terms of having reasonably small
biases for estimating the true inter-rater reliability [66]. It is especially applicable in the
presence of high agreement (which, as it turns out, is the case) because of its comparatively
low bias. To benchmark the computed Kappa, we apply the widely used scale of Landis
and Koch [67]. However, we should note that the proposed scale by Landis and Koch was
arbitrarily chosen and that each Kappa is a point estimate associated with a probability
distribution and a margin of error [68]. Therefore, it is recommended to properly benchmark
the raw Kappa coefficients. Gwet suggests computing the probability that a Kappa falls into
a certain range by integrating a standard normal distribution (where the Kappa coefficient
is the mean and its associated error is the standard deviation) [30].

The second analysis was a common session between the raters conducted to reach
a consensus on their rating, using the well-established Wideband Delphi method [69, 70]. In

Article number 240106

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

cases of diverging assessments, each rater presented arguments for their estimate, leading
to a discussion, a repeated inspection, and a reconsideration of the information sources,
until a final assessment was mutually agreed upon. Ties, rounding, and dissents were
settled by the second rater since they never had any affiliation with the projects (e.g., as
a mentor) and have the longest industry experience as a project manager to date. The
raters were free to assign a final consensus value below or above their initial rating if there
was sufficient reason to do so after the follow-up investigation of the data. The use of
multiple experts is an effective measure to reduce subjective bias commonly introduced by
expert-judgment software estimates [15]. The first two analyses were, in part, designed to
guarantee a minimum quality of the obtained ground truth, as it is crucial for the analysis
of the type-II data. Without the precautions implemented, robustness, reliability, and
accuracy cannot be ensured otherwise [31].

The third analysis is a systematic approach that uses a well-defined ordinal scale to
identify the prevalence of individual symptoms and consequences. Unlike the previously used
numeric severity rating scale, the ordinal scale used here is of descriptive nature. Although
each consecutive item represents a severity higher than that of the previous item, a linear
increase is not implied. Severity is assigned or upgraded purely by description. The assessor
(see Section 4.1.3) is to first classify each of the raters’ notes and comments according to
this scale. Furthermore, the assessor is to assign each observed empirical instance to one of
the Fire Drill symptoms and consequences. This is done to allow us to answer the question
of how the fire drill manifests itself in the projects empirically. Some of the observations,
even though they are clearly related to our understanding of the phenomenon, may warrant
a new superordinate symptom and consequence, especially if they cannot be assigned purely
or only poorly to any of the existing symptoms and consequences.

After the first pass, a second pass is performed. In the second pass, observations
(called empirical instances of a symptom or consequence and abbreviated as ESCxx) are
conditionally aggregated and checked for data and/or observer triangulation, and the
severity is adjusted accordingly. The following scale was used in both passes:
[0] None: Not at all a problem: it applies mostly to false positives (e.g., a typical symptom

that was caused out of the studied context and had no adverse effects).
[1] Miniscule: Only slight indications of typical symptom(s) identified by at least one

rater.
[2] Minor: Multiple indicators and/or measurable/documented symptom(s); seldomly

corroborated by another rater.
[3] Moderate: Clearly identifiable and reoccurring symptoms or direct corroboration.
[4] Significant: Like moderate, but the higher severity is evident through additional data-

or observer-triangulation.
[5] Serious: Agreement on the (recurrent) severe manifestation of a symptom by observer

triangulation (often all raters) and/or data triangulation.

4.5. Quantitative design

The primary goal of the quantitative analysis was to facilitate the rich corpus of quantitative
artifacts that are produced mostly automatically as a byproduct of conducting the projects
and using the ALM tools. The goal is to enable quantitative data to contribute to the
current phenomenological understanding and to automate expert-based post mortem
assessment. The quantitative analyses facilitate the qualitatively won ground truth and
type-II data exclusively. The available type-II data can be split into two main sources:

Article number 240106

16

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

source code and issue-tracking. This split is maintained throughout all analyses because,
in reality, there might be access to only one of them. The won ground truth enables a wide
range of statistical analyses and supervised learning. Quantitative data in the context of
(anti)patterns are rarely useful. For example, consider the number of bugs over time. For
this information to be useful, we would at least need some thresholds, and those would need
to be universally valid. To address our objectives, hypotheses, and research questions, we
also performed three analyses (Sections 4.6 through 4.8).

4.5.1. Activities in issue-tracking data

The Fire Drill and many related or similar phenomena are sensitive with regard to a certain
balance of particular activities at any given point in time. For issue-tracking, we model
three activities from the type-II data that, supposedly, are closely related to the activities
described in the Fire Drill. These activities are as follows:
REQ: Activities related to requirements, analysis, and planning.
DEV: Time spent on development (implementation), testing, and bug-fixing activities.
DESC: Descoping; Effort that was planned for DEV, but never spent on it (i.e., the difference

between the scope agreed on and delivered).
For each of the activities, the issue-tracking data provide timestamps (when an instance
of the activity occurred) and duration. The title and description of the tickets were used
to classify the issues into REQ and DEV, which were obvious choices to detect the Fire Drill.
If there was only the slightest doubt, the issues were left uncategorized and not used. DEV
reflects only adaptive engineering (i.e., adding features) because in these projects almost
no maintenance activities are expected. Maintenance is only rarely done because there is
no proper quality assurance and the delivery of agreed-upon requirements is of the greatest
importance. Also, there are usually no or only a few ancillary functional requirements, such as
response time, user-friendliness, or documentation artifacts. Therefore, activities other than
forward engineering and bug-fixing were not considered. We also considered the frequency
of the bugs, but it is unreliable because the reporting is not rigorous, often inconsistent,
and sometimes completely absent. For example, many bugs were change requests in reality
because the requirements were understood wrong. DESC, however, was constructed as it was
deemed to be a valuable indicator for typical Fire Drill symptoms: Student projects have
a hard deadline, so descoping happened frequently. The candidate solutions to a to-be-missed
deadline are descoping, re-negotiation of the time frame, or overstraining people. Of these,
descoping presents the refactored solution, while the others would exacerbate the situation.
Therefore, descoping was the only allowed solution in this case.

4.5.2. Activities in source code data

From the source code, we model three types of activities from the type-II data as well.
Source code is, compared to issue-tracking, a more objective source of information, because
the data is not subject to human error and resulting inconsistencies (e.g., mislabeling of
tickets). The source code repositories and commits thereof do not usually provide any form
of annotations that would allow one to understand what kind of activity some committed
work may relate to. Although it is possible to reference issues in commit messages, this
feature was not used to label commits. Furthermore, we already derive three other activities
from the tickets directly. By analyzing each commit’s source code density [53], we can predict

Article number 240106

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

its associated maintenance activity [52] with great confidence. The three maintenance
activities are as follows:
A: Activities related to adaptive/forward engineering (adding new features).
CP: Activities related to either corrective (fixing faults) or perfective (improve or change

code to accommodate future features) work.
FREQnm: Overall commit frequency, regardless of the associated maintenance activity.
While the used classifier can differentiate between corrective and perfective commits,
the Fire Drill is not described using this distinction. Therefore, we combine these two
activities into a single one. Although the overall commit frequency could be designed
as a weighted mixture of A and CP, we chose not to do that. Instead, the frequency is
designed by disregarding all labels, similar to CP, which does not make a distinction
between corrective and perfective. Therefore, the variable is called FREQnm, where the
suffix “nm” indicates a non-mixture. The association between maintenance activities and
the activities as described by the Fire Drill is likely to be worse than it is for issue-tracking.
However, the increased objectivity of the source code data may give an edge to these data
over issue-tracking data.

4.5.3. Modeling of activities as probability densities

We have previously identified and selected activities to be modeled, for which a proper
representation has to be chosen. As a single consistent representation, we model each activity
as a probability density function (PDF). This is similar to how the work distribution for
certain workflows in certain phases is represented in the rational unified process [34]. The
density reflects the timely accumulation of activities relative to each project’s lifecycle.
Since we do post mortem evaluation, the time between the first and last instance across all
activities can be used to normalize all occurrences’ timestamps into the range [0, 1] after the
project end. The temporal accumulation is estimated using kernel density estimation [71].
For both sources of data, source code and issue-tracking, we know the timestamp for which
an instance of activity occurred. However, for the former, there is no indication as to the
duration of each instance. For the latter, however, the duration of each instance is factored
in as a relative weight when estimating a density, leading to a more accurate representation
of the time spent.

4.5.4. Deriving features from activities

For each project, we have previously defined what activities we model and how. However,
we have not yet derived any features. Generally, a feature is a measurable property with
discriminatory power, which can be used in statistical analyses and machine learning.
Since temporal accumulations of activities are modeled as probability densities (in case of
issue-tracking also considering the duration using weighted estimation, see Sections 4.5.1
through 4.5.3), we choose two major types of features. The first type of feature is the
amount (cumulative probability) of a certain activity that happens in a segment of a project.
Its value can be determined by integrating the relevant interval of the activity’s probability
density. The second type of feature is the difference between any two activities on a segment
that can be calculated using a (symmetric) divergence of their associated probability
densities (denoted by the operator |0). In addition, we choose to subdivide each project
into ten equally long segments. As the project time is normalized, we end up with a set of
segments {[0.0, 0.1], ..., [0.9, 1.0]}. The original Fire Drill description only vaguely indicates

Article number 240106

18

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

(the length of) phases. Brown et al. [11] reports an anecdote of a typical project with
improper burndown for about six months, followed by a Fire Drill of four weeks. However,
this is in no way representative. Therefore, we choose said subdivision. We argue that ten
segments will yield sufficient precision beyond Brown et al.’s two-phase model. Furthermore,
the number of segments could be arbitrarily increased to further boost the precision, if
desired.

The amount θ of a certain activity ACT in a segment [a, b] is the integral of its associated
probability density fACT over that interval. The probability densities of the activities are
designed such that

∫ 1
0 fACT(x) dx = 1, i.e., they integrate to one, the cut-off beyond the

actual project time is sharp, and the PDFs of any two activities provide absolute continuity.
Therefore, [

∑
θi] = 1 (where i = 1 ... 10 is the segment index). The amount of a feature

in a segment can be directly interpreted as a percentage (the cumulative probability of
observing the related activity in the segment).

The divergence between any two activities is commutative, that is, A diverges from B
the same as B diverges from A. Therefore, a symmetric divergence is computed. The
rationale behind this is rather practical. For the modeled activities, there is no distinction
between the two mutual divergences. Furthermore, if A |0 B 6= B |0 A, the result would
be twice the number of features. For three activities A, B, C, the resulting set would
have a cardinality of six. However, for a symmetric divergence, only A |0 B, A |0 C, and
B |0 C need to be computed. We choose the Jensen–Shannon divergence [72], which is
a symmetric divergence (1). It is based on the Kullback–Leibler divergence KL (P |0 Q).
For two continuous random variables P, Q with probability densities p, q, the divergence is
computed as follows.

JSD(P |0 Q) = 1
2 KL

(
P

∣∣∣∣0 P + Q

2

)
+ 1

2 KL
(

Q

∣∣∣∣0 P + Q

2

)

=
∫ b

a

p(x)
2 log

(2 p(x)
p(x) + q(x)

)
+ q(x)

2 log
(2 q(x)

p(x) + q(x)

)
dx. (1)

The rationale behind computing segment-wise divergences is our assumption that the
Fire Drill is sensitive with regard to a certain balance of particular activities at any given
point in time. Therefore, we regard the divergences as an effective measurable property for
observing such (im-)balances. Unlike the amount of activity, the divergence between two
activities cannot be interpreted in a straightforward way and requires normalization.

4.6. First analysis: weighted mixtures

The first analysis examines the temporal accumulation of activities as is typical for when
a Fire Drill is present in a project. For that, a weighted mixture for each activity across all
projects is created. A weighted mixture is a convex combination of probability densities.
In such a combination, each weight is greater than or equal to zero and the sum of all
weights is equal to one (2). This is required for probability densities to ensure that no
probability can become negative and the mixture integrates to 1. Recall that the raters’
ground truth assessment was recorded on a numeric linear rating scale of 0 − 10, with 0
indicating an absence of the phenomenon. The ground truth vector κ can, therefore, be
scaled into a weight vector by normalizing it through the division of its sum (3). A mixture

Article number 240106

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

for some same activity ACT across all projects (4) is then created as a weighted sum (5).∑
wi = 1 ∧ ∀ wi ≥ 0 . . . properties of a convex combination, (2)

w = κ
[∑

κi

]−1
, the normalized ground truth, (3)

fACT . . . vector of probability densities for activity ACT, (4)

gACT (x) =
∑

wi fi(x), weighted mixture for activity ACT. (5)
The result of this analysis will show us, for each activity, how it typically unfolds over

the lifecycle of a project that is affected by a Fire Drill. The expectation is to observe
a correlation between these activities and those as described, thereby establishing an
additional, symptomatic, and quantitative understanding of the phenomenon. Although we
currently have only n = 15 projects, each project added to the mixture will lead to a more
accurate representation of the activities in the presence of a Fire Drill. With a sufficient
amount of projects added in the future, the weighted mixtures may become their own,
quantitative pattern description of the Fire Drill.

4.7. Second analysis: variable importance

The second analysis estimates the variable importance. The term variable can be in-
terchangeably used with feature. It does not refer to a random variable, however. The
variable importance is often used as the basis for selecting features that shall be part of
the training [37]. Here, we compute it for a different reason, though, that is to enrich the
existing phenomenological descriptions from a quantitative point of view. The results of this
analysis are not used for adaptive training. We should note that the variable importance
is specific and sensitive to the model with which it was computed. For example, a neural
network will estimate it differently than partial least squares. Therefore, we average the
variable importance as obtained from five different models, each repeated 100 times, to
get a more solid understanding. The five models used are a boosted generalized additive
model [73], a neural network [74], (generalized linear) partial least squares [75], and bagged
CART [76].

In Section 4.5.4 we have described which and how we model activities, and what kind
of features were engineered. To recall, two types of features, namely the amount of an
activity and the (symmetric) divergence between two activities are used. Furthermore, the
subdivision into ten equally long intervals was applied. In summary, for a single activity
such as REQ or CP, the amount of activity in some segment is a single feature. Therefore,
for either source of data (source code or issue-tracking), we modeled three activities
each and segmented them into ten intervals, having two separate features (amount and
divergence) per interval (2 × 3 × 10 × 2 = 120). Therefore, the second analysis will answer
questions the first could not answer. For example, which are the most (least) important
segments (or phases) of the phenomenon, or whether the balance/divergence of activities is
a more suitable predictor than the number of activities. The variable importance, therefore,
complements the weighted mixtures of each activity. It cannot, however, answer as to
which source of data, source code or issue-tracking, is more important (that is, more apt to
predict an accurate severity). That is because variable importance is estimated on either
data source exclusively, as we maintain the split.

Article number 240106

20

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

4.8. Adaptive training

The adaptive training, while also having analytical properties, is in direct correspondence
with the main objective of this study: To automate the post mortem severity assessment.
As a byproduct, we shall also learn, for example, whether and which source of data, source
code or issue-tracking, is apt for use in a predictive model or what type of model works
best. The design of the adaptive training is subject to the propositions that a ground truth
with sufficient precision can be obtained (Pr. 2.1), and that there exist some artifacts
among the type-II data suitable for (adaptive) training (Pr. 3.1). We define the adaptive
training to be a kind of stability analysis, a process to which training data is continuously
added until the chosen stability criterion of sufficient confidence is satisfied [32]. The two
principal quantities that we will consider are the empirical generalization error or risk, R,
and the confidence in obtaining predictions close to it.

4.8.1. Notations

We use notations very similar to those of Bousquet and Elisseeff [32]. Only symmetric (ag-
nostic w.r.t. the order of the training samples) learning algorithms that produce a mapping
from some input or feature space X ⊂ R to some output space Y ⊂ R are considered. All
training is supervised. Hence, a training set S (6) consists of m tuples in Z = X × Y , drawn
i.i.d. from the unknown population D. An algorithm A, once fit, becomes the hypothesis
f : X → Y . Therefore, it is a function from Zm into the hypothesis space F ⊂ YX . We use
the notation AS to indicate that A was trained on S.

S = {z1 = (x1, y1), ... , zm = (xm, ym)} , (6)

c : Y × Y → R+ ∪ {0}, (7)

`(f, z) = c(f(x), y). (8)
The goodness of a fitted algorithm is evaluated using a cost function (7), which quantifies

the difference between the true and predicted outcome. The loss of a fitted algorithm
(a hypothesis f) with respect to an example z = (x, y) is defined as in (8).

4.8.2. Stability analysis

The stability criterion chosen for a learning algorithm depends on the goal. In this study,
the goal of the stability analysis is two-fold:
1. Select a champion model by the lowest empirical risk, among various configurations of

learning algorithm, training data source, applied pre-processing, and used feature types.
2. Approximate empirical confidence intervals based on the probability that the champion

model will predict an error that deviates from its expected error.
For (A), we require a model that satisfies the principal objective of predicting the severity
of the Fire Drill on previously unseen projects with sufficient confidence. For that, we
intend to repeatedly evaluate a large grid of various dimensions, in order to obtain robust
estimates for the empirical generalization error for each setup (e.g., used model type, data
source, etc.).

Instead of setting a threshold for what constitutes sufficient confidence, we select to
tie the second goal, (B), to the amount of available ground truth once a champion was
found since this is a source of actual scarcity. From pursuing the first goal, (A), the many

Article number 240106

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

repetitions for each constellation resulted in a set of validation errors. This set is regarded as
a separate random variable, V . Using this notion, a confidence interval can take two possible
forms. The first is to express it in terms of a probability that the model estimates an error
that deviates less or more from the expectation, given some bounds for the lower (da) and
upper (db) deviation (9). The second is to express it in terms of a deviation that corresponds
to a given lower/upper probability (pa, pb), that is, given a probability, a function that
indicates the maximally expected deviation from the expectation in either direction (10).
We can conveniently express the two notions using the probability density function (PDF),
cumulative distribution function (CDF), and percent-point function (PPF) of V .

fV , FV , f−1
V . . . PDF, CDF, and PPF of V,

µV = E [V] =
∫ ∞

−∞
x fV (x) dx, the expectation of V,

g(da, db) = FV (db + µV) − FV (µV − da), (9)

h(pa, pb) = sup
{∣∣∣ µV − f−1

V (FV (µV) − pa)
∣∣∣ ,

∣∣∣ FV (µV) − f−1
V (µV + pb)

∣∣∣}. (10)

When V follows a unimodal distribution, common inequalities can be applied to estimate
a confidence interval. For example, if V ∼ N , the Three-Sigma rule [77] can be applied. The
following four common inequalities are ordered by their bounds, from tightest to loosest:
Three-sigma rule < Vysochanskij–Petunin inequality < Gauss’s inequality < Chebyshev’s
inequality [78–80]. If any of these should be applied, one shall first evaluate the tightest
inequality for which the constraints are satisfied.

4.8.3. Training flow and model selection

The design of the training flow follows recommendations to obtain robust predictive models
under the constraints of small sample sizes as given by, e.g., [81–84]. Varma and Simon and
especially Vabalas et al. show that standard K-fold cross-validation (CV) produces strongly
biased performance estimates, particularly with small sample sizes. This problem can be
evaded by using some form of nested CV, train/test split approaches, and sufficiently many
repeats. Using this approach, others have previously obtained high-performing models [85].
Due to the scarcity of our data, we oversample the dataset using the well-established
synthetic minority oversampling technique (SMOTE) for regression, which has been proven
to significantly increase model performance [86]. For the outer resampling of the nested
CV, we define an extensive search grid. The dimensions are the following (the size of each
dimension is in parentheses):
– (2) types of data source: either source code or issue-tracking.
– (6) types of models, one of bagged CART, generalized linear model [87], Gradient Boost-

ing Machine [88], neural network, Random forest [89], and Support vector machine [90].
– (3) types of features used in training: Amount, divergence, or both (see Section 4.5.4).
– (2) conditionally apply pre-processing in the form of principal component analysis

(PCA), in order to test a lower-dimensional input space X ′.
– (49) number of training samples (using between two and 50 samples for training).
– (50) repeats using a deterministically randomized dataset.

Article number 240106

22

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

During each of the 50 repetitions, the entire data set is shuffled. Then, a number of training
samples (m) are removed without replacement, which constitutes the training dataset
S = {z1, ..., zm}. Then, a constant number of 50 validation samples is selected from the rest
of the dataset. These samples are completely excluded from any training and only used to
estimate the validation error using the root-mean-square error (RMSE) as a loss functional
` (8). The pre-processing pipeline consists of three steps: Removal of (near-)zero variance
predictors, conditionally reducing dimensionality using PCA, and z-standardization of the
data (center and scale). The pipeline is fitted to the training data and then applied to the
validation data.

The above grid has 176, 400 permutations. For each, a nested inner CV is performed. The
empirical risk estimator used in the nested CV is the so-called leave-one-out cross-validation
(LOOCV) [91]. It trains on all but the i-th instance of the training data. Therefore, it
estimates the stability with respect to changes in the training set. This process shall be
repeated for every i ∈ {1, ... , m} item in S, such that S\i is the training set without that
item (11). The associated Rloo estimator is the average over all m possible constellations
of S (12). It is known as the estimator of error stability, which is used as a measure of
the difference between true and empirical generalization error [92]. Since the training here
uses all but one data point during LOOCV training, it should be noted that the empirical
estimate of the generalization error has a slightly pessimistic bias [81].

S\i = {z1, ..., zi−1, zi+1, ..., zm} , (11)

Rloo(A, S) = 1
m

m∑
i=1

` (AS\i , zi) . (12)

The inner CV is repeated for a fixed number of 25 folds during which a nested CV is
performed for each. Each m-th estimate during LOOCV in addition is found by conducting
a nested grid search for optimal model-specific hyperparameters, which typically span
between 1e1 and 1e3 permutations. For the models gbm and nnet, fine-tuned grids and
fewer inner repeats are used. The many-times repeated training allows us to approximate
the probability density of V, its expectation E [V], and its associated confidence intervals.

5. Analysis and results

In this section, we report the results of the qualitative and quantitative analyses. Those
results, their validity, and limitations are then further discussed in Section 6. The reported
results represent our main findings and are those primarily relevant to the posed research
questions. The results here are presented in the same order as the relevant methodology:
First, we demonstrate results related to the qualitative evaluation. Then, results obtained
quantitatively are shown from Section 5.4 and onwards. The interested reader is directed
to an extensive technical report with numerous additional results that extend far beyond
the scope of this study [78].

5.1. Inter-rater reliability and consensus

Prior to conducting a session for finding a consensus, we assessed the inter-rater agreement.
This was done by first computing Gwet’s agreement coefficients AC1/AC2 [66] and then

Article number 240106

23

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Normal distribution for Gwet’s AC1/AC2 coefficient.

Kappa value

R
el

at
iv

e
Li

ke
lih

oo
d

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6
7

Moderate Substantial Almost
Perfect

12.88% 82.18% 4.94%

Figure 3. Gwet’s AC1/AC2 coefficients [66] benchmarked against the Kappa scale
of Landis and Koch [67]. The opacity indicates the probability for the agreement to be in the given

range. The distribution’s mean is at ≈ 0.681 and the standard deviation is ≈ 0.072

benchmarking it against the scale as suggested by Landis and Koch [67]. Gwet’s coefficient
results in a percent agreement of ≈ 86.2%, a by-chance percent agreement of ≈ 56.8%
(which it corrects for), an agreement coefficient (Kappa) of ≈ 0.681, a standard error
(deviation) of ≈ 0.072, and a p-value of ≈ 2e−7. The p-value indicates, under any common
significance level, that there is no practical corroboration for the null hypothesis of the
inter-rater agreement test that the raters’ agreement happened purely by chance. Instead,
we accept its alternative hypothesis that chance did not cause the observed agreement [93].
According to the computed benchmark, the agreement is, for the largest portion of ≈ 82.18%,
“substantial” [67]. Another ≈ 12.88% of the agreement is “moderate”, and some of it
(≈ 4.94%) is even regarded as “almost perfect.” This is visualized in Figure 3.

Assessing inter-rater agreement addresses RQ 1.1 directly. The computed benchmark
indicates that most of the agreement is substantial. However, in order to solidify our answer,
we also compute the benchmarks of Cicchetti and Sparrow [94], Fleiss [95], and Regier et
al. [96]. Note that the latter uses the same (positive) levels as the benchmark by Landis
and Koch, but only changes the labels (from “Moderate” to “Fair”, from “Substantial”
to “Very Good”, and from “Almost Perfect” to “Excellent”). For Cicchetti and Sparrow’s
benchmark, the agreement is “Fair” ([0.4, 0.6] ≈ 12.88%), “Good” ([0.6, 0.75] ≈ 70.14%), and
“Excellent” ([0.75, 1.0] ≈ 16.98%). For Fleiss’s benchmark, the agreement is “Intermediate
to Good” ([0.4, 0.75] ≈ 83.02%), as well as “Excellent” ([0.75, 1] ≈ 16.98%).

Finding a consensus is different from only applying, say, a weighted average. While
there was close or full agreement in many cases between the raters, some cases warranted
for a common, retrospective inspection of the projects’ artifacts, which led to ratings that
were sometimes outside the range of the individual assessment. Most often, however, the
raters were able to settle on one of the proposed ratings or a neighboring value.

5.2. Phenomenon prevalence and manifestation

Here, we report the summarized results of how the Fire Drill manifests across the projects,
in terms of concretely observed empirical instances of certain symptoms and consequences.

Article number 240106

24

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Those results address RQ 1.2 and were obtained by systematically analyzing the raters’
notes. The most recent phenomenological descriptions of the Fire Drill define seven super-
categories for symptoms and consequences (see Appendix A). We refer to them using the
notions SC1 through SC7. The qualitative evaluation led to us defining three additional
supercategories. Since these were derived from empirical observations, we refer to them
as ESC1, ESC2, and ESC3 (see Appendix C). An observation was only logged if the rater’s
notes allowed it. For example, some notes indicate a problem, without a cause: “descope
in later stages of the project,” or “poor testing”. Here, we cannot assign an instance of
a symptom/consequence. Also, if the severity cannot be decided between two levels, then
the rater’s Fire Drill severity is applied to reach a decision.

We should note that, due to the nature of the definition of SC7, no instances of
it were found. Its description would affect a project rather globally. However, some of
SC[1-6], as well as ESC[1-3] convey the portrayed problematic of SC7 in parts, so that
findings were assigned to these instead. During the evaluation of the raters’ notes, many
instances emerged that could have been assigned to the original symptoms and consequences
SC[1-7]. However, it became apparent that a new supercategory would perhaps be more
suitable for many instances. Therefore, we introduced the notion of ESC[1-3]. Those
reflect poor communication, high project risk, and poor usage of project management
tools and methodologies, respectively. ESC[1-3] are not supposed to become part of the
Fire Drill description. Rather, they were introduced for a more fine-grained assignment of
observations to superordinated symptoms and consequences. Therefore, any observation
assigned to ESC[1-3] could as well be assigned to the original symptoms and consequences.
Qualitative evaluation. Our findings indicate that the most reoccurring problem is high
project risk (ESC2). It is closely followed by poor communication (ESC1) and a compromised
project schedule or scope (SC6). The most infrequently observed problems (apart from
SC7) are a spike of development efforts towards project end (SC3), the absence of sufficient
quality assurance and project tracking during development (SC4), as well as the delivery of
only analytical/documentational artifacts over a (too) long period (SC2).

Project risk (ESC2) is the most diverse supercategory, that is, it has the most different
types of empirical observations by far (11). Risks are sometimes highly connected and
emerge consecutively, such that the consequence of one problem is the symptom of the
next problem. For example, an imbalance of activities (e.g., time spent on development
when it had been required on requirements analysis instead) often leads to descoping,
which itself caused frequent project schedule adaptations or quality regressions. Many
problems can be attributed to the lack of (professional) experience in students, such as
the misestimation of work items, technical difficulties (e.g., development environment,
infrastructure, etc.), improper self-organization, or the (unwitting) misinterpretation of
business requirements. However, not all problems were caused by students. For example,
the customer representative was sometimes not available at the required capacity, thwarting
the team. In other cases, the customer did not understand the technical challenges involved,
which led to, e.g., unrealistic expectations or greatly diverging effort estimations.

While observations of the second-largest problem, poor communication (ESC1), could
be attributed in many cases to project risk, many problems would go underappreciated if
doing so. The most frequent observation was an unresponsive customer or unsatisfactory
communication. It would often manifest through delayed, slow, or incomplete responses.
Sometimes, critical material, decisions, or information were imparted too late, causing other
problems, such as a stalled team or compromised schedule. This observation is perhaps the
most prominent for one of the root causes of a Fire Drill: management stalls development.

Article number 240106

25

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Poor communication can be mutual, that is, between parties, or be caused by just one
party. Most of the problems can be attributed to the mutual category. However, there are
also instances of students not renegotiating misunderstandings and of customers interfering
with the students’ project management without telling them.

The third-largest problem, a compromised project schedule or scope (SC6), had three
different manifestations that were observed multiple times, both in the same project as
well as across projects. Most often the schedule was compromised because the students
accepted change requests, the re-prioritization of existing issues, or the addition of new
issues in the middle of an iteration. This situation was often exacerbated by an improper
change management process. The second-most frequent observation for this problem was
that work was not completed as planned and the dragging of issues into the next iteration.
The reasons for these observations were multifarious, such as an over-challenged team,
misestimation, or unequal work distribution. Related to this observation, but still distinct
from it, is that the team gets used to and regularly accepts doing overtime (and prolongs
an iteration) or truncates scope (planned work).

As for problems of the remaining symptoms and consequences, the most frequent
observations were related to a slow project startup (SC1), especially with regard to non-
developmental activities. This was most often related to a familiarization process needed by
the new team, such as familiarization with the other members, new or changed tools, ways of
communication, or yet-to-be-improved early-stage procedures. Another common cause was
an unclear scope, such that the team went into procrastination (underscoped) or did have
a hard time finding their way into the project (overscoped). ESC3, the poor usage of project
management tools and related methodologies, constituted the next bigger class of symptoms
and consequences. Typical problems are attributed to the improper usage of ALM tools,
such as using wrong item types (e.g., marking an Epic as a Task), not breaking down large
deliverables and features, or careless and imprecise logging leading to a discrepancy between
logged and done work. The teams were allowed to use additional tools for information and
knowledge management, which led to confusion and unnecessary duplication. Lastly, SC5
concerns the final product, its quality, and delivery date. The quality was compromised
in some cases by skipping over planned features or proper quality assurance. In some cases,
the product was completed but delivered only after the final due date.

The refactored solution to a Fire Drill includes measures applicable for when there is time
(iterations) and resources left. While some projects showed increasingly stronger signs of the
phenomenon, no intermittent measures were implemented to alleviate the problems. It was
only towards the very end that a solution had to be found. This is attributed to our context:
While there are deliverables after each iteration, the customer is primarily interested in
the final product, as feature-complete as possible. The students are primarily interested in
passing the course, concentrating their focus on the final delivery, too. Refactored solutions
to ameliorate an eventuated late-stage Fire Drill are to re-negotiate the delivery date, to
triage the remaining budget into implementing missing features and quality assurance, or to
descope. Due to the lack of monetary interests (and related pressure) on the customer’s side
and the impossibility of changing the delivery date (constraint of the context), the Fire Drill
manifested predominantly through descoping, which proved to be a valuable predictor later.

Quantitative evaluation. We report on the average severity for each symptom and
consequence, as well as on the total severity. The utility of the average severity is a ranking
of the supercategories, that is, to determine what the common severity of the manifestation
for each superordinate category is. The total severity is the sum of the observations’ severity.

Article number 240106

26

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5
SC6 = 2.38 (16) SC7 = n/a (0) ESC1 = 2.78 (18) ESC2 = 2.07 (28) ESC3 = 1.43 (7)

SC1 = 1.38 (13) SC2 = 1.67 (3) SC3 = 3 (1) SC4 = 1.5 (2) SC5 = 3 (4)

Symptom / Consequence
SC1 SC2 SC3 SC4 SC5

SC6 SC7 ESC1 ESC2 ESC3

Average severity per symptom and consequence.

Figure 4. Average severity for each (empirical) Symptom/Consequence.
Also shown is the number of observed instances in parentheses

Its utility is more specific for learning for our concrete case, as it should give an indication
as to which symptom and consequence is the most pronounced in our projects.

Figure 4 shows the average severity per symptom and consequence. SC[2-5] have only
a single or few observations, which should be considered when ordering supercategories.
SC1 and SC6 make for a good comparison, for example. While both have similarly many
observations, the latter has a significantly stronger average severity. Encountering instances
of either symptom and consequence might be similarly likely, but an observation of the
latter indicates a worse case of a Fire Drill. The strongest average severity is exhibited by
ESC1 (disregarding SC3 and SC5 which have only a few observations) with a value of ≈ 2.78.
Recall that a value of 3 corresponds to the ordinal level “Moderate” (see Section 4.4), which
is characterized as clearly identifiable and reoccurring symptoms or direct corroboration.
Since its average severity exceeds that of SC6, the poor communication between stakeholders
comparatively appears to be the worst of all the problems in our case.

This impression slightly shifts towards ESC2 when looking at the total observed severity
(see Figure 5). Ten more instances (28 total) were observed of ESC2, which explains its high
total severity. In other words, while poor communication is comparatively worse when it
happens, the projects were substantially more often subject to some form of risk. A third,
quite evident problem is a compromised schedule or scope (SC6). By a larger margin, this
is followed by problems related to a longer stall during the project beginning (SC1), a final
product with low quality (SC5), and poor usage of ALM tools (ESC3). The low count of
observations for SC[2-5] also results in a comparatively low total severity.

5.3. Phenomenon absence

The evaluation of the raters’ notes also exhibited evidence for the absence of a Fire Drill
for a number of projects. In Appendix D, we have gathered a list of observed symptoms

Article number 240106

27

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

18 (13)

5 (3) 3 (1) 3 (2)

12 (4)

38 (16)

0 (0)

50 (18)

58 (28)

10 (7)

0

10

20

30

40

50

60

SC1 SC2 SC3 SC4 SC5 SC6 SC7 ESC1 ESC2 ESC3

Symptom / Consequence
SC1 SC2 SC3 SC4 SC5

SC6 SC7 ESC1 ESC2 ESC3

Total severity per symptom and consequence.

Figure 5. Total severity for each (empirical) symptom/consequence.
Also shown is the number of observed instances in parentheses

and consequences in order to answer RQ 1.3. This list is comprised of symptoms and
consequences that are counter-indicative to what constitutes a Fire Drill. While the absence
of evidence is not evidence of absence, the gathered items should be more regarded as
true negatives. This list does not claim to be complete, nor is the presence of a single item
(or few) sufficient proof for the phenomenon’s absence. On the contrary, evaluation of the
raters’ notes indicates that a project may exhibit symptoms and consequences for and
against a Fire Drill, even simultaneously. For example, communication and collaboration
with the customer might be seamless (as indicated by the counter-indicative symptom
and consequence CISC01), but the project’s schedule might still get compromised due to
misestimation caused by inexperience. Sometimes, there are also signs for the opposite
of a Fire Drill (or other patterns). Our main observation here is essentially related to an
underchallenged or underutilized team, and often related to the quick completion of work
items, delivery before the deadline, a too-simple product, or skipping over quality assurance
or planning and/or analysis with the direct start of implementation.

5.4. Quantitative phenomenon manifestation

The previously won ground truth allows leveraging the quantitative type-II data. With each
project having a severity attached, we can find typical accumulations of (maintenance) activ-
ities that are characteristic of a Fire Drill (RQ 2.1). Figure 6 shows, for each activity as it
is found in source code and issue-tracking data, a weighted mixture (convex combination (2)
using the ground truth as weight). Three out of 15 projects had a ground truth consensus
of 0 and, therefore, do not contribute to any of the weighted mixtures. Another effect of
this circumstance is that the weighted mixtures quite obviously mirror the activities from
a few, severely affected projects. Since each activity’s mixture is an ordinary probability
distribution (with integral = 1), we can compare them in a straightforward manner.
Source code. The activities in the source code are derived from maintenance activities
(adaptive ∼ A, corrective+perfective ∼ CP) [52]. The overall commit frequency, regardless
of the associated activity, is depicted as FREQ. Adaptive activities show a somewhat slow
start, followed by a peak in the third quarter of the project, and a sharp decline afterward.

Article number 240106

28

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Weighted mixtures for the source code and issue-tracking activities.

Relative project time

R
el

at
iv

e
Li

ke
lih

oo
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Activity

A
CP
FREQnm

REQ
DEV
DESC

Figure 6. Weighted mixtures for each of the source code and issue-tracking activities
(using the ground truth to create convex combinations)

To some degree, A follows the expectations according to the Fire Drill’s phenomenological
descriptions. CP and FREQ on the other hand, steadily increase for the first ≈ 80% of the
project, only to peak shortly after at about ≈ 90% of the project time. The combined
behavior of A and CP is counter-intuitive to the expected behavior of these activities, as
per the Fire Drill’s phenomenological descriptions (i.e., a significant increase of adaptive
activities with a simultaneous decrease in corrective+perfective activities). FREQ, on the
other hand, distinctively shows the expected peak of a Fire Drill towards the project end.
Issue-tracking. The issue-tracking activities provide us with an additional quantitative
perspective. Due to the nature of the projects, DEV is expected to only reflect adaptive
engineering, similar to source code’s A. The qualitative evaluation confirms this expectation,
because corrective and perfective activities were rarely, if at all, logged in the project
management tools. Indeed, we observe a quite similar temporal accumulation between A
and DEV, with a peak in the third quarter as well. More or less inversely proportional
to DEV is the accumulation of activities as captured by REQ. Both of these activities
are in accordance with the existing phenomenological descriptions, such as an imbalance
where in the beginning of a project activities connected to requirements, analysis, and
planning prevail, while development is thwarted for one or the other reason. Approximately
uniform distributions for these two activities would be asymptomatic for a Fire Drill in
the ideal case. The descoping activity DESC was designed by us based on the assumptions
that it would make for a good predictor of the Fire Drill. We observe that this activity
steadily – in fact almost linearly – accumulates from project start to end. This indicates
that affected projects are subject to descoping from the beginning and that these projects
do not manage to remedy this situation.

5.5. Variable importance

Another question we sought to answer quantitatively using type-II data was about the
importance of activities and project phases for accurately predicting the phenomenon
severity (RQ 2.2). For that, we subdivided the normalized relative project time into ten

Article number 240106

29

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

0.
10

3

0.
10

7

0.
06

3

0.
10

1

0.
15

3

0.
11

6

0.
14

8

0.
08

4

0.
09

1

0.
09

7

0.
10

9

0.
10

7

0.
07

9

0.
05

2

0.
11

8

0.
11

8

0.
07

2

0.
13

5

0.
06

2 0.
08

5

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

Segment

R
el

at
iv

e
Im

po
rt

an
ce

Activity
A CP FREQnm A vs. CP A vs. FREQnm CP vs. FREQnm

REQ DEV DESC REQ vs. DEV REQ vs. DESC DEV vs. DESC

Variable importances for source code and issue-tracking, per segment.

Figure 7. Per-segment and per-feature variable importances as averaged across five models,
each repeated 100 times: Boosted Generalized Additive Model, Neural network,

(Generalized Linear) Partial Least Squares, and Bagged CART

equally long, consecutive segments (see Section 4.5.3). Figure 7 shows a graphical result of
this. The exact numeric results as shown in the figure are included in Tables E1 and E2,
which are to be found in Appendix E. Looking at the final numbers, we can say that
the divergence features have greater variable importance than the amount features, both
for source code (≈ 52.5%) and even more so for issue-tracking (≈ 56.2%). The two most
important features for either data source are A |0 CP (19%) and REQ |0 DESC (≈ 20.7%).
The two least important ones are A (≈ 14.2%) and REQ (≈ 13%).

As for the per-segment importance, the results diverge between data sources, with
a larger variance for source code. There, it ranges from ≈ 6.2% to ≈ 15.3%, with a standard
deviation of ≈ 3.3%. The first five segments, that is, the first half of the project, account
for ≈ 55.9% of all importance, where segments three and four seem to be particularly
important. Interestingly, segments seven, nine, and ten exhibit a comparatively low variable
importance for predicting phenomenon severity. The range for issue-tracking data is from
≈ 5.2% to ≈ 13.5%, with a lower standard deviation of ≈ 2.3%. Both project halves are
equally important when using issue-tracking data. Except for segments seven and nine,
each segment is almost equally important.

5.6. Adaptive training

The third set of results is related to the third set of propositions and hypotheses and
addresses the research questions therein. According to the previously described methodology
(see Section 4.8), we conduct the adaptive training, using a large number of constellations
and repeats in order to obtain robust estimates. We find that models trained using source
code data converge faster and result in a lower final training error (answer to RQ 3.1), that
not reducing dimensionality using PCA works better for a slight majority of cases, and that
using both kinds of features simultaneously leads to robust convergence. Figure 8 shows the
distribution of validation errors for all six models when trained on 20 instances. When we

Article number 240106

30

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

gbm

glm

nnet

rf

svmPoly

treebag

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

RMSE (validation data)

Model
gbm

glm

nnet

rf

svmPoly

treebag

Distribution of validation errors for all six models, each trained on 20 instances.

Figure 8. Distribution of validation errors (50 instances) computed
using the root-mean-square error for all six models, where each

was repeatedly trained on 20 instances of the source code dataset,
without applying PCA

Confidence intervals according to the 68–95–99.7%-rule.

0

20

40

60

80

100

C
on

fid
en

ce

Number of training instances

R
M

SE
(v

al
id

at
io

n
da

ta
)

5 10 15 20 25 30 35 40 45 50

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

Mean RMSE (validation)
≤1 standard deviation
≤2 std. devs.
≤3 std. devs.

Figure 9. Continuous confidence of the neural network predictor, with regard to the number
of training instances. Shown are the values according to the 68–95–99.7%-rule

(assuming a normal distribution for every generalization error).
The mean RMSE was determined using 50 models’ predictions on validation data.

The three color gradients correspond to the three sigmas

compare the data sources, models trained on source code achieve a lower mean (0.75/0.92),
median (0.52/0.71), minimum (0.152/0.158), and standard deviation (0.58/0.65) for the
validation RMSE error, summarized across all the different constellations.

The champion model is a standard feed-forward neural network that uses divergence
features from source code only. This is also reflected in Figure 8, however, here it is only

Article number 240106

31

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

shown for 20 instances. The full adaptive training of the champion model is shown in
Figure 9. The many observed validation errors obtained through the numerous repeats are
almost always normally distributed, indicating the robustness of the final model. That also
allowed us to apply the Three Sigma rule (which has the tightest bounds) to determine
a confidence interval per number of training instances and to find some answers to RQ 3.2.
Most notably, training the champion model on 25 instances produces an expected validation
error of ≈0.46, and this error will not be larger than ≈0.96 by a probability of 99.7%10. In
other words, such a model will predict the Fire Drill severity on a scale of 0–10, and by
doing so it will almost surely not deviate by more than one point on this scale (the expected
deviation is even less than 0.5). The expected RMSE falls below 1.0 for the first time when
trained on twelve instances. For 15 instances, the probability that the prediction will be off
by maximally 1 is already at ≥76%, as can be seen from the figure. For 20 instances, this
probability increases towards ≥92%. For 50 instances, the expected error plus deviation is
0.52 or less, by a probability of 99.7%.

6. Discussion

In this section, we first summarize all results and relate them to the previously established
propositions and hypotheses. We then discuss the validity of our study and its results, its
limitations, and address replicability and generalizability.

6.1. Summary of the results

We have shown that experts can independently agree on a subjectively chosen rating and
that their agreement was substantial and did not occur by chance. This was the basis
for the propositions Pr. 1.1 and Pr. 1.2. The existing phenomenological descriptions of
Fire Drill are sufficiently precise, and its severity can be accurately determined. It also
confirmed the hypothesis Hyp. 1.1 that the mostly unstructured type-I data provide
sufficient quality for the assessment task. The agreement on the absence was also reliable
(Pr. 1.3 and Hyp. 1.2) so we were able to gather a list of counter-indicative symptoms
and consequences. Most notably, however, the qualitative assessment and the following
quantitative evaluation of the Fire Drill’s manifestation allowed us to identify the most
pronounced and prevalent symptoms and consequences in the considered projects. We find
prime examples of reoccurring Fire Drill elements across our projects, such as instances of
(chains of) project risk, poor stakeholder communication, and regressions in the form of
descoping and compromised schedules. The circumstances and constraints of the studied
context allow us to deduce explanations for the concrete manifestation.

For the first quantitative analysis, we compose a weighted average of how activities
typical for a Fire Drill-affected project accumulate. It is deemed an appropriate represen-
tation since we previously confirmed hypothesis Hyp. 2.1, that is, activities will display
a behavior characteristic of or conforming to the Fire Drill’s phenomenological descriptions.
These allow us to establish an additional quantitative understanding of the phenomenon.
We take advantage of the wide range of digital artifacts and reliable ground truth to do so
(Pr. 2.1). The weighted mixtures unveiled some unexpected results, which are, however,

10While these and the following results can be seen in Figure 9, they are calculated exactly using the
previously introduced notions for probabilities (9) and deviations (10) of confidence intervals, respectively.

Article number 240106

32

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

explained by the confines of the studied context and case and corroborated by findings from
our qualitative analysis. Late-stage Fire Drills were most often addressed by descoping,
which is a valid – here the only valid – refactored solution. This is reflected quite well in
the activities found in the source code. Instead of rushing to add the last missing features,
the focus is predominantly on corrective activities and then on perfective activities. We
know this from decomposing CP into its separate activities. While the Fire Drill description
to date does not differentiate between corrective (C) and perfective (P), using source
code allowed us to gain this insight. This is surprising since the delivery of agreed-upon
requirements is deliberately prioritized over maintenance in these projects. An explanation
for this might be that it became apparent in some of these projects that some form of
compromise of scope is inevitable, so the efforts were likely re-focused on ensuring that
a minimum quality corresponding to the requirements, for the to-date existing features,
was met, or that the product works at all.

The second analysis of variable importance unveiled two principal findings. First,
knowing about the (im-)balance of two activities is a more important predictor for Fire
Drill severity than knowing how much time was spent on the activities. This is an important
finding, as the balance between two activities is a relative metric. The phenomenological
descriptions, as well as the results of our qualitative analysis, both support this. This result
means that, at least on average, it is of greater relevance to know how diverging any two
activities are, rather than their concrete amount (cumulative probability). Rather than
waiting until the project end to calculate the amount of each activity in each segment, we
can observe how activities diverge in a single segment intermittently and use this as an
indicator in the future. The second important finding is that segments (project phases) are,
except for a few cases, almost equally important (also, no phase has (near-)zero importance,
Hyp. 2.2).

The third analysis was designed to determine whether a robust, reliable, and low-risk
predictive model can be obtained. The designed adaptive training workflow showed that we
can obtain a suitable model from those data (Pr. 3.1, Hyp. 3.1). With sufficient confidence
as our stability criterion, we demonstrate that models trained on as few as 15 instances
will completely automate severity assessment in the future, within acceptable confidence
intervals (Pr. 3.2). Both sources of data individually, source code or issue-tracking, are
suitable for this task (Hyp. 3.2). Generally, we observe that the adaptive training flow
converges nicely with increasing amounts of training data. Clearly, the stability of the
model is closely related to the amount of available training data. As for RQ 3.2, the precise
threshold for stable depends on the application, but we figure that to predict the severity
of the Fire Drill in our case and context, a model trained on 15 to 25 instances would
deliver sufficient stability, as the results would not be misleading, even when off slightly.

6.2. Validity, limitations, replicability, and generalizability

The choice to conduct an embedded case study was a natural one, given the principal
objective and the previous pilot study [51]. Our study is of longitudinal character, as the
same course was studied repeatedly and projects were selected over a duration of three
years. Each project is unique with regard to individuals, groups, social structure, software,
etc., and it is unlikely that the same set of events unfolds again in the same way [97].
Therefore, to maximize reliability and minimize bias, projects were selected from each
year. Instead of conducting a case study for each project, we chose a common case and
context that allows us to collect and analyze quantitative data as well, especially since we

Article number 240106

33

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

intended to backpropagate the gained knowledge to the phenomenological descriptions and,
therefore, the studied case.

A case study should be chosen when conducting an empirical investigation of a contem-
porary phenomenon in its real-life context, especially when the phenomenon cannot be
clearly separated from its context [55]. Furthermore, a variety of data sources is required
(see Section 1.1). The Fire Drill is a phenomenon that is always embedded in some (social)
context it cannot be separated from, and it is not the goal of this study to propose or attempt
a separation. Instead, we have made extensive efforts to minimize the impact our study
may have. In order to maximize the degree to which this study can be (partially) replicated,
we outline an extensive protocol (see Section 4) and publish all original data [62] and
experimental designs [78]. Construct validity is achieved by a variety of measures, such as
the usage of multiple data sources and observers (triangulation), ascertaining of inter-rater
reliability, and controlled experiments (e.g., many repeats, model averaging, training with
stability criterion, etc.). Independent raters and an assessor use systematic protocols,
which allowed us to suggest and confirm chains of causality and ensure repeatability and
replicability. The usage of two completely independent data sources (source code and
issue-tracking) provided a second perspective that we exploited to corroborate our findings.

The limitations of the obtained results lie in the external validity and generalizability.
Results such as the predictive model, weighted mixtures, or variable importance do not have
validity outside the studied context, as it introduced constraints that force the phenomenon
to take certain turns. We have observed a great number of concrete instances of symptoms
and consequences. Although extensive, these observations cannot be exhaustive, nor can
their distribution be representative outside our context. This is similarly true for the
asymptomatic, counter-indicative observations. The Fire Drill shares similarities and
indicators with other kindred phenomena, which are also based on temporal accumulations
of activities (see Section 3.1.2). Therefore, we expect the external validity of the protocol
suggested for studies of these phenomena. The generalizability of this study comes from
subsequent and replicating case studies. For example, one study may examine the pattern
“Half Done is Enough” in the same context and another one the Fire Drill in an industrial
context. Only with a sufficient amount of case studies will we be able to reach a definitive
understanding of the Fire Drill and how it does (not) manifest in certain contexts.

7. Conclusions and future work

We have shown that activity-based detection of complex phenomena is viable and can be
used to reduce the otherwise required amount of expert-based, qualitative, and extensive
analyses. Our work has several practical implications. First, instances of maintenance
activities are plentifully found in typical software projects and make for highly cost-effective
and robust features. Second, an existing ground truth can be leveraged to make sense
out of these quantitative features. Third, predictive models using these features require
only a few observations (projects) to produce low-risk predictions. Last, A well-trained
model can produce predictions that are accurate enough such that they can support or
(partially) replace the expensive, error-prone, and expert-based evaluations. The practical
implication is that such a model can be reused on only the quantitative data (e.g., we have
shown that the commits of the repository are sufficient) of future projects for predicting
the severity of complex phenomena. This may be useful in circumstances where a fast

Article number 240106

34

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

and computationally cheap analysis is required to, e.g., quickly filter and flag (for a full
follow-up in-depth qualitative analysis) projects affected by a problem.

7.1. Synthesis

For an embedded case study, it is important to synthesize all results and to backpropagate
them to the studied case [25]. We have presented results from each project’s individual,
qualitative, and idiographic study, as well as results from the quantitative, nomothetic
analysis across all projects (see Section 5).

We studied the Fire Drill as is embedded within a software engineering course. For
this specific case and its surrounding context, we predominantly find results that are in
agreement with the phenomenological descriptions. The in-depth individual study of each
project, as well as a common evaluation across projects, allowed us to find explanations
for all the results diverging from it. In affected projects, we observe typical peculiarities
of a Fire Drill, such as management that stalls development, or late-stage rushes. While
the anti-pattern suggests renegotiating the final deadline as one solution, the students
truncated the scope of their applications to mitigate the fallout, thereby implementing the
only valid refactored solution within the course. We gather the most significant symptoms
and consequences of a Fire Drill within the course. Evaluation of total and average severity
showed that project risk, poor communication, and a compromised project schedule or -scope
are the biggest problems that students encounter. We learn that a Fire Drill may affect
a project as a whole, but we also observe micro instances affecting single iterations. It was
previously suggested and now confirmed by us that the Fire Drill is an anti-pattern that can
be the result of, encompass, or cause other, often conceptually smaller anti-patterns such as
“Analysis Paralysis” or “Cart Before The Horse”. We find evidence that is counter-indicative
of a Fire Drill and observe projects that exhibit evidence both for and against its presence,
simultaneously. Raters are able to identify this and other circumstances by being provably
able to confidently agree on a severity. Our conjecture that descoping makes for a strong
predictor is confirmed; projects are affected by it over the course of their entire lifecycle
and the amount of time wasted on it consistently increases. We conclude that the Fire
Drill is an anti-pattern that was deliberately described vaguely, but that it is still possible
to derive concrete and specific problem instances from it. Observing only a few instances
proved sufficient for building low-risk predictive models that can exploit activities that are
modeled after either source code or issue-tracking data, as both kinds of data sources are
eligible for the task.

We suggest that other phenomena that are characterized by activities that can be
captured and analyzed similarly can be subjected to the methodology presented in this
work. Therefore, we intend for the methodology to be the main contribution. Our empirical
observations are likely valid in other similar cases and contexts, too, but subsequent
(partially) replicating case studies will have to show this. Most patterns today are only
described from anecdotes or other literature (phenomenological descriptions), but rarely
come with a set of empirical observations attached. We contribute directly to the existing
understanding of the Fire Drill by unearthing concrete empirical instances associated
with its ascribed symptoms and consequences (the supercategories). More significantly,
though, we have shown how to use a (scarce) ground truth to establish an additional,
quantitative understanding by leveraging the available data (which was not possible
previously), making the Fire Drill perhaps the first pattern-like phenomenon that is
described from both perspectives. Lastly, having uncovered the most frequent and prevalent

Article number 240106

35

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

issues that participants of the course encounter, we will attempt to incorporate the won
insights into future editions of the course to improve all participants’ experiences.

7.2. Future work

This study is the first to properly replicate the significant findings from the previous pilot
study [51]. We intend to replicate this study with other related and similar phenomena.
Candidates are, for example, Cart Before the Horse, Half Done is Enough, the Net-negative
Producing Programmer, the Lone Wolf, Nine Pregnant Women (a variant of Brook’s law),
or Analysis Paralysis. We also encourage conducting (partial) replication studies with the
same or a different phenomenon and alterations to the context, especially in industrial
settings. It might also be worthwhile to consider additional artifacts found in the application
lifecycle management data for data triangulation. Additional analyses, such as an earned
value analysis, might provide additional corroboration, especially when its result can be
correlated with the maintenance activities. Subsequent studies that analyze the Fire Drill
will contribute towards a more complete picture of the phenomenon. Studies using other
phenomena will also help to increase the margin between phenomena, making them more
distinguishable from each other. Once a sufficient number of case studies were conducted,
a multiple case study should be performed that summarizes all findings.

Acknowledgments

We would like to express our gratitude towards raters two and three, who helped to find
a ground truth. We acknowledge the support of Linnaeus University’s Centre for Data In-
tensive Sciences and Applications (DISA) and the Swedish Research School of Management
and IT (MIT). This work was supported by the European structural and investment funds
(ESIF) project CZ.02.1.01/0.0/0.0/17_048/0007267 (InteCom). We express our gratitude
towards the anonymous reviewers who provided thorough and constructive feedback that
allowed us to considerably improve our work.

References

[1] C.J. Neill, P.A. Laplante, and J.F. DeFranco, Antipatterns: Managing Software Organizations
and People, 2nd ed., Auerbach Publications, 2011.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel,
A Pattern Language – Towns, Buildings, Construction, Oxford University Press, 1977.

[3] W.H. Brown, R.C. Malveau, H.W. McCormick III, and T.J. Mowbray, AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis, John Wiley and Sons, Inc., 1998.

[4] P.A. Laplante and C.J. Neill, Antipatterns: Identification, Refactoring, and Management
(Auerbach Series on Applied Software Engineering), 1st ed., CRC Press, Auerbach Publications,
2005, 336 pp.

[5] L. Simeckova, P. Brada, and P. Picha, “SPEM-based process anti-pattern models for detection
in project data,” in 46th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2020, Portoroz, Slovenia, August 26–28, 2020, IEEE, 2020, pp. 89–92.

[6] I. Stamelos, “Software project management anti-patterns,” Journal of Systems and Software,
Vol. 83, No. 1, pp. 52–59, 2010.

[7] R.R. Nelson, “It project management: Infamous failures, classic mistakes, and best practices,”
MIS Quarterly Executive, Vol. 6, No. 2, 2008. [Online]. Available: https://aisel.aisnet.org/mis
qe/vol6/iss2/4

Article number 240106

36

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://aisel.aisnet.org/misqe/vol6/iss2/4
https://aisel.aisnet.org/misqe/vol6/iss2/4

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

[8] R.S. Kenett and E.R. Baker, Software Process Quality: Management and Control (Computer
Aided Engineering New York, N.Y., 6), 1st ed., Marcel Dekker, Inc., 1999.

[9] C.P. Halvorsen and R. Conradi, “A taxonomy to compare SPI frameworks,” in Software
Process Technology, 8th European Workshop, EWSPT 2001, Witten, Germany, June 19–21,
2001, Proceedings, V. Ambriola, Ed., Ser. Lecture Notes in Computer Science, Vol. 2077,
Springer, 2001, pp. 217–235.

[10] A. Birk, T. Dingsoyr, and T. Stalhane, “Postmortem: Never leave a project without it,” IEEE
Software, Vol. 19, No. 3, pp. 43–45, 2002.

[11] W.J. Brown, H.W. McCormick III, and S.W. Thomas, AntiPatterns in Project Management,
John Wiley and Sons, Inc., 2000.

[12] P. Silva, A.M. Moreno, and L. Peters, “Software project management: Learning from our
mistakes,” IEEE Software, Vol. 32, No. 3, pp. 40–43, 2015.

[13] A. Nizam, “Software project failure process definition,” IEEE Access, Vol. 10, pp. 34 428–34 441,
2022.

[14] P. Brada and P. Picha, “Software process anti-patterns catalogue,” in Proceedings of the 24th
European Conference on Pattern Languages of Programs, EuroPLoP 2019, Irsee, Germany,
July 3–7, 2019, T.B. Sousa, Ed., Ser. EuroPLoP ’19, ACM, 2019, 28:1–28:10.

[15] P.G.F. Matsubara, B.F. Gadelha, I. Steinmacher, and T.U. Conte, “SEXTAMT: A systematic
map to navigate the wide seas of factors affecting expert judgment software estimates,”
Journal of Systems and Software, p. 111 148, 2021. [Online]. Available: https://www.sciencedi
rect.com/science/article/pii/S0164121221002429

[16] F.U. Muram, B. Gallina, and L.G. Rodriguez, “Preventing omission of key evidence fallacy in
process-based argumentations,” in 11th International Conference on the Quality of Information
and Communications Technology, QUATIC 2018, Coimbra, Portugal, September 4–7, 2018,
A. Bertolino, V. Amaral, P. Rupino, and M. Vieira, Eds., IEEE Computer Society, 2018,
pp. 65–73.

[17] P. Picha, P. Brada, R. Ramsauer, and W. Mauerer, “Towards architect’s activity detection
through a common model for project pattern analysis,” in 2017 IEEE International Conference
on Software Architecture Workshops, ICSA Workshops 2017, Gothenburg, Sweden, April 5–7,
2017, IEEE Computer Society, 2017, pp. 175–178.

[18] P. Picha and P. Brada, “Software process anti-pattern detection in project data,” in Proceedings
of the 24th European Conference on Pattern Languages of Programs, EuroPLoP 2019, Irsee,
Germany, July 3–7, 2019, T.B. Sousa, Ed., Ser. EuroPLoP ’19, ACM, 2019, 20:1–20:12.

[19] D. Settas, S. Bibi, P. Sfetsos, I. Stamelos, and V.C. Gerogiannis, “Using bayesian belief
networks to model software project management antipatterns,” in Fourth International
Conference on Software Engineering, Research, Management and Applications (SERA 2006),
9–11 August 2006, Seattle, Washington, USA, IEEE Computer Society, 2006, pp. 117–124.

[20] D. Settas and I. Stamelos, “Using ontologies to represent software project management
antipatterns,” in Proceedings of the Nineteenth International Conference on Software Engi-
neering and Knowledge Engineering (SEKE’2007), Boston, Massachusetts, USA, July 9–11,
2007, Knowledge Systems Institute Graduate School, 2007, pp. 604–609.

[21] M.B. Perkusich, G. Soares, H.O. Almeida, and A. Perkusich, “A procedure to detect problems
of processes in software development projects using bayesian networks,” Expert Systems with
Applications, Vol. 42, No. 1, pp. 437–450, 2015.

[22] N.E. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, and M. Tailor, “Making resource
decisions for software projects,” in 26th International Conference on Software Engineering
(ICSE 2004), May 23–28 2004, Edinburgh, United Kingdom, A. Finkelstein, J. Estublier, and
D.S. Rosenblum, Eds., IEEE Computer Society, 2004, pp. 397–406.

[23] M. Unterkalmsteiner, T. Gorschek, A.M. Islam, C.K. Cheng, R.B. Permadi, and R. Feldt,
“Evaluation and measurement of software process improvement – A systematic literature
review,” IEEE Transactions on Software Engineering, Vol. 38, No. 2, pp. 398–424, 2012.

[24] J.J.P. Schalken, S. Brinkkemper, and H. van Vliet, “Using linear regression models to analyse
the effect of software process improvement,” in Product-Focused Software Process Improvement,
7th International Conference, PROFES 2006, Amsterdam, The Netherlands, June 12–14,

Article number 240106

37

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://www.sciencedirect.com/science/article/pii/S0164121221002429
https://www.sciencedirect.com/science/article/pii/S0164121221002429

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

2006, Proceedings, J. Münch and M. Vierimaa, Eds., Ser. Lecture Notes in Computer Science,
Vol. 4034, Springer, 2006, pp. 234–248.

[25] R.K. Yin, Case Study Research: Design and Methods (Applied Social Research Methods),
5th ed., SAGE Publications, 2013.

[26] R.W. Scholz and O. Tietje, Embedded Case Study Methods: Integrating Quantitative and
Qualitative Knowledge, 1st, SAGE Publications, Inc., 2001.

[27] T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, and N. Khovanova, “Machine learning
for predictive modelling based on small data in biomedical engineering,” IFAC-PapersOnLine,
Vol. 48, No. 20, pp. 469–474, 2015, 9th IFAC Symposium on Biological and Medical Systems
BMS 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S24058963
15020765

[28] Y. Zhang and C. Ling, “A strategy to apply machine learning to small datasets in materials
science,” npj Computational Materials, Vol. 4, No. 1, p. 25, May 2018.

[29] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research in Software Engineering
– Guidelines and Examples, Wiley, 2012. [Online]. Available: http://eu.wiley.com/Wiley
CDA/WileyTitle/productCd-1118104358.html

[30] K.L. Gwet, Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent
of Agreement Among Raters, 4th ed., Advanced Analytics, Sep. 2014.

[31] E. Tüzün, H. Erdogmus, M.T. Baldassarre, M. Felderer, R. Feldt, and B. Turhan, “Ground-
-truth deficiencies in software engineering: When codifying the past can be counterproductive,”
IEEE Software, Vol. 39, No. 3, pp. 85–95, 2022.

[32] O. Bousquet and A. Elisseeff, “Stability and generalization,” Journal of Machine Learning
Research, Vol. 2, pp. 499–526, 2002. [Online]. Available: http://jmlr.org/papers/v2/bousquet
02a.html

[33] K. Scott, The unified process explained, 1st ed., Boston, MA: Addison Wesley Professional,
Nov. 2001.

[34] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy: A Practitioner’s Guide to
the RUP (Addison-Wesley object technology series), Boston, MA: Addison-Wesley Educational,
Apr. 2003, 464 pp.

[35] W.R. Shadish, T.D. Cook, and D.T. Campbell, Experimental and Quasi-Experimental Designs
for Generalized Causal Inference, 3rd ed., Houghton Mifflin Company, 2002.

[36] J.M. Verner, J. Sampson, V. Tosic, N.A.A. Bakar, and B.A. Kitchenham, “Guidelines for
industrially-based multiple case studies in software engineering,” in Proceedings of the Third
IEEE International Conference on Research Challenges in Information Science, RCIS 2009,
Fès, Morocco, April 22–24, 2009, A. Flory and M. Collard, Eds., IEEE, 2009, pp. 313–324.

[37] R. Zhu, D. Zeng, and M.R. Kosorok, “Reinforcement learning trees,” Journal of the American
Statistical Association, Vol. 110, No. 512, pp. 1770–1784, 2015, PMID:26903687.

[38] D. Draheim and L. Pekacki, “Process-centric analytical processing of version control data,” in
6th International Workshop on Principles of Software Evolution (IWPSE 2003), September
1–2, 2003, Helsinki, Finland, IEEE Computer Society, 2003, p. 131.

[39] R. Ramsauer, D. Lohmann, and W. Mauerer, “Observing custom software modifications:
A quantitative approach of tracking the evolution of patch stacks,” in Proceedings of the 12th
International Symposium on Open Collaboration, OpenSym 2016, Berlin, Germany, August
17–19, 2016, A.I. Wasserman, Ed., ACM, 2016, 4:1–4:4.

[40] D.A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman, “Discovering community patterns
in open-source: A systematic approach and its evaluation,” Empirical Software Engineering,
Vol. 24, No. 3, pp. 1369–1417, 2019.

[41] S.Z̆. Talpová and T. Čtvrtníková, “Scrum anti-patterns, team performance and responsibility,”
International Journal of Agile Systems and Management, Vol. 14, No. 1, p. 170, 2021.

[42] A. Hachemi, “Software development process modeling with patterns,” in WSSE 2020: The
2nd World Symposium on Software Engineering, Chengdu, China, September 25–27, 2020,
ACM, 2020, pp. 37–41.

[43] T. Frtala and V. Vranic, “Animating organizational patterns,” in 8th IEEE/ACM International
Workshop on Cooperative and Human Aspects of Software Engineering, CHASE 2015, Florence,

Article number 240106

38

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://www.sciencedirect.com/science/article/pii/S2405896315020765
https://www.sciencedirect.com/science/article/pii/S2405896315020765
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118104358.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118104358.html
http://jmlr.org/papers/v2/bousquet02a.html
http://jmlr.org/papers/v2/bousquet02a.html

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Italy, May 18, 2015, A. Begel, R. Prikladnicki, Y. Dittrich, C.R.B. de Souza, A. Sarma, and
S. Athavale, Eds., IEEE Computer Society, 2015, pp. 8–14.

[44] A.H.M. ter Hofstede, C. Ouyang, M.L. Rosa, L. Song, J. Wang, and A. Polyvyanyy, “APQL:
A process-model query language,” in Asia Pacific Business Process Management – First Asia
Pacific Conference, AP-BPM 2013, Beijing, China, August 29–30, 2013. Selected Papers,
M. Song, M.T. Wynn, and J. Liu, Eds., Ser. Lecture Notes in Business Information Processing,
Vol. 159, Springer, 2013, pp. 23–38.

[45] J. Roa, E. Reynares, M.L. Caliusco, and P.D. Villarreal, “Towards ontology-based anti-patterns
for the verification of business process behavior,” in New Advances in Information Systems
and Technologies – Volume 2 [WorldCIST’16, Recife, Pernambuco, Brazil, March 22–24,
2016], Ser. Advances in Intelligent Systems and Computing, Á. Rocha, A.M.R. Correia,
H. Adeli, L.P. Reis, and M.M. Teixeira, Eds., Vol. 445, Springer, 2016, pp. 665–673.

[46] A. Awad, A. Barnawi, A. Elgammal, R.E. Shawi, A. Almalaise, and S. Sakr, “Runtime
detection of business process compliance violations: An approach based on anti patterns,” in
Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain,
April 13–17, 2015, R.L. Wainwright, J.M. Corchado, A. Bechini, and J. Hong, Eds., ACM,
2015, pp. 1203–1210.

[47] T.O.A. Lehtinen, M. Mäntylä, J. Vanhanen, J. Itkonen, and C. Lassenius, “Perceived causes
of software project failures – an analysis of their relationships,” Information and Software
Technology, Vol. 56, No. 6, pp. 623–643, 2014.

[48] L. Rising and N.S. Janoff, “The scrum software development process for small teams,” IEEE
Software, Vol. 17, No. 4, pp. 26–32, 2000.

[49] P.G. Smith and D.G. Reinertsen, Developing Products in Half the Time: New Rules, New
Tools, 2nd ed., Nashville, TN: John Wiley and Sons, Oct. 1997.

[50] F.P. Brooks Jr, The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition, 2nd ed., Boston, MA: Addison-Wesley Longman, Aug. 1995.

[51] P. Picha et al., “Process anti-pattern detection in student projects – a case study,” in
Proceedings of the 27th European Conference on Pattern Languages of Programs, EuroPLoP
2022, Irsee, Germany, July 6–10, 2022, T.B. Sousa, Ed., Ser. EuroPLoP ’22, ACM, 2022.

[52] E.B. Swanson, “The dimensions of maintenance,” in Proceedings of the 2nd International
Conference on Software Engineering, San Francisco, California, USA, October 13–15, 1976,
R.T. Yeh and C.V. Ramamoorthy, Eds., IEEE Computer Society, 1976, pp. 492–497. [Online].
Available: http://dl.acm.org/citation.cfm?id=807723

[53] S. Hönel, M. Ericsson, W. Löwe, and A. Wingkvist, “Using source code density to improve the
accuracy of automatic commit classification into maintenance activities,” Journal of Systems
and Software, Vol. 168, p. 110 673, 2020.

[54] D.I.K. Sjøberg, T. Dybå, B.C.D. Anda, and J.E. Hannay, “Building theories in software
engineering,” in Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D.I.K. Sjøberg, Eds., Springer, 2008, pp. 312–336.

[55] C. Wohlin and A. Rainer, “Is it a case study? – A critical analysis and guidance,” Journal of
Systems and Software, Vol. 192, p. 111 395, 2022.

[56] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation
in Software Engineering, 1st ed., Springer, 2012.

[57] S. Hönel and C. Wohlin, Personal communication, Prof. Wohlin recently authored guidelines
for correctly classifying studies [55]., Dec. 2022.

[58] M.J. Tiedeman, “Post-mortems – Methodology and experiences,” IEEE Journal on Selected
Areas in Communications, Vol. 8, No. 2, pp. 176–180, 1990.

[59] B. Collier, T. DeMarco, and P. Fearey, “A defined process for project post mortem review,”
IEEE Software, Vol. 13, No. 4, pp. 65–72, 1996.

[60] J. Gerring, Case Study Research: Principles and Practices (Strategies for Social Inquiry),
2nd ed., Cambridge University Press, 2017.

[61] K. Petersen and C. Wohlin, “Context in industrial software engineering research,” in Pro-
ceedings of the Third International Symposium on Empirical Software Engineering and

Article number 240106

39

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
http://dl.acm.org/citation.cfm?id=807723

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Measurement, ESEM 2009, October 15–16, 2009, Lake Buena Vista, Florida, USA, IEEE
Computer Society, 2009, pp. 401–404.

[62] S. Hönel, P. Pícha, P. Brada, L. Rychtarova, and J. Danek, Detection of the Fire Drill
anti-pattern: 15 real-world projects with ground truth, issue-tracking data, source code density,
models and code, The repository for the source code based method is at: https://github.com
/MrShoenel/anti-pattern-models, Jan. 2023.

[63] D. Chappell, What is application lifecycle management? Dec. 2008. [Online]. Available:
https://web.archive.org/web/20141207012857/http://www.microsoft.com/global/application
platform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20
Management.pdf [Acessed: 07. 12. 2014].

[64] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in
software engineering,” Empirical Software Engineering, Vol. 14, No. 2, pp. 131–164, 2009.

[65] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled disagreement or
partial credit.,” Psychological bulletin, Vol. 70, No. 4, p. 213, 1968.

[66] K.L. Gwet, “Computing inter-rater reliability and its variance in the presence of high
agreement,” British Journal of Mathematical and Statistical Psychology, Vol. 61, No. 1,
pp. 29–48, 2008.

[67] J.R. Landis and G.G. Koch, “An application of hierarchical kappa-type statistics in the
assessment of majority agreement among multiple observers,” Biometrics, Vol. 33, No. 2,
pp. 363–374, Jun. 1977, PMID:884196.

[68] D. Klein, “Implementing a general framework for assessing interrater agreement in stata,”
The Stata Journal, Vol. 18, No. 4, pp. 871–901, 2018.

[69] B.W. Boehm, Software Engineering Economics, 1st ed., Philadelphia, PA: Prentice Hall, Oct.
1981.

[70] N.C. Dalkey, “The Delphi Method: An experimental study of group opinion,” The RAND
Corporation, Santa Monica, CA, Tech. Rep., 1969, Document Number: RM-5888-PR. [Online].
Available: https://www.rand.org/pubs/research_memoranda/RM5888.html

[71] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” The
Annals of Mathematical Statistics, Vol. 27, No. 3, pp. 832–837, 1956, zbMATH:0073.14602,
MathSciNet:MR79873.

[72] D.M. Endres and J.E. Schindelin, “A new metric for probability distributions,” IEEE Trans-
actions on Information Theory, Vol. 49, No. 7, pp. 1858–1860, 2003.

[73] B. Hofner, L. Boccuto, and M. Göker, “Controlling false discoveries in high-dimensional
situations: Boosting with stability selection,” BMC Bioinformatics, Vol. 16, No. 1, p. 144,
May 2015.

[74] W.N. Venables and B.D. Ripley, Modern Applied Statistics with S, Fourth, New York: Springer,
2002. [Online]. Available: http://www.stats.ox.ac.uk/pub/MASS4

[75] F. Bertrand and M. Maumy-Bertrand, plsRglm: Partial least squares linear and generalized
linear regression for processing incomplete datasets by cross-validation and bootstrap techniques
with R, arXiv, 2018.

[76] A. Peters and T. Hothorn, ipred: Improved Predictors, R package version 0.9-9, 2019. [Online].
Available: https://CRAN.R-project.org/package=ipred

[77] F. Pukelsheim, “The three sigma rule,” The American Statistician, Vol. 48, No. 2, pp. 88–91,
1994. [Online]. Available: http://www.jstor.org/stable/2684253

[78] S. Hönel, “Technical reports compilation: Detecting the Fire Drill anti-pattern using source
code and issue-tracking data,” CoRR, Vol. abs/2104.15090, Jan. 2023.

[79] D. Vysochanskij and Y.I. Petunin, “Justification of the 3σ rule for unimodal distributions,”
Theory of Probability and Mathematical Statistics, Vol. 21, No. 25-36, 1980.

[80] P. Tchébychef, “Des Valeurs Moyennes,” Journal de Mathématiques Pures et Appliquées,
2nd Ser., Vol. 12, pp. 177–184, 1867, Traduction du Russe par M. N. de Khanikof. [Online].
Available: http://eudml.org/doc/234989

[81] G.C. Cawley and N.L.C. Talbot, “On over-fitting in model selection and subsequent selection
bias in performance evaluation,” Journal of Machine Learning Research, Vol. 11, pp. 2079–2107,
2010.

Article number 240106

40

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://github.com/MrShoenel/anti-pattern-models
https://github.com/MrShoenel/anti-pattern-models
https://web.archive.org/web/20141207012857/http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
https://web.archive.org/web/20141207012857/http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
https://web.archive.org/web/20141207012857/http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
https://www.rand.org/pubs/research_memoranda/RM5888.html
http://www.stats.ox.ac.uk/pub/MASS4
https://CRAN.R-project.org/package=ipred
http://www.jstor.org/stable/2684253
http://eudml.org/doc/234989

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

[82] S. Raudys and A.K. Jain, “Small sample size effects in statistical pattern recognition:
Recommendations for practitioners,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 13, No. 3, pp. 252–264, 1991.

[83] S. Varma and R. Simon, “Bias in error estimation when using cross-validation for model
selection,” BMC Bioinformatics, Vol. 7, No. 1, Feb. 2006.

[84] A. Vabalas, E. Gowen, E. Poliakoff, and A.J. Casson, “Machine learning algorithm validation
with a limited sample size,” PLOS ONE, Vol. 14, No. 11, E. Hernandez-Lemus, Ed., pp. 1–20,
Nov. 2019.

[85] T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, and N. Khovanova, “Machine learning
for predictive modelling based on small data in biomedical engineering,” IFAC-PapersOnLine,
Vol. 48, No. 20, pp. 469–474, 2015.

[86] L. Torgo, R.P. Ribeiro, B. Pfahringer, and P. Branco, “SMOTE for regression,” in Progress
in Artificial Intelligence – 16th Portuguese Conference on Artificial Intelligence, EPIA 2013,
Angra do Heroísmo, Azores, Portugal, September 9–12, 2013. Proceedings, L. Correia, L.P. Reis,
and J. Cascalho, Eds., Ser. Lecture Notes in Computer Science, Vol. 8154, Springer, 2013,
pp. 378–389.

[87] R Core Team, R: A language and environment for statistical computing, R Foundation for
Statistical Computing, Vienna, Austria, 2020. [Online]. Available: https://www.R-project.org/

[88] B. Greenwell, B. Boehmke, J. Cunningham, and G. Developers, gbm: Generalized Boosted
Regression Models, R package version 2.1.8, 2020. [Online]. Available: https://CRAN.R-proje
ct.org/package=gbm

[89] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R News, Vol. 2,
No. 3, pp. 18–22, 2002. [Online]. Available: https://CRAN.R-project.org/doc/Rnews/

[90] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, “Kernlab – an S4 package for kernel
methods in R,” Journal of Statistical Software, Vol. 11, No. 9, pp. 1–20, 2004. [Online].
Available: https://www.jstatsoft.org/index.php/jss/article/view/v011i09

[91] P.A. Lachenbruch and M.R. Mickey, “Estimation of error rates in discriminant analysis,”
Technometrics, Vol. 10, No. 1, pp. 1–11, 1968. [Online]. Available: http://www.jstor.org/stabl
e/1266219

[92] M.J. Kearns and D. Ron, “Algorithmic stability and sanity-check bounds for leave-one-out
cross-validation,” Neural Computation, Vol. 11, No. 6, pp. 1427–1453, 1999.

[93] J.L. Fleiss, J. Cohen, and B.S. Everitt, “Large sample standard errors of kappa and weighted
kappa.,” Psychological Bulletin, Vol. 72, No. 5, pp. 323–327, Nov. 1969.

[94] D.V. Cicchetti and S.A. Sparrow, “Developing criteria for establishing interrater reliability of
specific items: applications to assessment of adaptive behavior,” American Journal of Mental
Deficiency, Vol. 86, No. 2, pp. 127–137, Sep. 1981.

[95] J.L. Fleiss, Statistical Methods for Rates and Proportions (Probability and Mathematical
Statistics S.), 2nd ed., Nashville, TN: John Wiley and Sons, May 1981.

[96] D.A. Regier et al., “DSM-5 field trials in the United States and Canada, part II: Test-retest
reliability of selected categorical diagnoses,” American Journal of Psychiatry, Vol. 170, No. 1,
pp. 59–70, Jan. 2013.

[97] A.S. Lee, “A scientific methodology for MIS case studies,” MIS Quarterly, Vol. 13, No. 1,
pp. 33–50, 1989.

Article number 240106

41

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://www.R-project.org/
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/doc/Rnews/
https://www.jstatsoft.org/index.php/jss/article/view/v011i09
http://www.jstor.org/stable/1266219
http://www.jstor.org/stable/1266219

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Appendices
The following appendices provide additional information about the Fire Drill phenomenon
in full (A), the projects’ setup (B), the Fire Drill’s observed symptoms and consequences, as
well as supercategories (C), observations counter-indicative of a Fire Drill (D), and, lastly,
a more detailed and numeric view of the quantitative analysis’ variable importance (E).

Appendix A. Full Fire Drill description

Here, we include the most recent and complete description of the Fire Drill anti-pattern
using a pattern language and a typically structured template [3, 12]. This study operates
on this description and any won insights, new results, forces, symptoms and consequences,
etc., were not incorporated into this original description. The following is an exact copy
of the original resource by Picha et al. [51]11. The elements Also Known As, Variations
(optional), Example(s) (optional), and Notes (optional) were left out as they are currently
empty and reserved for future use.

Fire Drill
Summary

Requirements and Analysis phases prolonged and consuming disproportionate amount of
resources (because management want to do them “right”), then frantic “everything needs
to be done yesterday” period to finish on time (when management finds out they wasted
most of project’s schedule and resources on analysis).
Context

Waterfall(ish) projects, especially when project oversight is loose and/or management is
not driven by outcome.
Unbalanced forces

– need (desire) to have specifications perfect,
– management consumed by internal (political) issues,
– actual development of a high-quality product takes time,
– quality objectives formally stated and high,
– strict deadlines for delivery.
Symptoms and consequences

– long period at project start where activities connected to requirements, analysis and
planning prevail, and design and implementation activities are rare,

– only analytical or documentational artefacts for a long time,
– relatively short period towards project end with sudden increase in development efforts

(i.e. rock-edge burndown, especially when viewing implementation tasks only),
– little testing/QA and project progress tracking activities during development period,

11Full Fire Drill Description. 2022. https://github.com/ReliSA/Software-process-antipatterns-catalogue/
blob/master/catalogue/Fire_Drill.md

Article number 240106

42

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20221212131731/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/catalogue/Fire_Drill.md
https://web.archive.org/web/20221212131731/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/catalogue/Fire_Drill.md

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

– final product with poor code quality, many open bug reports, poor or patchy documen-
tation,

– if the previous trhee points do not apply, project schedule or scope is compromised (i.e.,
either delayed delivery or descoping occurs),

– stark contrast between interlevel communication in project hierarchy (management -
developers) during the first period (close to silence) and after realizating the problem
(panic and loud noise).

Causes

– management does not take seriously development effort (time) estimates,
– management absorbed in “various technopolitical issues (…) prevent[ing] the development

staff from making progress”,
– team is happy to produce artifacts early in the project,
– requirements are complex and their prioritization is not forced early on,
– team overseeing the need to prioritize “working code over comprehensive documenta-

tion”,
– management wants to appear the project to be on track,
– management believes it is more important to deliver complete functionality than good

quality,
– project tracking and oversight is loose, easily lulled inco complacency by easy-to-reach

outcomes.
(Refactored) solution

– force the team to start delivering (parts of) the “consumable solution” early, possibly
alongside the analysis and planning artefacts, by instituting strong project tracking
and oversight related to actual outcomes,

– it helps to follow an iterative process, architecture-driven development, and have
a well-performing product owner.

Anti-pattern Relation

Analysis Paralysis potential cause
Collective Procrastination [18] more generic case

Sources

[12], [SOU’ 18], Fire Drill, [3]

Appendix B. Project setup

Table B1 gives an overview about each project’s setup, including number of team members,
project duration, number of iterations, man-hours logged on issues, and the number of
issues or commits per activity (see Section 4.5). Each project developed a different kind of
application. The following list gives a brief description for the developed application in
each.
Pr. 1: Desktop and web application for full-text searches in scanned documents
Pr. 2: Heatmap web application over open data
Pr. 3: Enhancement of web application for complex graph visualization

Article number 240106

43

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20221212131738/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/catalogue/Analysis_Paralysis.md
https://web.archive.org/web/20221212131738/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/catalogue/Collective_Procrastination.md
https://web.archive.org/web/20221212131739/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/References.md
https://web.archive.org/web/20221210073556/https://sourcemaking.com/antipatterns/fire-drill

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Table B1. General characteristics of the student projects

Project Team Project Iterations Time Issues Time logged (h) Commits
members duration (d) spent (h) REQ/DEV/DESC A/C/P

1 4 78 6 277.95 104 62/158/0 36/32/48
2 4 93 6 399.35 98 115/177.9/4 42/108/76
3 4 97 7 303.80 113 59.3/136.7/24.5 26/35/50
4 4 100 6 346.75 118 67.5/221.8/66 29/59/38
5 2 61 4 238.25 44 60/131.3/14 33/26/51
6 4 98 5 234.62 101 39.4/157.9/2 79/63/75
7 5 100 6 396.35 114 80.8/183.1/26.5 83/64/36
8 4 94 7 206.00 85 46.5/89.5/0 10/6/14
9 4 84 6 285.35 112 37/176.3/51.5 54/23/23
10 4 91 6 348.40 128 59.7/152.8/9.5 74/38/46
11 4 83 6 300.00 114 45.8/147.6/15 151/168/223
12 4 94 7 292.25 81 35/172.6/0 35/61/40
13 4 105 6 409.25 181 49.3/210.6/122.4 67/48/77
14 3 95 6 204.75 72 14.3/104.8/7.4 34/8/20
15 4 98 6 246.30 62 18.8/86.5/0.8 24/27/15

Pr. 4: Web application for HR management
Pr. 5: A Universal deserializer in and for Java
Pr. 6: Upgrade of a web application for linguistic research
Pr. 7: Mobile application for museum visitors
Pr. 8: Bitmap generator for public transportation
Pr. 9: Web application simulating pivot tables
Pr. 10: Client web front-end for sensor data
Pr. 11: Application for certificate management with web and desktop interfaces
Pr. 12: Web application over two databases with linguistic research data
Pr. 13: Web and mobile application for open weather data visualization and prediction
Pr. 14: Virtual Reality application arm rehabilitation machine control
Pr. 15: Sensor dashboard for the Raspberry Pi platform
Lastly, the projects were free to choose a programming language that best suited their
needs and conformed with the customer’s requirements. The following list shows the share
each language had, obtained from the lines of code12.
Pr. 1: Desktop and web application for full-text searches in s
Pr. 1: 43.64 % Java, 37.90 % TypeScript, 9.70 % HTML, and 8.76 % Others
Pr. 2: 30.90 % Python, 18.28 % CSS, 18.23 % PHP, 11.41 % SCSS, 8.50 % JavaScript,

8.48 % Twig, and 4.19 % Others
Pr. 3: 57.89 % JavaScript, 28.16 % Java, 8.47 % CSS, and 5.48 % Others
Pr. 4: 77.41 % Java, 17.29 % JavaScript, and 5.30 % Others
Pr. 5: 98.95 % JavaScript, and 1.05 % Java and Others
Pr. 6: 88.34 % PHP, 3.29 % PLpgSQL, and 8.37 % HTML, JavaScript and Others
Pr. 7: 63.71 % PHP, 35.48 % Blade, and 0.81 % Others
Pr. 8: 100.00 % Java
Pr. 9: 78.84 % Java, 10.92 % HTML, 7.84 % HTML, and 2.39 % CSS
Pr. 10: 62.87 % TypeScript, 24.07 % SCSS, 12.03 % HTML, and 1.03 % Others
Pr. 11: 80.14 % Python, 10.57 % HTML, 7.32 % JavaScript, and 1.97 % Others
Pr. 12: 42.52 % JavaScript, 27.30 % HTML, 16.58 % PHP, 11.17 % Java, and 2.43 % CSS

and Others
12GitHub Linguist was used to compute the shares, see https://github.com/github/linguist (2023).

Article number 240106

44

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20230127084458/https://github.com/github/linguist

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Pr. 13: 72.51 % C#, 22.92 % ShaderLab, 3.76 % HLSL, and 0.82 % HTML
Pr. 14: 76.31 % C++, 14.44 % C#, 6.37 % Python, 1.79 % QMake, and 1.09 % Others
Pr. 15: 100.00 % Python

Appendix C. Fire Drill symptoms and consequences

This appendix shows the results of the systematic analysis of the raters’ notes for each
project, according to the methodology described in Section 4.4. The raters’ notes, as well
as all other data is to be found in [62]. This list is an excerpt from the most recent Fire
Drill description13. It is organized into a top-level list of symptoms and consequences
(SC1–SC7 and ESC1–ESC3) and a nested list for each with concrete observed, empirical
instances (denoted as Exx). Each empirical instance has a severity attached. It follows
the format [project, rater(s), severity], e.g., [1,AB,3] indicates that raters A and
B commonly identify a problem instance in project one, and the severity is three out
of five. As of the second pass, some observations and their severity were aggregated.
For example, ([13,A,3], [13,B,2], [13,C,4]) ⇒[13,ABC,5] means that all three raters
observed a symptom/consequence in project 13, with varying severity each. The aggregation
reduces this to a single observation with higher severity, according to the ordinal scale’s
description.
– SC1. long period at project start where activities connected to requirements, analysis

and planning prevail, and design and implementation activities are rare,
– E01. can be caused by, e.g., the team needing some time for familiarization with the

(new, changed) tools, way of communication, or process in the beginning [1,A,1],
[3,B,2], [5,A,1], [7,B,1], [9,B,2], [13,A,1], [14,A,1], [15,A,2],

– E02. work delayed due to external factors, such as ramping-down of previous project
or other, non-related work [1,A,0], [15,A,0],

– E03. project is under- or over-scoped from the beginning, so the team spends time
idling or does not know where to start [3,C,1], ([13,A,3], [13,B,2], [13,C,4])
⇒[13,ABC,5], [15,C,1];

– SC2. only analytical or documentational artifacts for a long time,
– E04. Development takes place only at the end of an iteration, sometimes rushed

(opposite of CISC08) [3,C,1], [6,A,1], [14,A,3];
– SC3. relatively short period towards project end with a sudden increase in development

efforts (i.e. rock-edge burndown, especially when viewing implementation tasks only),
– E05. team rushes to deliver at least an MVP to meet the final deadline [13,A,3];

– SC4. little testing/QA and project progress tracking activities during the development
period,
– E06. sometimes caused by improper usage of project management tools, for example

logging time only at the end of a phase [3,C,2],
– E07. too much focus on “visible” progress by managerial decision while testing/QA

is neglected, which leads to an accumulation of technical debt in the long-term (Half
Done Is Enough) [12,A,1];

– SC5. final product with poor code quality, many open bug reports, poor or patchy
documentation,

13The Fire Drill description in the process anti-pattern catalog. 2023. https://github.com/Mr-
Shoenel/Software-process-antipatterns-catalogue/blob/7a4d8/catalogue/Fire_Drill.md.

Article number 240106

45

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20230127100225/https://github.com/MrShoenel/Software-process-antipatterns-catalogue/blob/7a4d8/catalogue/Fire_Drill.md
https://web.archive.org/web/20230127100225/https://github.com/MrShoenel/Software-process-antipatterns-catalogue/blob/7a4d8/catalogue/Fire_Drill.md

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

– E08. too meet the final delivery date, the product quality is decreased by skipping,
e.g., features or proper Q/A (alternatively, the may be delivered late, but as
agreed) ([4,B,1], [4,C,2]) ⇒[4,BC,3], [6,C,2], [7,B,2], ([13,A,4], [13,C,2])
⇒[13,AC,5],

– SC6. if points SC3 through SC5 do not apply, (likely) the project schedule or scope is
compromised (i.e., either delayed delivery or descoping occurs),
– E09. team accepts change requests, re-prioritization of existing or new issues

within a phase (e.g., after the start of a sprint); improper change management
process [1,A,1], [3,C,4], ([5,A,1], [5,B,1]) ⇒[5,AB,2], [9,A,1], [10,B,2],
[12,A,3], ([13,A,4], [13,B,4]) ⇒[13,AB,5],

– E10. planned work is not completed and overflows into the next phase (e.g., sprint),
due to, e.g., an over-challenged team (opposite of CISC28), misestimation, or unequal
work distribution [3,C,4], [7,C,3], [9,C,3], [10,C,1], [14,A,1], [15,B,1],

– E11. iterations are too short and are artificially prolonged, forcing the team to do
overtime or to truncate the workload [3,C,4], [4,C,2], [7,C,1];

– SC7. stark contrast between interlevel communication in project hierarchy (management
– developers) during the first period (close to silence) and after realizing the problem
(panic and loud noise).

Here is a list of new, empirical symptoms and causes:
– ESC1. poor communication (e.g., unresponsive, relayed, large overhead, or underqualified

decision-maker) between stakeholders (e.g., customer) and the development team,
– E12. unresponsive customer or unsatisfactory (e.g., late, incomplete, or slow) com-

munication (critical infos or materials not provided timely) ([3,A,4], [3,B,4])
⇒[3,AB,5], ([4,A,3], [4,B,4], [4,C,3]) ⇒[4,ABC,5], [5,C,1], ([6,A,3],
[6,B,3]) ⇒[6,AB,4], ([7,A,3], [7,C,3]) ⇒[7,AC,4], ([10,A,3], [10,B,3],
[10,C,2]) ⇒[10,ABC,5], [11,A,1], [12,A,1], [13,C,1], [14,A,1], ([15,A,1],
[15,C,1]) ⇒[15,AC,2],

– E13. requirements cannot be clearly negotiated or are ambiguous [3,C,3], ([10,A,3],
[10,B,3]) ⇒[10,AB,4], ([13,A,3], [13,C,4]) ⇒[13,AC,5],

– E14. post-negotiation misunderstandings (without proper re-negotiation) [3,A,2],
– E15. tacit misunderstanding (stakeholder and team believe they are on the same

page, but they are not in actuality) [3,A,3], [4,C,1],
– E16. customer interferes with project management without properly communicating

the made changes, which directly translates into a project risk [9,B,2];
– ESC2. high project risk (opposite of CISC26), often manifests itself through, e.g., un-

realistic work item estimates, the absence of proper testing (opposite of CISC09), or
improper documentation,
– E17. business requirements (tacitly/unknowingly) misinterpreted ([3,C,3], [3,A,3])

⇒[3,AC,4], [4,C,3], [6,A,2], [12,A,1],
– E18. finalized work does not conform to the defined specification/expectation

[3,C,2],
– E19. new functionality introduces bugs, and not enough slack was allocated during

planning for the fixing (or preventing by proper testing) of these [3,C,1], [4,A,2],
– E20. tasks are done in the wrong order (Cart Before Horse), esp. development

before properly analyzing and planning ([6,A,2], [6,B,2]) ⇒[6,AB,3], [12,A,1],
[15,A,1]

– E21. imbalanced activities at the beginning, end, or during the project, such as
too much focus on development early and requirements analysis later that leads

Article number 240106

46

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

to descoping, for example ([6,B,2], [6,C,2]) ⇒[6,BC,3], ([7,A,1], [7,B,1])
⇒[7,AB,2], [9,A,1], [12,C,1], ([13,A,3], [13,B,2]) ⇒[13,AB,4],

– E22. lack of experience that leads to misestimation of work items [6,C,1], [9,A,1],
[13,C,2],

– E23. work items or goals not properly defined, absent, or defined too late [7,C,4],
[13,A,4],

– E24. management fails to ascertain that the development team is available to its
planned capacity (e.g., it allows the team to be affected by external factors), which
has a negative impact on the progression of the project, such as descoping, quality
regression, or delayed delivery [9,C,1], [11,A,1], [13,A,1],

– E25. Strong dependency between stakeholders and the development team, such
that the team cannot proceed very long or at all by themselves (opposite of CISC15)
[10,C,1],

– E26. technical difficulties in the environment, such as the infrastructure, which cause
unexpected delays to, e.g., the development or deployment ([12,A,3], [12,B,1])
⇒[12,AB,3], ([15,A,1], [15,C,1]) ⇒[15,AC,2],

– E27. frequent project schedule adaptions, manifested by excessive use of administra-
tive tools, leading to a low-quality product [13,B,4], [15,A,2];

– ESC3. poor usage of project management tools and methodologies which gives rise to
management misinterpreting the progress and state of the project,
– E28. too-large goals that were not properly broken down into smaller issues [3,C,1],
– E29. mislabeling of items; for example, marking an Epic as a Task [4,C,1],
– E30. a discrepancy between the defined work and the actual work exists, due

to, e.g., time not logged properly, issues not defined, or work completed during
undocumented overtime [3,C,1], [7,C,4], [10,A,1], [15,A,1],

– E31. information mismanagement, for example, by duplication or using too many
different systems for storing and disseminating information [4,B,1].

Appendix D. Symptoms and consequences indicating the absence

During the analysis of the raters’ notes, recurring elements of healthy projects, showing no
or miniscule signs of a Fire Drill, emerged. While the absence of evidence does not mean
that a Fire Drill is not present, we gathered some empirical evidence for symptoms and
consequences that would be counter-indicative of the phenomenon. The following unordered
list is another excerpt from the most recent description. It is numbered similarly to the
list of symptoms and consequences (CISC01–CISC29), but does not include the number of
observations or how strong an observation manifested. We use the abbreviation CISC to
mean counter-indicative symptom and consequence.
– CISC01. communication and collaboration with the customer is seamless;
– CISC02. no descoping which typically happens towards the end of a phase (sprint,

milestone, etc.);
– CISC03. timely product delivery according to agreed-upon quality;
– CISC04. satisfaction among all stakeholders (e.g., team, customer, etc.);
– CISC05. regular and successful iteration evaluations that do not result in the unveiling

of (large/additional) problems;
– CISC06. clear understanding of the requirements and resulting unproblematic execution;

Article number 240106

47

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

– CISC07. equal (or almost equal) work distribution among team members (also: fair
work distribution among differently-skilled/-tasked team members);

– CISC08. linear burn-down (i.e., done work is distributed uniformly, instead of, e.g., at
the end of a phase);

– CISC09. product tested properly (e.g., appropriate tests and/or good coverage), as well
regularly/continuously;

– CISC10. starting to implement features right from the project inception (clear require-
ments);

– CISC11. proper allocation of project resources (esp. time);
– CISC12. proper (planning of) distribution of time (spent) across the required activities

(e.g., enough time spent on defining requirements properly);
– CISC13. appropriate prioritization of activities when resources (often time) become

(temporarily) scarce;
– CISC14. successful intermediate and final product deliveries (according to customer’s

acceptance criteria);
– CISC15. team can proceed at least short-term even if the customer is unavailable (good

internal crisis management);
– CISC16. accurate work-item estimates (time, points, etc.), esp. no over-estimation

(which indicates high level of uncertainty and, therefore, risk);
– CISC17. project management tool(s) used accordingly; e.g., proper usage of primitives

(item types), the Scrum/Kanban board (or swimlanes), regular updates (all these
indicate proper management);

– CISC18. regular activities according to used methodology (e.g., Scrum), such as daily
meetings, retrospectives, and milestones;

– CISC19. change requests, re-prioritization of existing or new issues are rejected by the
team once the phase (e.g., sprint) started in which they were planned for (as should
be);

– CISC20. proper communication among team members; direct messaging, as well as
dedicated channels and often the usage of bots (from, e.g., a CI pipeline);

– CISC21. efficient communication with customer, that is, direct (no relays), quick,
unproblematic, of high quality, tending to the necessary aspects of the product (low
overhead);

– CISC22. stable team (no developer churn) and harmony among members;
– CISC23. mutual understanding: effort estimations between customer and team are

similar (customer understands technical challenges and team understands business
requirements);

– CISC24. activities in right order (e.g., analysis before design before implementation
etc.);

– CISC25. progress is reflected empirically (objectively), i.e., provably no discrepancy
between reported and actual progress exists;

– CISC26. proper risk management through, e.g., the development of prototypes;
– CISC27. the scope may change and adapt over the course of the project (due to the

agile nature), but it does not increase/widen without additional resources;
– CISC28. team is not undersized for the project: no (steady) accumulation of non-finished

work items into the next phase;
– CISC29. when external forces and (un)forseeable events happen, development is sus-

pended and/or the product is delayed accordingly, allowing the team to catch up (rather
than forcing them to do overtime).

Article number 240106

48

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Appendix E. Detailed variable importance

Tables E1 and E2 show the detailed variable importance for source code and issue-tracking,
respectively. Both tables reflect the same result as shown in Figure 7.

Table E1. Detailed variable importance (scaled to percent) for the no-pattern source code dataset,
including means and sums across segments and features

Variable (feature) Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Seg. 6 Seg. 7 Seg. 8 Seg. 9 Seg. 10 Sum

A 1.58 0.69 1.44 2.70 1.47 1.67 0.73 0.81 1.44 1.68 14.20
CP 1.53 1.32 3.39 2.19 1.33 2.31 1.38 1.89 1.10 0.72 17.16
FREQnm 2.60 1.00 2.35 1.69 0.79 2.62 1.23 1.17 1.59 1.08 16.12
A |0 CP 1.27 1.28 2.87 2.95 2.08 0.59 2.01 3.65 1.13 1.18 19.00
A |0 FREQnm 0.64 0.74 2.12 2.27 2.53 2.47 1.61 2.91 1.49 0.77 17.55
CP |0 FREQnm 2.65 1.31 3.16 3.02 0.91 1.28 0.98 1.41 0.45 0.80 15.97

Mean 1.71 1.06 2.55 2.47 1.52 1.82 1.32 1.97 1.20 1.04 n.a.
Sum 10.28 6.35 15.33 14.81 9.10 10.94 7.93 11.84 7.21 6.23 200.00

Table E2. Detailed variable importance (scaled to percent) for the no-pattern issue-tracking
dataset, including means and sums across segments and features

Variable (Feature) Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Seg. 6 Seg. 7 Seg. 8 Seg. 9 Seg. 10 Sum

REQ 1.19 1.20 1.50 2.42 1.63 1.25 0.89 0.64 1.15 1.16 13.02
DEV 1.20 2.93 1.70 1.02 1.00 1.55 0.62 1.74 2.48 2.39 16.63
DESC 1.39 0.72 1.24 1.26 0.78 1.50 0.60 2.84 2.47 1.39 14.19
REQ |0 DEV 1.76 1.21 3.14 1.07 1.99 1.68 1.06 2.15 2.91 1.58 18.55
REQ |0 DESC 3.86 2.99 2.94 1.31 1.42 2.07 1.17 1.75 2.23 0.99 20.72
DEV |0 DESC 1.25 1.00 1.04 1.30 2.88 2.68 0.83 2.67 2.23 1.00 16.89

Mean 1.78 1.68 1.93 1.40 1.62 1.79 0.86 1.97 2.24 1.42 n.a.
Sum 10.65 10.05 11.56 8.38 9.69 10.74 5.17 11.79 13.47 8.50 200.00

Article number 240106

49

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

	Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill
	Introduction
	Data used in the study
	Objective
	Propositions, hypotheses, research questions
	Understand the Fire Drill manifestation
	Establish an understanding using qualitative data
	Obtain a robust predictive model

	Notions and abbreviations
	Structure of this article

	Related work
	Background
	Phenomena described using a pattern language
	The Fire Drill
	Patterns related and similar to the Fire Drill

	Previous work

	Case study design
	Context
	Product
	Processes and practices
	Students, researchers, customers, and the organization

	Embedded unit selection
	About the data
	Qualitative design
	Quantitative design
	Activities in issue-tracking data
	Activities in source code data
	Modeling of activities as probability densities
	Deriving features from activities

	First analysis: weighted mixtures
	Second analysis: variable importance
	Adaptive training
	Notations
	Stability analysis
	Training flow and model selection

	Analysis and results
	Inter-rater reliability and consensus
	Phenomenon prevalence and manifestation
	Phenomenon absence
	Quantitative phenomenon manifestation
	Variable importance
	Adaptive training

	Discussion
	Summary of the results
	Validity, limitations, replicability, and generalizability

	Conclusions and future work
	Synthesis
	Future work
	Acknowledgments

	References
	Appendices
	Full Fire Drill description
	Fire Drill
	Summary
	Context
	Unbalanced forces
	Symptoms and consequences
	Causes
	(Refactored) solution
	Sources

	Project setup
	Fire Drill symptoms and consequences
	Symptoms and consequences indicating the absence
	Detailed variable importance

