
2024 volume 18 issue 1

2024 volume 18 issue 1

Editor-in-Chief
Lech Madeyski (Lech.Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)
Mirosław Ochodek (Miroslaw.Ochodek@cs.put.poznan.pl)
Editor-in-Chief Emeritus
Zbigniew Huzar (Zbigniew.Huzar@pwr.edu.pl)

Faculty of Information and Communication Technology, Department of Applied Informatics
Wrocław University of Science and Technology,
50-370 Wrocław, Wybrzeże Wyspiańskiego 27, Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl, DOI: 10.37190/e-inf
Editorial Office Manager: Wojciech Thomas
Typeset by Wojciech Myszka with the LATEX 2ε Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2024

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
www.oficyna.pwr.edu.pl;
e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.37190/e-inf
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl

Editorial Board
Editor-in-Chief

Lech Madeyski (Wrocław University of Science and Technology, Poland)

Mirosław Ochodek (Poznań University of Technology, Poland)

Editor-in-Chief Emeritus

Zbigniew Huzar (Wrocław University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)
Apostolos Ampatzoglou (University of Macedonia, Thessaloniki, Greece)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center Hagenberg, Austria)
Markus Borg (SICS Swedish ICT AB Lund, Sweden)
Pearl Brereton (Keele University, UK)
Mel Ó Cinnéide (UCD School of Computer Science & Informatics, Ireland)
Steve Counsell (Brunel University, UK)
Maya Daneva (University of Twente, The Netherlands)
Norman Fenton (Queen Mary University of London, UK)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Francesca Arcelli Fontana (University of Milano-Bicocca, Italy)
Félix García (University of Castilla-La Mancha, Spain)
Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Górski (Gdańsk University of Technology, Poland)
Tracy Hall (Lancaster University, UK)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Barbara Kitchenham (Keele University, UK)
Stanisław Kozielski (Silesian University of Technology, Poland)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Wrocław University of Economics, Poland
and Macquarie University Sydney, Australia)
Jan Magott (Wrocław University of Science and Technology, Poland)
Zygmunt Mazur (Wrocław University of Science and Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (University of Helsinki, Finland)
Jerzy Nawrocki (Poznan University of Technology, Poland)
Janis Osis (Riga Technical University, Latvia)
Fabio Palomba (University of Salerno, Italy)
Mike Papadakis (Luxembourg University, Luxembourg)
Kai Petersen (Hochschule Flensburg, University of Applied Sciences, Germany)
Łukasz Radliński (West Pomeranian University of Technology in Szczecin, Poland)
Guenther Ruhe† (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University of Technology, Poland)

4

Martin Shepperd (Brunel University London, UK)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Guilherme Horta Travassos (Federal University of Rio de Janeiro, Brazil)
Adam Trendowicz (Fraunhofer IESE, Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznan University of Technology, Poland)
Dietmar Winkler (Technische Universität Wien, Austria)
Bogdan Wiszniewski (Gdańsk University of Technology, Poland)
Krzysztof Wnuk (Blekinge Institute of Technology, Sweden)
Marco Zanoni (University of Milano-Bicocca, Italy)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

A Multivocal Literature Review on Non-Technical Debt in Software Development:
An Insight into Process, Social, People, Organizational, and Culture Debt

Hina Saeeda, Muhammad Ovais Ahmad, Tomas Gustavsson 240101
Continuous Software Engineering Practices in AI/ML Development
Past the Narrow Lens of MLOps: Adoption Challenges

Sini Vänskä, Kai-Kristian Kemell, Tommi Mikkonen, Pekka Abrahamsson 240102
Software Defect Prediction Using Non-Dominated Sorting Genetic Algorithm
and k-Nearest Neighbour Classifier

Mohammad Azzeh, Ali Bou Nassif, Manar Abu Talib, Hajra Iqbal 240103
Migrating a Legacy System to a Microservice Architecture

Kristian Tuusjärvi, Jussi Kasurinen, Sami Hyrynsalmi 240104
Measuring End-user Developers’ Episodic Experience of a Low-code
Development Platform

Dongmei Gao, Fabian Fagerholm . 240105
Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study
of the Fire Drill

Sebastian Hönel, Petr Picha, Morgan Ericsson, Premek Brada, Welf Löwe,
Anna Wingkvist . 240106

Boosting and Comparing Performance of Machine Learning Classifiers
with Meta-heuristic Techniques to Detect Code Smell

Shivani Jain, Anju Saha . 240107
Automated Code Reviewer Recommendation for Pull Requests

Mina-Sadat Moosareza, Abbas Heydarnoori . 240108
An N -Way Model Merging Approach Based on Artificial Bee Colony Algorithm

Tong Ye, Gongzhe Qiao . 240109

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240101, DOI: 10.37190/e-Inf240101

A Multivocal Literature Review on
Non-Technical Debt in Software Development:

An Insight into Process, Social, People,
Organizational, and Culture Debt

Hina Saeeda∗ , Muhammad Ovais Ahmad∗, Tomas Gustavsson∗∗

∗Department of Computer Science, Karlstad University, Sweden
∗∗Business School, Karlstad University, Sweden

Hina.saeeda@kau.se, Ovais.Ahmad@kau.se, Tomas.gustavsson@kau.se

Abstract
Software development encompasses various factors beyond technical considerations. Ne-
glecting non-technical elements like individuals, processes, culture, and social and organi-
zational aspects can lead to debt-like characteristics that demand attention. Therefore,
we introduce the non-technical debt (NTD) concept to encompass and explore these
aspects. This indicates the applicability of the debt analogy to non-technical facets of
software development. Technical debt (TD) and NTD share similarities and often arise
from risky decision-making processes, impacting both software development professionals
and software quality. Overlooking either type of debt can lead to significant implications
for software development success. The current study conducts a comprehensive multivocal
literature review (MLR) to explore the most recent research on NTD, its causes, and
potential mitigation strategies. For analysis, we carefully selected 40 primary studies
among 110 records published until October 1, 2022. The study investigates the factors
contributing to the accumulation of NTD in software development and proposes strategies
to alleviate the adverse effects associated with it. This MLR offers a contemporary overview
and identifies prospects for further investigation, making a valuable contribution to the
field. The findings of this research highlight that NTD’s impacts extend beyond monetary
aspects, setting it apart from TD. Furthermore, the findings reveal that rectifying NTD is
more challenging than addressing TD, and its consequences contribute to the accumulation
of TD. To avert software project failures, a comprehensive approach that addresses NTD
and TD concurrently is crucial. Effective communication and coordination play a vital
role in mitigating NTD, and the study proposes utilizing the 3C model as a recommended
framework to tackle NTD concerns.
Keywords: systematic reviews and mapping studies, software quality

1. Introduction

Software development is inherently a sociotechnical process, where the successful completion
of software projects relies on the symbiotic relationship between technical capabilities and
non-technical aspects of software development [1, 2]. This includes considering social
aspects, as defects in software often arise from cognitive errors and miscommunication
within and outside of organizations [3]. Such defective software leads to the accumulation

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 12 Dec. 2022; Revised: 23 Jun. 2023; Accepted: 19 Aug. 2023; Available online: 25 Sep. 2023

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7562-338X

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

of technical debt and additional maintenance costs [4]. In software engineering, the term
“technical debt” metaphorically describes the consequences of rushing software project
development, resulting in defects and costly maintenance [5].

Over the past decade, both academia and industry have shown great interest in technical
debt (TD) [3, 6], exploring various dimensions such as TD effort [7], TD tools [8], TD
management strategies [5, 9], managing architectural TD [10], TD in Agile development
[11], TD management elements [12], and TD prioritization [13]. Surprisingly, non-technical
aspects also contribute to TD, as non-technical stakeholders play a role in driving projects
to acquire TD [14]. Therefore in SD, the debt metaphor is used to describe issues prevalently
– technical debt (i.e., code debt and code smells) and other debts (i.e., process debt, social
debt, people debt, organisational, and cultural debt) [7, 10, 11, 13]. Software projects’ success
or failure combines technical and non-technical elements [11, 12]. Despite the significant
attention given to TD in software [5–7, 10, 12, 14, 15], there remains a substantial research
gap concerning the study of non-technical debt (NTD) [3, 7, 11, 13, 16–18]. NTD, such as
process debt [7], people debt [16, 17], social debt [3, 11, 18–20], organizational debt [21],
and cultural debt [13, 22] have not received sufficient consideration within the technical
debt domain. A 2022 systematic mapping review identified a scarcity of scientific studies
on NTD [1]. The review reported only 17 scientific studies on NTD and requested further
empirical investigation as well as other forms of literature reviews to cover NTD in SD.

Therefore, this study aims to investigate NTD by conducting a multi-vocal literature
review. According to Garousi et al. [23], when there is an absence of scientific evidence on
any topic, it is recommended to conduct a multivocal literature review, as grey literature
can provide valuable insights, perspectives, and empirical evidence that may not be available
through traditional peer-reviewed sources. Including grey literature can lead to a more
comprehensive understanding of the research topic. This multi-vocal literature review (MLR)
provides a state-of-the-art of various NTD types, their causes, and mitigation strategies.
The review extends and cross-validates the findings of a previously conducted systematic
mapping review [1], enhancing the strength of the research outcomes by investigating similar
research questions from different perspectives. By including scientific and grey literature,
this review offers additional insights by capturing diverse perspectives and theoretical and
practical insights. To achieve our study goals, we are investigating the research questions
designed and reported in [1] that serve as the guided foundation for this MLR.
– RQ1 – What is the current state-of-the-art research on the different NTD types in

software engineering?
– RQ2 – What are the reported causes of NTD in software engineering?
– RQ3 – What are the reported NTD mitigating strategies?
– RQ4 – What are the possible future directions for NTD in software development?

The present study is built upon previous research (doi.org/10.5220/0011772300003464)
on the topic of NTD in SD. In this current version of our work, we aim to expand the scope
of the prior investigation by offering a more comprehensive analysis. Specifically, we provide
a detailed thematic division of the identified instances of NTD, including their underlying
causes and potential solutions. Moreover, we conduct a thorough comparative analysis
with a study referenced as [1]. The purpose of this comparison is to demonstrate how our
research replicates, extends, and validates the existing body of work in this domain.

The rest of the study is structured as follows: The design and methodology of our
investigation used in the research are explained in Section 2. Section 3 discusses the findings,
and Section 4 is based on a discussion and conclusion. Section 5 examines threats to validity
and how they were resolved. Finally, Section 6 represents future work.2

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://doi.org/10.5220/0011772300003464

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

2. Research method

This section outlines the Multivocal literature review (MLR) technique adopted in this
study. We follow the established MLR guidelines and procedures proposed by Garousi et
al. [23]. The complete systematic MLR process is illustrated in Figure 1, which consists
of three phases: planning, conducting, and reporting. Each phase of the MLR study is
discussed in detail in the rest of the section. Our MLR search was conducted on October
10, 2022, and analysis and reporting were completed by December 2022.

2.1. Planning the MLR

The primary purpose of conducting an MLR study is to focus on the “classification and
thematic analysis of both scientific and grey literature on a software engineering topic” [23].
In this context, Garousi et al. [23] compared a systematic and a multivocal literature review
study. A typical systematic literature review is motivated by a specific research topic that
may be answered empirically. On the other hand, multivocal literature research examines
a larger spectrum of software engineering challenges using grey and scientific literature. The
following two processes (i.e., Motivation and Objectives and Research Questions) comprise
the MLR planning phase, as depicted in Figure 1.

Figure 1. Complete MLR process

Motivation

MLR is useful in finding what is happening in an under-discovered phenomenon. MLR
incorporates all accessible literature (including, but not limited to: blogs, white papers,
articles, and academic literature) [23]. Therefore, MLR is vital for expanding research by

Article number 240101

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

including non-scientific (grey) literature normally excluded in scientific studies. Academics
and industry have been interested in TD for the last twenty years. Whereas the NTD is
still in its infancy, it is necessary to investigate this niche and important research area
further. In this case, an MLR study is motivated to learn about different types of NTD
in software engineering and why they happen. What types of prevention or mitigation
strategies may be utilized to prevent them?

The main objectives of this study are to understand: 1. What NTD is and how it
can impact software engineering projects. 2. Identify the main types of NTD in software
engineering projects. 3. Identify the main causes of NTD in software engineering projects.
4. Determine how to prevent or mitigate NTD in software engineering projects. 5. Determine
the possibilities for future NTD research. These questions serve as the foundation for this
study.

2.2. Conducting the MLR

At first, we conducted a pilot search on debt in software engineering using Google Scholar.
The aim was to determine the existence of any secondary studies on the given topic. We
conducted this search using the following string: (“process debt” OR “social debt” OR
“people debt” OR “organizational debt” OR “culture debt”) AND (“Software”). The search
was conducted in October 2022, and Google Scholar yielded 3080 results. It was evident
from the search that the current focus of research is predominantly on TD, whereas not
a single review was found on NTD.

2.2.1. Search strategies and data sources

The designed search string defined the scope of our study. The designed string includes
the search terms “population” and “intervention” based on (PICO) criteria suggested by
Kitchenham et al. [24], where population refers to the application area, “software”, and
intervention represents NT‘D types. Based on intervention, we selected five key terms for
finalizing the search string (i.e., process debt, social debt, people debt, organizational debt,
and cultural debt). Finally, the term software ensures we do not include research from
other domains, like social sciences or economics. The finalized designed search string was
(“process debt” OR “social debt” OR “people debt” OR “organizational debt” OR “culture
debt”) AND (“software”).

The rationale for using the term “software” is that this study will cover studies
that discuss software, software development, and systems. So, the search will include all
documents with the word “software” in the title, abstract, and keyword. At the same time,
the terms process debt, people debt, social debt, and organizational debt were used to include
all NTD-associated sources. While we selected NTD (process, people, and social debts) from
the existing systematic mapping review [1] on the topic and extended the scope of the study
by adding two NTDs (cultural and organizational debts) as well. The overall motivation
for selecting these five NTD types is based on the proposed “Hexagonal socio-technical
systems framework” (adapted from Davis et al. 2014) [25] where they highlighted people,
process, culture, and organization (technology and infrastructure) elements as the most
critical sociotechnical aspects. As software development is an extensive interactive activity,
we added the social debt [3] to cover the communication, collaboration, and cooperation
challenges among people (directly or indirectly linked with the software development
process). To ensure a broad overview of the topic, the selection criteria for including papers4

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

in our study focus more on relevance. According to Lenarduzzi et al. [26], there are other
types of debts, including service debt, suitability debt, and environmental sustainability
debt, that can be studied under the umbrella of the NTD. However, in the current study,
we are restricting our scope to only include the strongly linked social-technical elements of
the software development process. Restricting the scope of our study has positive effects by
enabling focused exploration, increased rigor, and efficient resource allocation. It helped us
to concentrate on important research elements, leading to comprehensive findings. However,
there are drawbacks to consider, including limited generalizability and potential oversight
of relevant aspects.

The search string was designed to retrieve results from the Google search engine. We
preferred the Google search engine as it is faster and a good source for collecting grey
literature. We aimed to keep the search string simple to be as inclusive as possible with
a new topic like non-technical debt in software engineering. Therefore, we did not restrict
the search to particular years. We found 110 results with 11 Google pages, each with
11 links to further resources. Figure 2 shows the complete research conduction phases.

Figure 2. Research conduction process

2.2.2. Primary studies selection procedure and application of inclusion/exclusion criteria

In the first round, we excluded 36 records out of 110 based on the exclusion criteria given in
Table 1. The detailed breakdown of excluded records is duplicated records (n = 6), videos
(n = 7), advertisements (n = 11), catalogs (n = 8), and people research profiles (n = 4).
After the first round, we obtained 74 records out of 110 and included them in subsequent
steps.

Article number 240101

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 1. Inclusion and exclusion criteria

Inclusion Exclusion

Sources contributing to the understanding of
non-technical debt in software development, no
matter to what extent the topic is discussed

Sources not written in English

Empirical and non-empirical sources, either quali-
tative or quantitative, analyzing any NTD in SD

Videos, advertisements, catalogs or keynotes, news-
papers, duplicate sources

Blogs, white papers, and experiences report “peo-
ple, process, social, cultural and organizational debt

Position and research profiles, non-software engi-
neering domain sources

2.2.3. Quality assessment

To apply quality assessment criteria, the 40 primary studies [S1–S40] were divided into two
categories: grey literature (GL) and scientific literature (SL). We adopted the 11-factor
quality assessment criteria (Table 2) proposed by Dybå et al. [27] for scientific literature.
At the same time, we adopted the quality assessment checklist of grey literature (Table 3)
from Garousi et al. [23]. Each criterion was graded on a binary (“1” or “0”) grade, in which
“1” indicates “yes” to the question, while “0” means “no.” Both checklist criteria measured
the extent to which the quality of the 12 SL and 28 GL sources could be appropriately
assessed. Two research separately consider the 40 primary sources. This technique helps
to limit the degree of subjectivity and report the results more objectively. Researchers
combined their results and solved a few conflicts in the discussion session.

Table 2. Quality assessment check list for SL

1. Is the paper based on research (or is it merely a“lessons learned” report based on expert opinion)?
2. Is there a clear statement of the aims of the research?
3. Is there an adequate description of the context in which the research was carried out?
4. Was the research design appropriate to address the aims of the research?
5. Was the recruitment strategy appropriate to the aims of the research?
6. Was there a control group with which to compare treatments?
7. Was the data collected in a way that addressed the research issue?
8. Was the data analysis sufficiently rigorous?
9. Has the relationship between the researcher and participants been adequately considered?

10. Is there a clear statement of findings?
11. Is the study of value for research or practice?

For the scientific studies, based on the screening criterion, each of the 12 studies
received a score of 1; each study offered a clear research objective and background for
the investigation. However, one paper [7] lacked an adequate discussion of its research
methodology and did not employ proper sampling. No relevant control group was found for
comparing treatments in the primary studies. All primary publications adequately detailed
“data collecting” and “data analysis”, except [3]. While [7] lacks design and sampling phases.
While “research findings” and “research value” criteria were applicable and fulfilled by
all papers. Three papers [7, 16, 17] failed to discuss the researcher-participant connection
explicitly. None of the papers received a complete score on the quality evaluation, but
few publications received two or three negative responses. We divided grey literature into
three tiers. We have 9 primary sources in 1st tier GL, which cover high outlet control/high
credibility, including thesis, reports, and white papers. Two primary sources come under
the umbrella of 2nd tier GL, which covers moderate outlet control/moderate credibility,6

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 3. Quality assessment check list for GL

1. Is an individual author associated with a reputable organization?
2. Has the author published other work in the field?
3. Does the author have expertise in the area? (e.g., job title principal software engineer)
4. Does the source have a clearly stated aim?
5. Does the source have a stated methodology?
6. Do authoritative, documented references support the source?
7. Does the work cover a specific question?
8. Does the work refer to a particular population?
9. Is the work balanced in a presentation?

10. Is the statement in the sources as objective as possible?
11. Do the data support the conclusions?
12. Does the item have a clearly stated date?
13. Does it enrich or add something unique to the research?
14. Does it strengthen or refute a current position
15. 16. 1st tier GL: High outlet control/High credibility: thesis, reports, white papers
17. 2nd tier GL: Moderate outlet control/Moderate credibility: Q/A sites, Wiki articles, workshop
18. 3rd tier GL: Low outlet control/Low credibility: Blog posts

including Q/A sites, Wiki articles, and workshops. There is 17 3rd-tier GL that cover
low outlet control/low credibility. None of the GL sources received a complete score
on the quality evaluation but reached the minimum threshold, which indicates credible
sources as a whole. All the grey literature sources clearly stated their goal. Web blogs lack
a methodology section and documented references, whereas thesis and seminar reports
have written methodology sections. All sources provide information on specific NTD issues,
cover the software development population, and are balanced in the overall presentation.

2.2.4. Data extraction and analysis

After completion of the quality analysis, data extraction was performed in MS Excel
sheets based on the primary sources types, year of publication, NTD types found, NTD
causes, and mitigation strategies. After the data extraction, data analysis was done using
thematic analysis techniques [28]. The thematic analysis yielded primarily five themes,
each highlighting NTD types. Further codes (discussed in the result section) were created
against each NTD type, cause, and mitigation strategy.

3. Results

Our MLR study presents the results from analyzing the 40 primary sources [S1–S40] (see
Appendix A). The presented results begin with demographic information, i.e., (i) type of
literature, (ii) type of sources, and (iii) publication by year, and then proceed to a detailed
assessment based on the thematic analysis.

3.1. Demographics

Figure 3 shows the two broader categories of our primary sources, GL (n = 28) and SL
(n = 12). Figure 4 further shows the detailed breakdown of these two categories. The
highest number of resources are cited from web blogs (n = 17), and the second highest
number of resources are found in journals (n = 6), conferences (n = 6), and theses (n = 6).
Also, seminar reports (n = 3) and two workshops are reported on the topic. This clearly

Article number 240101

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

shows high practitioners’ interest in the topic under study. Figure 5 shows that before 2018
fewer relevant studies were captured, whereas active research efforts have been evident
since 2019.

Figure 3. Type of literature

Journal

6

Conference

6

Web-blog 17

Thesis

6 Report

3
Workshop

2

Figure 4. Types of primary sources

Figure 5. Publication’s trend

3.2. NTD state of the art

In this section, we discuss five different types of NTD (i.e., people, process, social, cultural,
and organization) with the help of relevant examples. This section answers RQ1 – What is
the current state-of-the-art research on the different NTD types in software engineering?

3.2.1. Process debt

“Process debt refers to issues that, if present in software development, might delay or
impede specific development operations” [29]. A software process is represented by a series
of work phases applied to the design and development of a software product [30]. A process
that operated effectively and efficiently a year ago may not be as productive as before,
as changes in expectations, people, resources, and tools necessitate the modification of
processes to achieve optimal performance. During these changes, the number of process
bottlenecks, wasteful stages, and superfluous procedures add to process debt [31]. It occurs
when a process is poorly understood and controlled [2]. Likewise, process debts are related
to the creation of technical debt [7, 32]. Martini et al. [33] researched process debt in
fine detail and revealed a number of its causes and mitigation strategies. An example of
process debt is when teams hold stand-up meetings to report status so leaders know what
is happening [16]. Team members can quickly show their leader the project’s status. The
debate focuses on recording rather than distributing information and addressing team
interdependencies, causing process debt [16].8

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

3.2.2. People debt

“People debt refers to people’s problems in a software company that can slow or impede
developmental operations” [5]. Human (people) factors in SD can be investigated psy-
chologically, cognitively, managerially, and technically. These factors have organizational,
interpersonal, and individual impacts. When building systems, enterprises accumulate
people’s debt by ignoring their people’s needs. Unresolved people’s issues [34], such as two
people who had to be put on different teams because they could not work with each other,
the person promoted whose head’s only just been above water for the last six months is
the typical causes of people debt [35–37]. It refers to all the ideas, goals, and objectives
a corporation had for employees but abandoned. It also refers to missed opportunities
to improve employee lives and jobs. One common example of people debt is expertise
concentrated in too few people due to delayed training and/or hiring [2, 12, 16, 20]. Nokia’s
sharp fall, unveiled by an INSEAD study [38], resulted from a toxic culture of silence that
the employees were experiencing that caused them to be in denial about the progress of
their competition. Boeing’s catastrophic failure resulted from an environment of fear, where
engineers were unwilling to discuss problems and failures [34]. People’s debt is also directly
linked to the creation of TD [39].

3.2.3. Culture debt

“Cultural debt is making a technical decision that borrows against the organization’s
culture. Such decisions can introduce team divisions, deteriorate communication or even
weaken leadership effectiveness” [13, 22]. Corroding culture affects morale and alienates
partners, customers, and employees. The biggest threat to a company’s ability to seize
an opportunity isn’t the wrong people, product, pricing, competition, or market forces;
it’s Culture Debt [35, 40]. Leaders often say, “Their employees are their greatest asset.”
If the culture is correct, if it is shattered and you hire out of step with it, everything
will fail. These “biggest assets” will make unwise decisions and fail. The right people in
the right atmosphere will always win [21, 40]. Uber had cultural debt as before 2017, the
company’s services, such as ordering a car, tracking a vehicle, and driver software, were
packaged into one software. When part of the software crashed, the whole system went
down [41]. The company switched software to recover swiftly and stabilize the business.
The corporation bought 30 000 decentralized programs, which caused the technical debt. To
cover the technical debt, they employed inexperienced workers without much training. The
company’s cultural debt produced decentralized communication, inadequate leadership,
and disorganization.

3.2.4. Social debt

“Social debt is a cumulative and increasing cost in the current state of things, connected
to invisible and negative effects within a development community” [16]. Tamburri et al.
[3, 11, 18, 20] investigate social aspects of debt under the term “social debt.” It is associated
with unforeseen project costs, similar to technical debt, as it depicts the cost accumulation
of software projects due to community causes, i.e., suboptimal working environments
and conditions [42, 43]. Community causes contribute to the accumulation of social debt,
which impacts the people who work on software development tasks and the quality of the
software they produce [3, 27]. This chain of events can potentially jeopardize the business

Article number 240101

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

continuity of software development organizations. An example of social debt is a lack of
effective communication between different parts of the organization (for example, between
development and operations teams). Another example has an architecture team that is
disconnected from the SD team and, therefore, might suggest architectural solutions that
are not realistic, as they do not take into consideration the details and the requirements
elicited during the implementation phase [3, 36].

3.2.5. Organisational debt

Organizational debt is “the accumulation of changes that leaders should have made but
didn’t” [36]. It turns out that organizational debt can kill the company faster than other
debts [42]. Organizational debt is all the people/culture compromises made to “just get
it done” in the early stages of a startup. Growing companies must understand how to
recognize and “refactor” organizational debt [27, 43, 44]. Organizational change requires
individuals to change, whether introducing a new tool, restructuring business processes,
or even larger transformation. These changes add to organizational debt as well [44].
The common organizational debt example is doing what’s quick and convenient. It is
understood that it does not scale and is not the ultimate solution, but it works now [5].
Further organizational debt example is obsolete processes. The company implemented
a solution that worked at the time but now has better, more efficient options, but systems
and processes rely on the old ways. Organizational debt is also directly linked to the
generation of TD as well [34, 38, 45].

3.3. NTD accumulation causes

This section presents different identified common causes for accumulating the NTD. This
section answers RQ2 – What are the reported causes of NTD in software engineering?

3.3.1. Process debt causes

Our study identified 14 process debt causes that are divided into three themes named
process divergence, organizational and external dependencies (see Table 4). Among the
identified causes, six were found to be discussed in both GL and SL, which include inefficient
processes, outdated processes, sub-optimal processes, power distance, shortcuts, and quick
fix norms prevalent in software companies. On the other hand, the GL introduced three
new causes: lack of software culture, external trends, and technology and tools.
Process divergence. According to Martini et al. [7, 33], process designers develop defective
processes, process executors deviate from well-designed processes, and infrastructure flaws
can cause problems in process implementations. Process divergence is hard and can lead to
inadequate planning, prioritization, and incompetency. Further causes of process debt are
obsolete and suboptimal processes and lack of follow-up assessment, design, management,
and execution [6, 7]. When process experts optimize processes, they add to process debt
by missing some important steps. Unaccustomed staff causes confusion and process debt,
too [7]. Inefficient processes include wasted time, customer delays, approval waits, batching
delays, redundant steps, effort duplication, errors, and rework [15, 46, 48]. Obsolete or
old processes include using outdated or time-consuming manual processes when a simple
technological replacement could save time and costs [46, 48]. Inadequate defect analysis,
documentation, or test case management causes process debt. No one uses more efficient10

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 4. Process debt causes

Process debt themes Causes GL ref. SL ref.

Process divergence Process incompetence [33]
Inefficient processes [46] [15]
Outdate process [29] [47]
Changing process [48] [20]
Sub-optimal processes [6] [7]
Lack of follow-up assessment
Lack of prioritization
Cost of process changes

Organizational challenges Value neglecting
Lack of software culture [12]
Power distance [49] [50]
Shortcuts and quick fix norms [45] [48]

External dependencies Technology and tools [7]
External trends

methods when shortcuts and quick solutions are the norms. This diminishes productivity
when employees repeat the same “shortcut” when a permanent, more efficient approach
might have been established from the start. Changing a software process changes activity,
artifact, and role. One element’s change may affect others due to interdependencies.
Changing an activity (e.g., adopting agile) can influence final production. Unanalyzed
changes in the processes can impair development [7, 47]. The value a process brings to
stakeholders and the organization is sometimes unclear. Stakeholders disregard the process
when such messages aren’t properly communicated, causing process debt [6, 48]. Existing
processes are hampered by different enterprises, units, teams, domains, and events. If
these conditions and circumstances aren’t considered, process debt and costly effects arise
[7, 47]. Understanding contexts and scenarios in process design are vital; for example, when
processes are built just for the software development team and neglect partnering hardware
teams, it causes misunderstandings and generates process debt.
Organisational challenges. Power distance, lacking software culture, and neglecting
values add to the accumulation of process debt. Power distance refers to the degree to which
lower-ranking members of an organization “accept and expect the unequal distribution
of authority”. In the context of software development is the perceived distance between
less powerful teammates and power-holder teammates, such as experienced teammates
or decision-makers [12, 50]. The absence of a software culture in many organizations
is a significant problem. This indicates that processes carefully crafted for use in other
contexts may not be the most effective in all software development environments [7, 29].
Another issue is interacting with organizations with different cultures, interests, and power.
It can lead to the negligence of important values; examples are processes not followed by
open-source organizations developing a software system component used by the development
team (e.g., the lack of a correct library versioning) or other stakeholders that may be
interested in receiving data to compute analytics without knowing about the burden for
the developers [49].
External dependencies. The influence of external trends, technology, and tools directly
affects debt accumulation. How an organization adopts new processes is influenced by
external trends such as greater global competition, changing demographics, changing
customer concerns, and volatile stock markets. Process debt can occur when an organization
adopts processes that are not fit for the organization based on these external trends. Having

Article number 240101

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

the technology to support the processes, automate them, and make their steps easier is
also essential. Additional process debt can be caused by a lack of technology and tools,
such as when an outdated configuration management solution does not deliver quickly [7].

3.3.2. People debt causes

Our MLR identified 10 people’s debt causes that are divided into three themes named
behavioral, work, and 3C challenges (see Table 5). It is evident that people’s debt is heavily
investigated in the SL compared to GL, where seven cases are reported. On the other hand,
GL offers two new causes named people´s poor behavior and remote work. Only two of
the people’s debts are identified in both SL and GL named race to ship as many features
and poor inter-team coordination.

Table 5. People debt causes

People debt themes Causes GL ref. SL ref.

Behavioural challenges Frustrated and poor-performing teams [12]
Poor customer responsiveness [12]
People’s poor behaviour [36]

Work challenges Remote Work [51]
Race to ship as many features [51] [16]
Leaving people [36, 51]

3C challenges Insufficient collaboration [5]
Insufficient communication [5, 16]
“Shortcuts” in communication [5]
Poor inter-team coordination [38] [5, 16]

Behavioural challenges. A team member’s poor conduct negatively impacts the per-
formance of other team members. Inversely, poor performance can also contribute to
behavioral issues, particularly when team members become dissatisfied and angry about
their poor performance or believe that an unfair standard has been established, which
leads to poor productivity [12]. Low productivity has several detrimental repercussions on
the workplace, including the financial impact on profitability and structural consequences
on employee morale [12, 36]. Further poor behaviors of the people, such as excessive
self-indulgence, a lack of self-control, exploiting others, and low motivation and effort, can
be correlated with various antisocial, immoral, and imprudent behaviors that impede the
software development process [36]. While poor customer responsiveness is based on the
service provider’s inability to provide in-time service, this is based on both the speed of
interaction and the speed of the service fulfillment [12, 36].
Work challenges. In remote work without face-to-face connection, individuals miss a sense
of shared purpose and are more indifferent to their employers. People’s poor behaviors and
attitudes toward work, not maintaining a positive attitude, shortcuts in communication, and
remote working are also important reasons for people’s debt [51]. Numerous disadvantages
are linked with remote employment, as it directly impacts individuals’ health. Loneliness is
one of the primary obstacles that distant workers may need to overcome. When employees
are not accustomed to working alone throughout the day, people could ask a coworker a brief
inquiry or run into someone in the hallway to discuss casually while working in the office.
Many employees miss a sense of shared purpose without face-to-face connection and are
more indifferent to their employers. Another working challenge is the ambitious managers12

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

who want to ship as many features as possible, which makes the development of the feature
crawl over time. Also, when people leave, no one knows to whom the work should be
transitioned. The combination of strict deadlines and excessive workloads causes software
professionals to burn out and quit their careers prematurely [16]. Software engineers quit
their jobs due to inadequate compensation in terms of money, technical difficulties, and
growth opportunities. This has a detrimental effect on team performance; for example, the
departure of team members is when no one understands who the task should be transferred
to and who should fill the vacated position [36].
Communication, collaboration, and coordination (3C) challenges. During software
development, “shortcuts in communication with people” refers to the incapacity of team
members to interact effectively and appropriately [38]. This can occur when team members
bypass proper communication channels, engage in extremely brief communication intervals,
or avoid communication. Shortcuts in communication are taken to save time. Nevertheless,
adopting communication shortcuts can impact multiple phases of the software development
life cycle. For instance, omitting steps when speaking with the client to collect software
requirements could result in a missed or insufficient requirements analysis. Failure to foster
a collaborative environment at work results not only in a loss of benefits but also in a slew
of disadvantages. The inability to create a team-friendly environment frequently results in
an isolated and broken workflow, rarely leading to team efficiency or production [5]. When
team members lack coordination, production can suffer, processes become more difficult,
and work finishing can take longer [16].

3.3.3. Culture debt causes

Our MLR identified 7 cultural debt causes that are divided into two themes named
organizational culture and management challenges (see Table 6). It is evident that cultural
debt is heavily investigated in the GL and reported 6 causes. At the same time, unique
causes identified in SL are named un-participatory culture. Here it is also worth mentioning
that our MLR extended to cover cultural debt, which was not included in a recent NTD
review conducted by Ahmad and Gustavsson [1]. This expansion is motivated by recognizing
that a positive and productive work environment is essential for maximizing the effectiveness
of processes and people involved in SD.

Table 6. Cultural debt causes

Culture debt themes Causes GL ref. SL ref.

Org-culture challenges Un-mindfulness in adopting culture [52]
Un-participatory culture [47]
Individualistic culture [22, 53]
Weak organisational culture [13, 21]

Management challenges Managers lacking understanding of culture [13]
Underinvestment in core HR functions [13]
Hiring wrong people [13, 54]

Organisational culture challenges. Culture debt results from improperly implementing
policies and procedures. Deferred investments because of budget uncertainty, inadequate
governance, organizational restructuring, and the need to act rapidly to meet emergent
threats are common cultural debt drivers in organizations [13, 53]. Unparticipatory culture
oppressed active decision-making and goal-setting. Unparticipative environments make

Article number 240101

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

employees feel less ownership over their work. They’re more likely to ignore a problem or
opportunity than assume someone else’s responsibility. Individualistic cultures stress the
needs of the individual over the needs of the group. In this type of culture, people are
seen as independent and autonomous [21, 22]. Social behavior tends to be dictated by the
attitudes and preferences of individuals. However, people with strong individualistic values
and beliefs within an individualistic culture would have smaller social support networks,
lower emotional competence, lower intentions to seek help from various sources, and poorer
mental health [13, 22]. Individualism has also drawbacks where employees become too
self-reliant, and a lack of emphasis on cooperation and teamwork leads to inefficiency in
production [22]. Another big challenge faced is weak culture. It refers to values and beliefs
not strongly and widely shared within the organization [13]. This implies that individual
members of the organization rely more on personal principles, norms, and values. Further,
the poorly implemented solution causes organizational culture to poorly identify the actions
required, schedule the actions to identify the resources required, put measures in place to
counter adverse consequences, and review the plans, etc. [13, 53].
Management challenges. When management teams don’t know what culture they are
trying to build in their organizations, it leads to cultural debt. Decision-makers have
a cumulative impact on organizational culture. Managers can not guide the employees on
how the company functions and is seen as a whole when they lack a proper understanding
of the culture [13, 53]. Having adequate investments for managerial tasks is very important.
Investing in management is important for cultural strength. Fewer management investments
are a major reason for cultural debts in the software industry [13, 21]. Lack of investment
in management causes degradation in revenue, branding, and workplace environment
[13, 22]. The wrong hiring made by managers can have a serious and long-term impact
on an organization. If a wrong hire is made, it can cause disruption in the team, increase
recruitment and training costs, and decrease morale and productivity. It can also lead to
a lack of trust in the leadership and a decrease in the quality of work. Additionally, the
wrong hire can result in bad decision-making and cause the organization to miss out on
potential opportunities [13].

3.3.4. Social debt causes

In the social debt category, we identified 17 causes that are divided into three themes
named social confines, community smells, and organizational challenges (see Table 7). SL
literature reported the majority of these cases, whereas GL reported only two new causes
of social debt, named social isolation and decision in-communicability.
Social confines. Too much time alone at work and fewer collaborative talks contribute to
social isolation [42, 51]. This hampers collaboration, idea-sharing, and teamwork. Social
pressure is when one person or group influences another; for example, argument, persuasion,
conformity, and demands are some social pressure examples [42]. Two types of social
pressures exist 1. Workplace peer pressure, such as comparisons and competition with peers
and 2. Psychological pressure: pressure caused by own thinking, such as overthinking, etc.
Social pressure encourages improved performance and perfection. Seeing others succeed
motivates others to achieve well. But extra and consistent social pressure on teams can
lead to low self-esteem, lack of confidence, confusion about one’s place in a social group,
etc. A social structure is a network of (social) relationships, habits, and ways of thinking
among people working toward a common goal. It helps people with the same organizational
aim to communicate information. Communication deteriorates, work outputs are delayed,14

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 7. Social debt causes

Social debt themes Causes GL ref. SL ref.

Social confines Social isolation [52]
Social pressure on teams [47]
Poor social structures [50]

Organisational challenges Uncooperativeness of the development community [20]
Organizational barriers
Uninformed socio-technical decisions
Architectural changes
Decision incommunicability [36]
Global distance [5]
Lack of proper communication in organizations [16]
Omissions in social interactions [43]

Community smells Power distance [42]
Priggish members
Prima donnas
Radio silence or bottleneck
Haring villainy
Solution defiance

and profitability is damaged when a company’s social structure fails. To run effectively,
it is necessary to frequently examine the social and organizational structure to ensure it
matches the business’s needs [42, 55].
Organisational challenges. The development community’s unwillingness to work with
technical experts causes organizational problems. Software development professionals rarely
get along with techies. Unaware developers can create a “us vs. them” situation [3]. They
blame each other for problems [3]. Organizational barriers impede employee knowledge flow
and can lead to commercial failure [16, 20]. Organizational barriers include rules, policies,
hierarchical positions, facilities, and complex systems. Employees must send queries in the
organization’s preferred language, medium, and manner of communication. The policy
describes how employees should behave and communicate to stay employed [16, 18]. Unin-
formed socio-technical choices include poorly communicated organizational decisions and
misinterpreted team findings. These ill-informed assessments can affect an organization’s
social and technical interdependence and the development community. It might lead to
a lack of shared attention on communication and collaboration in achieving technical
performance and job quality [3, 42]. Poor organizational or sociocultural conditions prevent
the development network from communicating directly with key stakeholders [43]. Incommu-
nicability is linked to communication and affected by social and organizational issues (e.g.,
organizational filtering protocols or nondisclosure agreements). Incommunicability traits,
including community and smells, that impose communication obstacles (e.g., corporate
silos or limited software practitioner communication cause social debt [5]. Organizational
architecture increases societal debt. Architecture decisions can be determined “by osmosis,”
using information from every communication link in the development and operations
network [12]. Critical information loss is almost inevitable. In the ensuing communication
chain, important information, logic, and needs can be lost [20]. Inadequate communication,
omission of social connections, and other issues contribute to social debt [5, 16].
Community smells. Priggish members refer to pedant teammates demanding of others
pointlessly precise conformity or exaggerated propriety, which frustrates teammates and
affects the software development process [18, 42]. Prima donnas work in isolation and

Article number 240101

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

don’t welcome changes or support from teammates. The outcome prevents the organization
from innovative solutions or processes and effective communication and collaboration
[3, 42]. Another form is a lone wolf, where individuals work regardless of their peers due
to poor communication. The negative results of such work are unsanctioned architecture
decisions across the development process, code errors, and project delays [20, 42]. Radio
silence or bottleneck can occur when tasks and communications are formally performed in
a complex organization [42]. For example, a team member working as a unique information
intermediary for different teams leads to communication overload and massive delays
[42]. Sharing villainy is an environment where the goal of sharing reliable knowledge or
information is challenging. When organizations cannot offer a decent working environment
and lack encouraging knowledge sharing, the result is that the team finds it difficult to
complete project activities [42]. Solution defiance can be called team conflicts and a lack of
respecting others’ opinions regarding a potential solution. Each organization has teams
that might be more diverse in various ways. Teams conflict in decision-making meetings
when a team or individual is too rigid in their technical expertise, organizational cultural
beliefs, values, and norms [55].

3.3.5. Organisational debt causes

Organizational debt leads to TD because of deferred investments due to budget uncertainty,
poor governance and architecture, and organizational restructuring. On the other side, TD
can also cause organizational debt. Non-technical debt refers to the broader organizational
inefficiencies and operational shortcomings that hinder the organization’s performance.
Here’s how system challenges can be related to non-technical debt in the organization.
The inability to integrate systems, poor maintenance practices, the inherent complexity
of systems, and complex, difficult-to-operate systems are considered causes of organiza-
tional debt. These factors can contribute to inefficiencies, increased costs, and hindered
productivity within an organization. These system challenges can directly contribute to
organizational debt. For a clear division of organizational debt themes, we have divided
organizational challenges into two main types, i.e., organisational structure and system
challenges [36]. Details of the organisational debt causes are provided in Table 8.

Table 8. Organizational debt causes

Organizational debt themes Causes GL ref. SL ref.

Organizational structure challenges Sluggish or inflexible organizations [52]
Bad organizational, architectural choices [52]
Lack of skills to upgrade organizations [44]
Extensive and flat organization [36]
Internal politics [36]
Uneven information sharing among teams [2]
Lack of management commitment [56]
Unclear changes [57]
Un structured Information [57]
Lack of healthy communication [41]
Organizational culture hindering progress [41]

Organizational-systems challenges Inability to integrate systems [52]
Poor maintenance [52]
The inherent complexity of the systems [52]
Complex, difficult to operate systems [2]16

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Organisational structure challenges. Small and inflexible organizations lack the knowl-
edge and capacity to upgrade and modernize [52]. Poor maintenance, inadequate investment,
system complexity, and changing mission requirements affect them [44]. Bad organizational
and architectural choices lead to bad decisions, performance evaluations, and compensation
structures [58]. A very large and flat organizational structure has obstacles like a lack of
hierarchical or flat structures: motivational issues, blurred decision-making processes, a lack
of knowledge of areas of responsibility, and inconsistent processes and procedures. Flat
organizations eliminate expectations. Some workers depart because they can’t advance [36].
Internal politics (office or workplace politics) is inevitable. It refers to persons competing
for prestige or power in the workplace. Politics decreases individual and organizational
output. Politics harms the workplace [2]. Team members use their available informational
resources through information sharing. Information sharing promotes innovation, efficiency,
and new ideas by reducing repetition. Everyone benefits when employees share their
knowledge and generate searchable content. Uneven information exchange across teams can
harm the organization by hiding information from management [56]. Lack of management
commitment generates an inefficient organization that hinders information sharing and
cooperation. Lack of software implementation and maintenance resources affects quality
[57]. When people don’t grasp why change is needed, anxiety, scepticism, and resistance
rise, and most significant changes are justified by financial returns (e.g., acquisitions add
revenues; cost reductions increase margins). However, the rationale for large-scale change
must be clear and convincing for all important stakeholders [41]. Unstructured information
is difficult for people and computers to interpret. Unstructured information often causes
workarounds that modern businesses don’t understand. A lack of communication can
produce misunderstandings, missed opportunities, conflict, disinformation, and mistrust,
making staff feel defeated. Poor organizational communication causes friction, frustration,
and confusion, producing a stressful climate where individuals aren’t driven to collaborate
or be productive. Culture impacts people’s performance. Organizational culture is seen as
a technique to get things done or as typical organizational features that shape member
behavior and improve (or hinder) strategic achievement and performance [52]. Ambiguity,
poor communication, and inconsistency are common cultural challenges. These can create
a hostile and unpleasant workplace, leading to harassment, bullying, and high turnover.
Culture drives growth and performance. Unhealthy workplace culture impairs engagement,
retention, and performance. It hinders business when procedures and processes are struc-
tured to fit a legacy technology’s capabilities. If you lack current collaborative tools like
video conferencing or group chat, you may choose a local team over one with the best skills.
Organisational system challenges. A lack of or poorly designed integration can cause
duplicate data, sluggish order processing, fulfillment delays, disgruntled customers, and
profit loss. A lack of system integration hinders system performance and treasury operations
with human work [52]. System integration challenges are caused by insufficient expertise,
required money or investments, resources, inadequate communication/planning, after-go-live
maintenance, and sophisticated technical concerns. Lack of integration produces information
silos that obscure company performance. Inefficiencies hinder decision-making and raise
redundancies [2]. Poor maintenance means failing to keep organizations working. Routine
maintenance is preventive, predictive, or scheduled [52]. Maintenance is key to quality
assurance and a company’s long-term profitability. Unmaintained resources can cause
instability and slow production. Malfunctioning machinery or breakdowns can be expensive.
A software system’s complexity isn’t an accident. This intrinsic complexity originates
from four elements: the complexity of the problem area, the difficulty of managing the

Article number 240101

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

development process, software flexibility, and discrete system behavior difficulties [52].
Software complexity makes development management more difficult. Complex systems
have many interacting parts. Hence they lack predictable causation. These components
might alter over time, generating unpredictability in relationships. This causes unforeseen
difficulties, defects, security failures, or crashes that are hard to examine. Detailed system
descriptions, risk evaluations, and demand specifications are often wrong for systems where
unexpected events occur [2].

Hence, the inability to integrate systems, poor maintenance practices, the inherent
complexity of systems, and complex, difficult-to-operate systems are recognized causes of
organizational debt. These factors directly contribute to inefficiencies, increased costs, and
hindered productivity within an organization, thus adding to the burden of organizational
debt. The inability to integrate systems effectively results in data inconsistencies, manual
workarounds, and limited information flow, leading to higher costs, reduced productivity,
and an accumulation of organizational debt over time. Poor maintenance practices, such
as neglecting software updates and security patches, lead to degraded system perfor-
mance, increased downtime, and higher maintenance costs, all of which contribute to
organizational debt. The inherent complexity of systems, particularly legacy systems,
requires specialized knowledge, training, and support, adding overhead costs and creating
difficulties in system configuration, customization, and troubleshooting. Similarly, complex
and difficult-to-operate systems with poor user interfaces and convoluted workflows impede
employees’ ability to perform tasks efficiently, resulting in errors, reduced productivity, and
frustration. The time spent navigating these complex systems and seeking workarounds
adds to inefficiencies and organizational debt.

3.4. NTD mitigation strategies

In this section, we are examining mitigation approaches for NTDs from the current literature.
We will discuss each type of NTD management approach separately. This section answers
RQ3 – What are the reported NTD mitigating strategies?

3.4.1. Process debt mitigation

We identified 5 process debt mitigation strategies (see Table 9). Only one mitigation
strategy was identified in GL named measurement of process, whereas the remaining 4
are from SL. It is important to note that SLR [1] aims to provide information on how to
prevent process debt and address architecture issues, requirement mismatches, process
divergence, and organizational challenges. The current MLR, on the other hand, provides
more specific recommendations and considerations for mitigation strategies. It highlights
the importance of process documentation, monitoring, automation, market adaptation,
and process design in managing process debt. It emphasizes the need for organizational
restructuring involving end users. The MLR also suggests following conceptual models and
tracking process productivity. The MLR offers broader principles and concepts for effective
process debt management. It highlights the importance of process productivity tracking
and conceptual models, which are not explicitly mentioned in [1].

Effective process debt management strategies are strongly tied to improving software
development processes, such as process documenting, process monitoring, regular auditing,
early detection of risks, and measuring process appropriateness [5, 29]. Process automation
can minimize process debt [33], and by embracing new and valuable technologies and18

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

tools, process automation can lead to functional augmentation and virtualization, making
the process more understandable [33]. It is also a good idea to employ new processes
to avoid process debt if market trends and needs change. Following the agile approach,
for example, meeting early time to market, accepting dynamic requirements changes,
engaging end users throughout the development process, and so on, all while revamping
and improving overall organizational structures, aid in avoiding process debt. The changes
to the development process are linked to the restructuring of the entire organization [2].
These redesigns are generally associated with organizational transformation, necessitating
large-scale, broad-scale modifications.

Table 9. Process debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Measurement of process [29] [5]
Automation of process [2]
Continuous process assessment [33]
Conceptual model for understanding the process debt
Adopting new process

An example is an organization’s transition from a traditional software process to an
agile software development process [33]. It is critical to have someone in charge of managing
processes and supervisors who appreciate the importance of processes. Its primary purpose
should be a continual evaluation that aids in proper process monitoring. On the other
hand, a process must be designed with a specific purpose and value rather than just as
a mandatory management tool imposed by the business. A thorough study is essential
before selecting a process [16]. Researchers recommend following conceptual models to avoid
process divergence and maintain track of process productivity in software development
projects to understand process debt better [33].

3.4.2. People debt mitigation strategies

We identified 5 people’s debt mitigation strategies (see Table 10). In the GL, two new
mitigation strategies were identified, named work clubs’ ideas for people’s psyche and
well-being and adopting the tradition of handling people’s debt. Both GL and SL are
reporting on educating business people about engineering people’s decisions. In contrast, the
remaining two strategies named continued monitoring and communication and managing
dependencies, are reported in SL sources. Here it is important to note that the current
MLR, in comparison to [1], delves deeper into the interpersonal and social aspects of
managing people’s debt, highlighting the significance of collaboration, resource provision,
appreciation, education, and social support in creating a positive and supportive work
environment.

People’s debt management is difficult and uncontrollable since it is linked to human
behavior, psyche, and well-being. But the people’s challenges can be handled by encouraging
collaboration among team members [59]. This could include having regular meetings where
each person can discuss their progress and areas of improvement. Encourage team members
to work together to find solutions to problems and foster open communication among
team members [2, 60]. Clear communication between stakeholders and developers makes
gathering adequate and clear requirements easy. Open communication also leads to better
collaboration and monitoring of interdependencies between teams [2]. This could include

Article number 240101

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

having team members provide honest feedback to each other and discussing their thoughts
on how to improve the development process. Ensure all team members are on the same
page regarding the project’s goals. Everyone should understand what needs to be done
and when it needs to be done [60]. This can help prevent the team from getting bogged
down in the details and conflicts. Ensure everyone has the necessary resources to do their
tasks [34]. This could include ensuring everyone can access the right tools and technology
and providing support and guidance when needed [2]. Appreciate each team member for
their hard work and dedication. This could include recognizing individual contributions
and celebrating team successes. This can help motivate people to continue to do their best
[15, 42]. Educating people adequately is also compulsory to avoid people’s debt, such as
educating businessmen about engineering people’s decisions and to lessen business people’s
pressure on engineers by educating and communicating to them the technical perspectives
[2]. People’s well-being is strongly connected to their social ties and support; long periods of
isolation at work are linked to stress, depression, and low morale. To keep people out debt,
joint work groups or venues are recommended for daily discussion and social well-being. It
is also important to continuously identify, prioritize, understand, and handle people’s debt
in organizations. So, there is a need to adapt to the tradition of people’s debt understanding
and handling.

Table 10. People debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Continued monitoring and communication [59, 60]
Work clubs’ idea for people psyche and wellbeing [39]
Adopting tradition of handling people debt [34]
Managing dependencies [37]
Educating business people about engineering people decisions [2] [42]

3.4.3. Culture debt mitigation strategies

We identified 4 culture debt mitigation strategies (see Table 11). Both GL and SL are
reporting on three common mitigation strategies: handling issues collaboratively, delivering
accurate information for intended multicultural audiences, clear communication, and
an orderly business environment. While GL identified an additional mitigation strategy,
creating the right mindset in the company. All of these findings are new to the existing
literature as cultural debt is out of scope in [1].

To effectively handle cultural debt, organizations should focus on creating the correct
mindset among their members. This includes fostering a growth mindset that embraces
challenges and establishes trust within the working relationships. It is important for team
members to feel comfortable discussing ideas, disagreements, and solutions. Encouraging
diversity of thought is crucial for promoting creative problem-solving and innovation
within teams [12, 13]. Encouraging team members to share different perspectives and
ideas to see a problem from all angles and establishing clear communication between team
members is one of the most effective ways to address cultural differences [54]. Respecting
each other’s cultural backgrounds and values may include being mindful of language and
communication styles and understanding different approaches to problem-solving and
decision-making, specifically by solving difficulties collaboratively across teams [22, 57]
and enabling knowledge exchange with multicultural audiences [53, 56]. Creating more20

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

natural workplaces through clear communication and an organized workplace also aids
in regulating cultural debt. Investing in management for a better working culture and
emphasizing organizational transparency provides a good culture [31].

Table 11. Cultural debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Creating right mind set in company [12, 13]
Handle issues collaboratively [50] [47]
Deliver accurate information for intended multicultural audience [57] [53, 56]
Clear communication, orderly business environment [22] [5]

3.4.4. Social debt mitigation strategies

We identified 8 social debt mitigation strategies (see Table 12). Both GL and SL are
reporting on three common mitigation strategies: social network analysis for debt anal-
ysis, collaborative communication, and guidelines for managing team composition and
improving the description of architectural decisions. SL separately reports metrics for
software architecture communicability and frameworks to follow for social debt mitigation,
including the CAFFEA framework, architectural tactics, DAHLIA, and socio-technical
quality framework. GL additionally reports combined work environments (hybrid) for social
debt mitigation.

The current MLR expands the scope on topics not covered in study [1]. It emphasizes
the significance of organizational strategies, frameworks, models, and guidelines that are
crucial for monitoring and mitigating social debt. It recognizes the value of collaborative
work environments and social network analysis as integral components of these strategies.
It highlights the importance of fostering open communication, promoting collaboration,
respecting diverse opinions, and implementing effective conflict-resolution strategies as
essential measures for managing social debt. Additionally, the MLR acknowledges the signif-
icance of employing specific tools to diagnose and manage social debt within development
communities.

In line with these findings, several organizational strategies, frameworks, models, tools,
and guidelines help monitor and mitigate social debt. Social debt mitigation strategies
are linked to collaborative work environments [32, 51] and social network analysis [20,
50]. Honest and open team communication and intense collaboration [11, 43]. Software
development teams can manage social problems by encouraging open communication and
collaboration, respecting the opinions of others, and using effective conflict resolution
strategies [18, 19].

Open communication allows teams to share ideas and identify potential problems, while
collaboration encourages everyone to work together to find solutions. Respect for the opin-
ions of others is essential for teams to progress without disagreements or misunderstandings
[19, 43].

Finally, effective conflict resolution strategies, such as brainstorming or seeking outside
help, allow teams to work through disagreements and ensure everyone is on the same
page. Practitioners must have the tools to diagnose and manage social debt in their
development communities [18]. Some of the tools reported to detect and manage social
debt are GEEZMO which alarms managers and supervisors about circumstances affecting
teammates’ mood; CodeFace4Smell detects organizational silos, black cloud, Lone wolf, and

Article number 240101

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

Table 12. Social debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Frameworks:
1. CAFFEA framework
2. Architectural tactics
3. DAHLIA
4. Socio-technical quality framework

[43, 50]

Combined work environments (hybrid) [32, 51]

Metric for software architecture communicability [11]

Social network analysis for debt analysis [18] [20]

Collaborative communication [19] [43]

Guidelines: 1. Managing team composition 2. Improving the description of architec-
tural decisions

[18] [42, 50]

Tools:
1. GEEZMO
2. CodeFace4Smell
3. YOSHI

Models:
1. Statistical
2. Social networks

Radio silence social debt causes; DAHLIA, with key aspects, includes decision popularity,
decision awareness to investigate some of the reasons of social debt [42].

3.4.5. Organisational debt mitigation strategies

We identified five organizational debt mitigation strategies (see Table 13). Among the
strategies identified, only one was reported in both the SL and GL studies, namely moni-
toring, communication, and documentation. The remaining four strategies were exclusively
documented in the GL, including adhering to the organizational model, maintaining and
revising organizational charts and cloud architecture, and enhancing organizational culture.
Notably, our study, the current MLR, focuses specifically on organizational debt mitigation
strategies, which were not encompassed in a recent review on NTD [1].

Table 13. Organisational debt mitigation strategies

Mitigation strategies GL ref. SL ref.

Monitoring, communication and documentation [45] [43]
Following organizational model [53, 57]
Maintaining and revising organizational charts [36, 44]
Cloud architecture [57]
Improving organizational culture [41, 49]

The mitigation strategies emphasize on the importance of monitoring decisions and
changes that need to be identified, prioritized, measured, and monitored. Such a monitoring
process facilitates faster decision-making and drives business improvement by expediting
reporting. Real-time exception detection plays a crucial role in enabling organizations to
respond promptly to emerging challenges and opportunities [57]. These findings highlight22

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

the significance of robust document management and adherence to an organizational
structure based on validated frameworks.

Effective communication within an organization is essential for building trust, fostering
teamwork, improving relationships, enhancing problem-solving abilities, and resolving
conflicts [53, 57]. Robust document management practices ensure that all individuals
within the company, regardless of their department or team, understand the storage,
review process, and up-to-date status of documents. This ensures clarity and alignment
and, if necessary, enables timely actions to be taken. Adhering to an organizational
structure based on validated frameworks and updating organizational charts can streamline
processes, enhance decision-making, manage multiple locations, drive employee performance,
and prioritize customer service and satisfaction [43]. Social network analysis tools offer
effective means to forecast, manage, and address debt within organizations [20]. Automating
debt identification and testing tools enable continuous monitoring of debt sources and
provide opportunities to proactively overcome them. In the dynamic software business,
organizational adaptability and flexibility are crucial for survival and success [18, 36, 44].

Further cloud-based services ensure the continuity of organizational processes, reduce
costs and foster increased collaboration. Cloud-based services are scalable and provide
automatic software updates. It is not only efficient but also beneficial to the environment,
and it provides automatic software integration [57]. The organizational culture can be
improved by creating and communicating meaningful values to employees, conducting
proper selection procedures, improving orientation and on-boarding for teams, enabling
and empowering employees in skills and decisions, engaging employees in training, coaching
according to their needs and domains, and communicating effectively and efficiently within
teams [41, 55, 61].

4. Future work

Our MLR proposes several potential future directions that can further advance understand-
ing of NTD and develop effective mitigation strategies. This section outlines key areas
for future research in the field of NTD and answers RQ4. First, it would be interesting
to apply social capital theory and control theory that can provide deeper insights into
how social environments and relationships influence the accumulation of social and people
debt. By leveraging these theories, researchers can explore the types of resources available
through social networks and how they can be utilized to reduce debt. Second, develop
a comprehensive taxonomy for categorizing and identifying distinct NTD types. This
taxonomy can serve as a foundation for classifying NTD and enable the development of
specialized approaches to tackle the unique challenges posed by each type. Stakeholders
can benefit from this taxonomy by better understanding NTD types, their effects, and
effective mitigation strategies. Third, investigating the effects of different NTD types on TD
accumulation is crucial for comprehending how NTD leads to the creation of TD. Empirical
studies are needed to explore the relationship between NTD and TD, considering factors such
as poor planning, rushed coding, inadequate testing, and lack of refactoring. This research
can shed light on how various issues contribute to the development of TD. Fourth, it’s
worth exploring other types of debts that can be studied under the umbrella of NTD, such
as service debt, sustainability debt, and environmental sustainability debt. Investigating
service debt can provide insights into trade-offs related to service-oriented architectures,
service-level agreements, and service dependencies. Understanding and managing service

Article number 240101

23

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

debt can contribute to the development of strategies and practices that ensure reliable
and efficient service delivery. Exploring sustainability debt could focus on the long-term
sustainability and maintainability of software systems. It aims to identify approaches that
design and develop more sustainable software systems, both in terms of their technical
aspects and their impact on the environment and society. Investigating environmental
sustainability debt encompasses the ecological impact of software development activities,
including energy consumption, resource utilization, and carbon emissions. Research in
this area can contribute to the development of eco-friendly software engineering practices,
reducing the environmental footprint of software systems. By pursuing these future re-
search directions, researchers and practitioners can advance the understanding of NTD,
develop effective mitigation strategies, and promote more sustainable and efficient software
development practices.

5. Implications

Our MLR not only demonstrates the scarcity of research efforts on NTD, but it also
demonstrates the direct relationship of NTD to TD in software development projects. It
directs researchers to investigate further the relationship of NTD to TD in terms of causes,
mitigation techniques, and consequences. This study elucidates the dangers of ignoring NTD
while studying and developing TD. The highest number of grey literature studies shows the
practitioners’ increasing interest in the topic. However, it also forecasts that practitioners
lack a holistic view of the different types of NTD and struggle to find a correlation between
them. Most practitioners are aware of the TD and NTD relationship to it. Still, they do not
understand how different NTD are connected. Therefore our study implicates the need for
further investigation of TD to NTD and NTD to NTD relationships by conducting more
industrial case studies. Our study also emphasizes practitioners’ education and training
about NTD and coping strategies for handling NTD in software development. Thus, we
urge the companies to participate in research projects in the future to target research goals
regarding the prevention and mitigation of NTD that are relevant to the software industry.

6. Threats to validity

We are addressing threats to external validity, threats to construct validity, and threats
to conclusion validity. A data collection process was designed to support data recording
to minimize the construct validity threat. Two researchers were involved in the whole
process, which helped to lessen this threat even more. Because our MLR primary studies
were largely based on online sources (grey literature), their applicability to the broader
area of practices and general disciplines of TD and NTD is limited. We tried to minimize
external validity threats by following the guidelines proposed by [23]. Conclusion validity
is related to researchers’ bias or misinterpretation of data. This is a major risk and cannot
be eliminated. However, we took several steps to minimize this threat, such as having two
researchers involved in the analysis, which helps limit subjective opinions. Further, a full
audit and trial of 40 sources were maintained, and conclusions were drawn collaboratively.24

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

7. Discussion and conclusion

The topic of debt is relatively new compared with other domains, such as software quality
and testing. However, despite significant studies published on the TD concept, NTD has
remained less explored. Among the different types of debt proposed in work by Lenarduzzi
et al. [5], social debt has been investigated by [3] and process debt by [33]. While in a recent
review conducted by Ahmad and Gustavsson [1], they extended the scope of previous
studies by including an investigation of people’s debt as well. However, they identified
a scarcity of scientific studies on NTD [1]. They reported only 17 scientific studies on NTD
and requested further empirical investigation and other forms of literature reviews on the
topic. This MLR investigated NTD to extend the recently conducted systematic mapping
review [1]. To achieve our study goals, we are investigating the research questions designed
and reported in [1] that serve as the guided foundation for this MLR.

While TD resides within the system codebase [61], NTD seems more pervasive and
intertwined with people, organizations, their working processes, and cultural issues. Soft-
ware development is a socio-technical phenomenon based on socio-technical decisions.
A socio-technical decision generates technical and any or all NTD types (i.e., people,
process, culture, social, and organizational). TD outcomes are measured in monetary
values, while consequences can measure NTD outcomes. We intentionally used the word
‘‘consequence“ rather than ‘‘value” for NTD as its measurement is beyond the scope of
monetary values. Therefore, more research is needed to understand how the effects of NTD
can be measured or quantified in software projects. The results show that NTD seems
harder to fix than TD. NTD contributes to TD accumulation, and its effects are both short-
and long-term. NTD and TD are strongly intertwined with human dimensions – software
architectures and their impact on businesses and cultures [3, 33, 42]. This highlights the
complexity of managing debt in software development and underscores the need for further
exploration and understanding of NTD to effectively mitigate its impact. NTD reflects
and weighs heavily on the human and social aspects since it is caused by factors such as
cognitive distance (lack of or excessive communication), mismatched architecture, and
cultural and organizational systems [42]. This signal that NTD must be dealt with alongside
TD to avoid severe consequences of software project failure.

Non-technical debt (NTD) significantly influences the human and social aspects of
software projects, stemming from factors such as cognitive distance, architectural discrep-
ancies, and cultural and organizational systems [42]. This highlights the need to address
NTD alongside technical debt (TD) to mitigate the potentially severe consequences of
project failure. In comparison to the existing review [1], our study uncovered a range of
significant causes for process debt. These causes encompass process divergence, inefficient
and outdated processes, changing process requirements, sub-optimal practices, lack of
follow-up assessment, prioritization issues, costs associated with process changes, neglect
of value considerations, power distance, reliance on shortcuts and quick fixes, as well as
the influence of technology, tools, and external trends. This expanded our understanding
of process debt causes and extended the scope of knowledge in this domain beyond the
technology-focused causes identified in the systematic mapping review [1].

Regarding process debt mitigation, the SLR aims to provide general insights into
preventing process debt and addressing architecture-related issues, requirement mismatches,
process divergence, and organizational challenges [1]. In contrast, our study offers more
specific recommendations and considerations for effective mitigation strategies. It highlights
the importance of process documentation, monitoring, automation, market adaptation, and

Article number 240101

25

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

thoughtful process design in managing process debt. Additionally, our study emphasizes
the need for organizational restructuring that involves end users and suggests following
conceptual models and tracking process productivity. These broader principles and concepts
for effective process debt management supplement the recommendations provided by the
recent review [1], as they explicitly address aspects such as process productivity tracking
and the use of conceptual models.

For the people debt, the leading causes found were directly associated with inefficient
collaboration, insufficient communication [51], shortcuts in communication [5, 42], and
lack of inter-team coordination [16]. Therefore, it is clear that many issues linked to the
causes of people’s debt are based on a lack of communication and coordination. Behavioral
challenges associated with people’s debt arise from poor conduct and performance, decreas-
ing productivity and customer responsiveness. Work challenges emerge from remote work
disadvantages, such as a lack of shared purpose, poor attitudes, and ambitious managers
causing feature development delays. Communication, collaboration, and coordination
challenges manifest as shortcuts, inadequate teamwork, and coordination issues, imped-
ing workflow and prolonging work completion. These challenges collectively impact the
software development process, team performance, and productivity, necessitating effective
solutions and strategies to mitigate their negative effects. The current MLR extends the
understanding of people’s debt in software development by highlighting specific behavior,
work, and communication challenges compared to the recent review [1], which focuses on
identifying factors such as knowledge gaps, inadequate management, and morale issues
contributing to people’s debt. For the mitigation of people’s debt challenges, the current
MLR, in comparison to review [1], delves deeper into the interpersonal and social aspects
of managing people’s debt, highlighting the significance of collaboration, resource provision,
appreciation, education, and social support in creating a positive and supportive work
environment.

The MLR expands the scope on topics of social debt not covered in the recent review
[1]. It emphasizes the significance of organizational strategies, frameworks, models, and
guidelines that are crucial for monitoring and mitigating social debt. It recognizes the value
of collaborative work environments and social network analysis as integral components of
these strategies. It highlights the importance of fostering open communication, promoting
collaboration, respecting diverse opinions, and implementing effective conflict-resolution
strategies as essential measures for managing social debt. Additionally, the current study
acknowledges the significance of employing specific tools to diagnose and manage social
debt within development communities.

We noticed that cultural and organizational terms were interchangeably used in the
development communities, even though these terms have different meanings and contexts.
While they can also have the exact reasons and mitigation strategies in specific contexts,
i.e., carelessness in adopting policies, practices, and culture can lead to cultural debt in
software development communities. It is also linked to the different causes of organizational
debt, i.e., sluggish or inflexible systems, aging or legacy systems, and bad architectural
choices associated with carelessness in adopting culture. This also leads to insufficient skills
to upgrade and modernize the systems and infrastructure. In return, it leads to an inability
to integrate systems and upgrade given organizational setups [52]. While we also noticed
that there are two kinds of cultural perspectives in software development communities.
(I) Work culture and (II) The employee’s cultural background.

There is also a relationship between cultural and organizational impacts on selecting
sub-optimal processes, which leads to the process debt in the result [33]. Therefore, poor26

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

cultural and organizational choices are directly proportional to the selection of inefficient
software development processes. Here it’s important to note that both organizational
and cultural debt that our MLR includes in the scope for investigation is not included
in a recent NTD review conducted by Ahmad and Gustavsson [1]. The same pattern is
reported in triggering social debt, i.e., lack of suitable communication among important
sides of the organization [16] and missing social connections or reduced communication.
The same applies to organizational debt, as the main reason for organizational debt causes
is associated with uneven information sharing among teams [2] and a lack of healthy
communication [48]. The second most important pattern we found is the relation of
organizational debt with culture and software process, as poor organizational cultures
are linked with hindering software development progress [41, 48]. Intuitively, smells that
exist in community members’ interactions hinder communication. Finally, cooperation is
compromised by the smells existing in communities’ structures. Businesses with inefficient
processes and outdated software are also linked with organizational debt [41, 57]. So the
analysis shows that “pinpointing” and separating different types of debt, i.e., technical
debt and non-technical debt in SD, is challenging as they are greatly interlinked. NTD
contributes to TD, and both cause equal damage. We further noticed that “All NTD
contributes to TD,” highlighting the interrelated nature of the technical and non-technical
debt. It is also evident From the literature [3, 7, 11, 12, 16, 18, 20, 33, 55, 55, 62] that one
type of NTD causes another type of NTD, i.e., culture debt, and organization debt can
lead to process debt [7, 16, 33], people debt can lead to organizational debt, and culture
debt [2, 53], and social debt can lead to people debt [13]. While they may be distinct types
of debt, they are not mutually exclusive. In fact, non-technical debt can contribute to
technical debt, as seen in the example above. Non-technical debt can create constraints
that limit the ability to address technical debt or cause technical debt to be incurred in
the first place. There is a clear connection between NTD and large-scale agile development.
The challenges regarding testing strategies, specifically integration, regression, and user
acceptance testing found in large-scale agile development, are reported as “test debt”. At
the same time, sprint-related challenges in agile projects are categorized as non-technical
debt as well [1].

Acknowledgment

This research was performed within the Non-Technical Debt in Large-Scale Agile Software
Development (NODLA) Project, funded by the Knowledge Foundation, Sweden.

References

[1] M.O. Ahmad and T. Gustavsson, “The Pandora’s Box of social, process, and people debts
in software engineering,” Journal of Software: Evolution and Process, 2022, p. e2516.

[2] J. Yli-Huumo, The role of technical debt in software development, Ph.D. Thesis, Lappeenranta
University of Technology, 2017.

[3] D.A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt in software engineering:
Insights from industry,” Journal of Internet Services and Applications, Vol. 6, 2015, pp. 1–17.

[4] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its
management,” Journal of Systems and Software, Vol. 101, 2015, pp. 193–220.

[5] A. Melo, R. Fagundes, V. Lenarduzzi, and W.B. Santos, “Identification and measurement
of requirements technical debt in software development: A systematic literature review,”
Journal of Systems and Software, 2022, p. 111483.

Article number 240101

27

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[6] P. Kruchten, R.L. Nord, and I. Ozkaya, “Technical debt: From metaphor to theory and
practice,” IEEE Software, Vol. 29, No. 6, 2012, pp. 18–21.

[7] A. Martini and J. Bosch, “The danger of architectural technical debt: Contagious debt and
vicious circles,” in 12th Working IEEE/IFIP Conference on Software Architecture. IEEE,
2015, pp. 1–10.

[8] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing technical debt in software
engineering,” in Dagstuhl Reports, Vol. 6, No. 4. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2016.

[9] W. Cunningham, “The WyCash portfolio management system,” ACM SIGPLAN OOPS
Messenger, Vol. 4, No. 2, 1992, pp. 29–30.

[10] N. Rios, R.O. Spínola, M. Mendonça, and C. Seaman, “The most common causes and effects
of technical debt: First results from a global family of industrial surveys,” in Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, 2018, pp. 1–10.

[11] D.A. Tamburri, “Software architecture social debt: Managing the incommunicability factor,”
IEEE Transactions on Computational Social Systems, Vol. 6, No. 1, 2019, pp. 20–37.

[12] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software development teams manage
technical debt? – An empirical study,” Journal of Systems and Software, Vol. 120, 2016,
pp. 195–218.

[13] A. Chen, Cultural Debt, 2022. [Online]. https://www.careerfair.io/reviews/cultural-debt
[14] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise perspective on technical

debt,” in Proceedings of the 2nd Workshop on Managing Technical Debt, 2011, pp. 35–38.
[15] J. Yli-Huumo, A. Maglyas, and K. Smolander, “The effects of software process evolution

to technical debt – Perceptions from three large software projects,” Managing Software
Process Evolution: Traditional, Agile and Beyond – How to Handle Process Change, 2016,
pp. 305–327.

[16] A. Martini, V. Stray, and N.B. Moe, “Technical, social and process debt in large-scale
agile: An exploratory case-study,” in Agile Processes in Software Engineering and Ex-
treme Programming – Workshops: XP Workshops. Montréal, QC, Canada: Springer, 2019,
pp. 112–119.

[17] Z. Li, P. Liang, and P. Avgeriou, “Architectural debt management in value-oriented archi-
tecting,” in Economics-Driven Software Architecture. Elsevier, 2014, pp. 183–204.

[18] D. Tamburri, From Technical to Social Debt: Analyzing Software Development Communities
using social networks analysis, 2015. [Online]. https://www.slideshare.net/DamianTam
burri/from-technical-to-social-debt-analyzing-software-development-communities-using-
socialnetworks-analysis

[19] T. Mejía, Social Debt: the difficult commitment, 1998. [Online]. https://www.socialwatch.or
g/book/export/html/10623

[20] D.A. Tamburri and E. Di Nitto, “When software architecture leads to social debt,” in 12th
Working IEEE/IFIP Conference on Software Architecture. IEEE, 2015, pp. 61–64.

[21] C.B. Jaktman, “The influence of organizational factors on the success and quality of a product-
-line architecture,” in Proceedings 1998 Australian Software Engineering Conference. IEEE,
1998, pp. 2–11.

[22] B. Sutton, Overcoming Cultural and Technical Debt, 2019. [Online]. https://sloanreview.mit.
edu/audio/overcoming-cultural-and-technical-debt/

[23] V. Garousi, M. Felderer, and M.V. Mäntylä, “Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering,” Information and Software
Technology, Vol. 106, 2019, pp. 101–121.

[24] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey et al., “Systematic literature
reviews in software engineering – A systematic literature review,” Information and Software
Technology, Vol. 51, No. 1, 2009, pp. 7–15.

[25] M.C. Davis, R. Challenger, D.N. Jayewardene, and C.W. Clegg, “Advancing socio-technical
systems thinking: A call for bravery,” Applied Ergonomics, Vol. 45, No. 2, 2014, pp. 171–180.

28

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://www.careerfair.io/reviews/cultural-debt
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.socialwatch.org/book/export/html/10623
https://www.socialwatch.org/book/export/html/10623
https://sloanreview.mit.edu/audio/overcoming-cultural-and-technical-debt/
https://sloanreview.mit.edu/audio/overcoming-cultural-and-technical-debt/

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[26] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, and F.A. Fontana, “A systematic literature
review on technical debt prioritization: Strategies, processes, factors, and tools,” Journal of
Systems and Software, Vol. 171, 2021, p. 110827.

[27] T. Dybå and T. Dingsøyr, “Empirical studies of agile software development: A systematic
review,” Information and Software Technology, Vol. 50, No. 9–10, 2008, pp. 833–859.

[28] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative Research in
Psychology, Vol. 3, No. 2, 2006, pp. 77–101.

[29] L. McGuire, What Is Process Debt, and Why Is It a Problem, 2022. [Online]. https:
//www.formstack.com/blog/process-debt

[30] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2011.
[31] S.W. Wenger E, McDermott RA, Cultivating Communities of Practice: a Guide to Managing

Knowledge. Harvard Business School Publishing, 2002. [Online]. https://hbswk.hbs.edu/arch
ive/cultivating-communities-of-practice-a-guide-to-managing-knowledge-seven-principles-for-
cultivating-communities-of-practice

[32] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting it all together: Using
socio-technical networks to predict failures,” in 2009 20th International Symposium on
Software Reliability Engineering. IEEE, 2009, pp. 109–119.

[33] A. Martini, T. Besker, and J. Bosch, “Process debt: A first exploration,” in 2020 27th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2020, pp. 316–325.

[34] D. Blomstrom, How to Recognise and Reduce HumanDebt, 2022. [Online]. https://www.info
q.com/articles/human-debt

[35] P. Vinayak, Everything you need to know about Cultural debt, 2021. [Online]. https://e2ehir
ing.com/blogs/everything-you-need-to-know-about-cultural-debt

[36] M. Bellotti, Hunting Tech Debt via Org Charts. Knowing where to look for problems, 2021.
[Online]. https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145

[37] L. Pirzadeh, “Human factors in software development: A systematic literature review,”
Master’s thesis, 2010.

[38] INSEAD, “Company strategic planning/Interviews/INSEAD,” 2015.
[39] G. Marlow, People debt is like technical debt – eqsystems.io, 2017. [Online]. https://eqsyst

ems.io/2017/04/people-debt-like-technical-debt
[40] B. Coleman, Culture Debt Is One of the Most Toxic Threats to Business, and Your Startup

Is Probably Victim to It, 2019. [Online]. https://www.inc.com/bernard-coleman/culture-
debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html

[41] M. Hosking, Transformation troubles and non-technical debt, 2017. [Online]. https://www.li
nkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/

[42] E.A.C. Espinosa, Understanding Social Debt in Software Engineering, Ph.D. dissertation,
The University of Alabama, 2021.

[43] T. Dreesen, P. Hennel, C. Rosenkranz, and T. Kude, ““The second vice is lying, the first is
running into debt.” Antecedents and mitigating practices of social debt: An exploratory study
in distributed software development teams,” in Proceedings of the 54th Hawaii International
Conference on System Sciences, 2021, p. 6826.

[44] J. Trouw, Organisational debt an analogy, 2021. [Online]. https://www.linkedin.com/pulse
/organisational-debt-analogy-jaap-trouw

[45] S. Blank, “Organizational debt is like technical debt – but worse,” 2015. [Online]. https:
//www.forbes.com/sites/steveblank/2015/05/18/organizational-debt-is-like-technical-debt-
but-worse-2/?sh=6ea3ce447b35

[46] S. Priestnall, What is Process Debt?, 2020. [Online]. https://www.linkedin.com/pulse/what-
process-debt-steve-priestnall

[47] J.A. Miko, Collaboration strategies to reduce technical debt, Ph.D. dissertation, Walden
University, 2017.

[48] M. Eaden, When Testers Deal With Process Debt: Ideas to Manage It and Get Back to
Testing Faster, 2017. [Online]. https://www.ministryoftesting.com/articles/8d79968d?s_id
=15650023

Article number 240101

29

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://www.formstack.com/blog/process-debt
https://www.formstack.com/blog/process-debt
https://hbswk.hbs.edu/archive/cultivating-communities-of-practice-a-guide-to-managing-knowledge-seven-principles-for-cultivating-communities-of-practice
https://hbswk.hbs.edu/archive/cultivating-communities-of-practice-a-guide-to-managing-knowledge-seven-principles-for-cultivating-communities-of-practice
https://hbswk.hbs.edu/archive/cultivating-communities-of-practice-a-guide-to-managing-knowledge-seven-principles-for-cultivating-communities-of-practice
https://www.infoq.com/articles/human-debt
https://www.infoq.com/articles/human-debt
https://e2ehiring.com/blogs/everything-you-need-to-know-about-cultural-debt
https://e2ehiring.com/blogs/everything-you-need-to-know-about-cultural-debt
https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145
https://eqsystems.io/2017/04/people-debt-like-technical-debt
https://eqsystems.io/2017/04/people-debt-like-technical-debt
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw
https://www.forbes.com/sites/steveblank/2015/05/18/organizational-debt-is-like-technical-debt-but-worse-2/?sh=6ea3ce447b35
https://www.forbes.com/sites/steveblank/2015/05/18/organizational-debt-is-like-technical-debt-but-worse-2/?sh=6ea3ce447b35
https://www.forbes.com/sites/steveblank/2015/05/18/organizational-debt-is-like-technical-debt-but-worse-2/?sh=6ea3ce447b35
https://www.linkedin.com/pulse/what-process-debt-steve-priestnall
https://www.linkedin.com/pulse/what-process-debt-steve-priestnall
https://www.ministryoftesting.com/articles/8d79968d?s_id=15650023
https://www.ministryoftesting.com/articles/8d79968d?s_id=15650023

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[49] L.P. Gates, Are We Creating Organizational Debt, 2017. [Online]. https://insights.sei.cmu.e
du/blog/are-we-creating-organizational-debt/

[50] R. Kazman, “Managing social debt in large software projects,” in IEEE/ACM 7th In-
ternational Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13th
Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems
(WDES). IEEE, 2019, p. 1.

[51] K. Ladewig, The dark side of working from home, 2019. [Online]. https://medium.com/swl
h/social-debt-17bf03a269a

[52] S. Vinsennau, Decouple to innovate how federal agencies can unlock IT value and agility by
remediating technical debt, 2016. [Online]. https://www.accenture.com/_acnmedia/PDF-
85/Accenture-Decoupling-to-Innovate.pdf

[53] B. Falchuk, What’s the Greatest Threat to Your Organization? Culture Debt, 2019. [Online].
https://bryanfalchuk.com/blog/culture-debt

[54] B. Coleman, Culture Debt Is One of the Most Toxic Threats to Business, and Your Startup
Is Probably Victim to It, 2019. [Online]. https://www.inc.com/bernard-coleman/culture-
debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html

[55] F. Palomba, D.A. Tamburri, F.A. Fontana, R. Oliveto, A. Zaidman et al., “Beyond technical
aspects: How do community smells influence the intensity of code smells?” IEEE Transactions
on Software Engineering, Vol. 47, No. 1, 2018, pp. 108–129.

[56] D. O’Keeffe, “An empirical case study of technical debt management: A software services
provider perspective,” M.Sc. thesis, University of Dublin, 2017.

[57] A. Dignan, How to Eliminate Organizational Debt – Building Strong Organizations, 2017.
[Online]. https://culturestars.com/how-to-eliminate-organizational-debt

[58] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational structure on software
quality: an empirical case study,” in Proceedings of the 30th International Conference on
Software Engineering, 2008, pp. 521–530.

[59] J. Cusick and A. Prasad, “A practical management and engineering approach to offshore
collaboration,” IEEE Software, Vol. 23, No. 5, 2006, pp. 20–29.

[60] C.R. De Souza and D.F. Redmiles, “The awareness network, to whom should i display my
actions? and, whose actions should i monitor?” IEEE Transactions on Software Engineering,
Vol. 37, No. 3, 2011, pp. 325–340.

[61] K. Casey, What causes technical debt – and how to minimize it, 2020. [Online]. https:
//enterprisersproject.com/article/2020/6/technical-debt-what-causes

[62] L.M. Hilty and B. Aebischer, “ICT for sustainability: An emerging research field,” ICT
Innovations for Sustainability, 2015, pp. 3–36.

Appendix A. Primary studies

List of primary studies

[S1] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software development teams manage
technical debt?–an empirical study,” Journal of Systems and Software, Vol. 120, 2016,
pp. 195–218.

[S2] A. Martini and J. Bosch, “Revealing social debt with the caffea framework: An antidote to
architectural debt,” in IEEE International Conference on Software Architecture Workshops
(ICSAW). IEEE, 2017, pp. 179–181.

[S3] K. Ladewig, The dark side of working from home | The Startup, 2019. [Online]. https:
//medium.com/swlh/social-debt-17bf03a269a

[S4] S. Sachdev, Cultural Debt. [Online]. https://www.careerfair.io/reviews/cultural-debt
[S5] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing technical debt in software

engineering,” in Dagstuhl Reports, Vol. 6, No. 4. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2016.30

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://insights.sei.cmu.edu/blog/are-we-creating-organizational-debt/
https://insights.sei.cmu.edu/blog/are-we-creating-organizational-debt/
https://medium.com/swlh/social-debt-17bf03a269a
https://medium.com/swlh/social-debt-17bf03a269a
https://www.accenture.com/_acnmedia/PDF-85/Accenture-Decoupling-to-Innovate.pdf
https://www.accenture.com/_acnmedia/PDF-85/Accenture-Decoupling-to-Innovate.pdf
https://bryanfalchuk.com/blog/culture-debt
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://culturestars.com/how-to-eliminate-organizational-debt
https://enterprisersproject.com/article/2020/6/technical-debt-what-causes
https://enterprisersproject.com/article/2020/6/technical-debt-what-causes
https://medium.com/swlh/social-debt-17bf03a269a
https://medium.com/swlh/social-debt-17bf03a269a
https://www.careerfair.io/reviews/cultural-debt

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[S6] A. Melo, R. Fagundes, V. Lenarduzzi, and W.B. Santos, “Identification and measurement
of requirements technical debt in software development: A systematic literature review,”
Journal of Systems and Software, 2022, p. 111483.

[S7] D.A. Tamburri, “Software architecture social debt: Managing the incommunicability factor,”
IEEE Transactions on Computational Social Systems, Vol. 6, No. 1, 2019, pp. 20–37.

[S8] T. Mejía, Social Debt the difficult commitment= , 1998. [Online]. https://www.socialwatch.
org/book/export/html/10623

[S9] S. Vinsennau, Decouple To Innovate How Federal agencies can unlock IT value and agility
by remediating technical debt, 2016. [Online]. https://www.accenture.com/_acnmedia/PDF-
85/Accenture-Decoupling-to-Innovate.pdf

[S10] G.S. Tonin, Technical debt management in the context of agile methods in software develop-
ment, Ph.D. dissertation, University of Sao Paulo, 2018.

[S11] T. Besker, H. Ghanbari, A. Martini, and J. Bosch, “The influence of technical debt on
software developer morale,” Journal of Systems and Software, Vol. 167, 2020, p. 110586.
[Online]. https://www.sciencedirect.com/science/article/pii/S0164121220300674

[S12] M. Bellotti, Hunting Tech Debt via Org Charts. Knowing where to look for problems, 2021.
[Online]. https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145

[S13] J. Yli-Huumo, The role of technical debt in software development, Ph.D. dissertation,
Lappeenranta University of Technology, 2017.

[S14] S. Priestnall, What is Process Debt?, 2020. [Online]. https://www.linkedin.com/pulse/what-
process-debt-stevepriestnall

[S15] Z. Dargó, “Technical debt management: Definition of a technical debt reduction software
engineering methodology for smes,” Master’s thesis, Aalto University, School of Science,
2019.

[S16] J.A. Miko, Collaboration Strategies to Reduce Technical Debt, Ph.D. dissertation, Walden
University, College of Management and Technology, 2017.

[S17] B. Sutton and P. Michelman, Overcoming Cultural and Technical Debt, MITSloan Manage-
ment Review, 2019. [Online]. https://sloanreview.mit.edu/audio/overcoming-cultural-and-
technical-debt/

[S18] D.A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “What is social debt in software
engineering?” in 2013 6th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE, 2013, pp. 93–96.

[S19] D.A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt in software engineering:
insights from industry,” Journal of Internet Services and Applications, Vol. 6, 2015, pp. 1–17.

[S20] D. O’Keeffe, “An empirical case study of technical debt management: A software services
provider perspective,” Master’s thesis, University of Dublin, 2017.

[S21] B. Coleman, Culture Debt Is One of the Most Toxic Threats to Business, and Your Startup
Is Probably Victim to It, 2019. [Online]. https://www.inc.com/bernard-coleman/culture-
debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html

[S22] A. Dignan, How to Eliminate Organizational Debt – Building Strong Organizations, 2017.
[Online]. https://culturestars.com/how-to-eliminate-organizational-debt

[S23] D.A. Tamburri and E. Di Nitto, “When software architecture leads to social debt,” in 2015
12th Working IEEE/IFIP Conference on Software Architecture. IEEE, 2015, pp. 61–64.

[S24] A. Martini, V. Stray, and N.B. Moe, “Technical-, social-and process debt in large-scale
agile: an exploratory case-study,” in Agile Processes in Software Engineering and Extreme
Programming–Workshops: XP 2019 Workshops, Montréal, QC, Canada, May 21–25, 2019,
Proceedings 20. Springer, 2019, pp. 112–119.

[S25] A. Martini, T. Besker, and J. Bosch, “Process debt: A first exploration,” in 2020 27th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2020, pp. 316–325.

[S26] S. Zimmeck, Social Debt: Why Software Developers Should Think Beyond Tech, 2019. [Online].
https://sebastianzimmeck.medium.com/social-debt-why-software-developers-should-think-
beyond-tech-df665d8401a5

Article number 240101

31

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://www.socialwatch.org/book/export/html/10623
https://www.socialwatch.org/book/export/html/10623
https://www.accenture.com/_acnmedia/PDF-85/Accenture-Decoupling-to-Innovate.pdf
https://www.accenture.com/_acnmedia/PDF-85/Accenture-Decoupling-to-Innovate.pdf
https://www.sciencedirect.com/science/article/pii/S0164121220300674
https://bellmar.medium.com/hunting-tech-debt-via-org-charts-92df0b253145
https://www.linkedin.com/pulse/what-process-debt-stevepriestnall
https://www.linkedin.com/pulse/what-process-debt-stevepriestnall
https://sloanreview.mit.edu/audio/overcoming-cultural-and-technical-debt/
https://sloanreview.mit.edu/audio/overcoming-cultural-and-technical-debt/
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://www.inc.com/bernard-coleman/culture-debt-is-one-of-most-toxic-threats-to-business-your-startup-is-probably-victim-to-it.html
https://culturestars.com/how-to-eliminate-organizational-debt
https://sebastianzimmeck.medium.com/social-debt-why-software-developers-should-think-beyond-tech-df665d8401a5
https://sebastianzimmeck.medium.com/social-debt-why-software-developers-should-think-beyond-tech-df665d8401a5

Hina Saeeda et al. e-Informatica Software Engineering Journal, 18 (2024), 240101

[S27] P. Phelan, Is “Cultural Debt” hurting your organization’s growth? (Part 1), 8W8 Global
Business Builders. [Online]. https://www.8w8.com/is-cultural-debt-hurting-your-organizati
ons-growth-part-1/

[S28] J. Trouw, Organisational debt an analogy= https://www.linkedin.com/pulse/organisational
debt analogy, 2021. [Online]. https://www.linkedin.com/pulse/organisational-debt-analogy-
jaap-trouw

[S29] D. Tamburri, From Technical to Social Debt: Analyzing Software Development Communities
using social networks analysis, 2015. [Online]. https://www.slideshare.net/DamianTam
burri/from-technical-to-social-debt-analyzing-software-development-communities-using-
socialnetworks-analysis

[S30] J. Holvitie, D. Tamburri, A. Goldman, S. Fraser, W. Snipes et al., “Social debt in software
engineering: Towards a crisper definition,” Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Dagstuhl Seminar 16162, 2016. [Online]. https://www.dagstuhl.de/16162

[S31] R. Kazman, “Managing social debt in large software projects,” in 2019 IEEE/ACM 7th
International Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13th
Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems
(WDES). IEEE, 2019, pp. 1–1.

[S32] T. Dreesen, P. Hennel, C. Rosenkranz, and T. Kude, ““the second vice is lying, the first is
running into debt.” antecedents and mitigating practices of social debt: An exploratory study
in distributed software development teams,” in Proceedings of the 54th Hawaii International
Conference on System Sciences, 2021, p. 6826.

[S33] F. Palomba, A. Serebrenik, and A. Zaidman, “Social debt analytics for improving the
management of software evolution tasks,” in 16th Edition of the BElgian-NEtherlands
Software EVOLution Symposium (BENEVOL 2017). CEUR-WS.org, 2017, pp. 18–21.

[S34] M. Eaden, When Testers Deal With Process Debt: Ideas to Manage It And Get Back To
Testing Faster, 2017. [Online]. https://www.ministryoftesting.com/articles/8d79968d?s_id
=15650023

[S35] E.A. Caballero Espinosa, Understanding Social Debt in Software Engineering, Ph.D. disser-
tation, The University of Alabama, 2021.

[S36] W. Cunningham, “The wycash portfolio management system,” ACM SIGPLAN OOPS
Messenger, Vol. 4, No. 2, 1992, pp. 29–30.

[S37] I. Kavas, “Don’t go back to the office without fixing your process debt,” Forbes, 2021.
[Online]. https://www.forbes.com/sites/forbestechcouncil/2021/01/04/dont-go-back-to-the-
office-without-fixing-your-process-debt/?sh=1afbfe9b74a4

[S38] Organisational Debt and Why It Makes Digital Transformation Hard, CloudThing, 2022.
[Online]. https://cloudthing.com/organisational-debt/

[S39] N. Almarimi, A. Ouni, and M.W. Mkaouer, “Learning to detect community smells in open
source software projects,” Knowledge-Based Systems, Vol. 204, 2020, p. 106201. [Online].
https://www.sciencedirect.com/science/article/pii/S0950705120304226

[S40] M. Hosking, Transformation troubles and non-technical debt, 2017. [Online]. https://www.li
nkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/

32

Article number 240101

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-1/
https://www.8w8.com/is-cultural-debt-hurting-your-organizations-growth-part-1/
https://www.8w8.com/is-cultural-debt-hurting-your-organizations-growth-part-1/
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw
https://www.linkedin.com/pulse/organisational-debt-analogy-jaap-trouw
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.slideshare.net/DamianTamburri/from-technical-to-social-debt-analyzing-software-development-communities-using-socialnetworks-analysis
https://www.dagstuhl.de/16162
https://www.ministryoftesting.com/articles/8d79968d?s_id=15650023
https://www.ministryoftesting.com/articles/8d79968d?s_id=15650023
https://www.forbes.com/sites/forbestechcouncil/2021/01/04/dont-go-back-to-the-office-without-fixing-your-process-debt/?sh=1afbfe9b74a4
https://www.forbes.com/sites/forbestechcouncil/2021/01/04/dont-go-back-to-the-office-without-fixing-your-process-debt/?sh=1afbfe9b74a4
https://cloudthing.com/organisational-debt/
https://www.sciencedirect.com/science/article/pii/S0950705120304226
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/
https://www.linkedin.com/pulse/transformation-troubles-non-technical-debt-matt-hosking/

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240102, DOI: 10.37190/e-Inf240102

Continuous Software Engineering Practices
in AI/ML Development Past the Narrow Lens

of MLOps: Adoption Challenges

Sini Vänskä∗, Kai-Kristian Kemell∗∗ , Tommi Mikkonen∗∗∗ ,
Pekka Abrahamsson∗∗∗∗

∗Deloitte, Finland
∗∗Department of Computer Science, University of Helsinki, Finland

∗∗∗Faculty of Information Technology, University of Jyväskylä, Finland
∗∗∗∗Faculty of Information Technology and Communication Sciences, Tampere University, Finland

sini.vanska@deloitte.fi, kai-kristian.kemell@helsinki.fi,
tommi.j.mikkonen@jyu.fi, pekka.abrahamsson@tuni.fi

Abstract
Background: Continuous software engineering practices are currently considered state of
the art in software engineering (SE). Recently, this interest in continuous SE has extended
to ML system development as well, primarily through MLOps. However, little is known
about continuous SE in ML development outside the specific continuous practices present
in MLOps.
Aim: In this paper, we explored continuous SE in ML development more generally, outside
the specific scope of MLOps. We sought to understand what challenges organizations face
in adopting all the 13 continuous SE practices identified in existing literature.
Method: We conducted a multiple case study of organizations developing ML systems.
Data from the cases was collected through thematic interviews. The interview instrument
focused on different aspects of continuous SE, as well as the use of relevant tools and
methods.
Results: We interviewed 8 ML experts from different organizations. Based on the data,
we identified various challenges associated with the adoption of continuous SE practices
in ML development. Our results are summarized through 7 key findings.
Conclusion: The largest challenges we identified seem to stem from communication
issues. ML experts seem to continue to work in silos, detached from both the rest of the
project and the customers.

Keywords: artificial intelligence, machine learning, continuous software engineer-
ing, continuous star, multiple case study

1. Introduction

Continuous Software Engineering is the current trend in Software Engineering (SE). In brief,
continuous SE comprises various so-called continuous practices, which aim to eliminate
discontinuities in SE in order to make it a more continuous process. For example, con-
tinuous integration focuses on closer collaboration between development and deployment.

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 9 Mar. 2023; Revised: 20 Aug. 2023; Accepted: 21 Aug. 2023; Available online: 28 Aug. 2023

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0225-4560
https://orcid.org/0000-0002-8540-9918
https://orcid.org/0000-0002-4360-2226

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

Continuous SE is currently state of the art in SE, and companies even consider certain
continuous practices vital for remaining competitive going forward [1].

In particular, bridging the gap between development and operations has received much
attention following the advent of continuous SE. Indeed, one widely discussed topic related
to continuous SE is DevOps. DevOps, a portmanteau of Development and Operations,
focuses on the integration between development and deployment. It involves a number
of continuous SE practices, which are also arguably some of the most high-profile ones:
continuous integration, continuous delivery, and continuous deployment, as well as testing
automation (or continuous testing), are typically considered to be necessary for DevOps
[2]. To further highlight the current importance of continuous SE practices, we turn to
Moreschini et al. [3] who state that “DevOps practices are the de facto standard when
developing software”.

By now, continuous SE practices have been explored in various contexts in SE research,
including the field of Machine Learning (ML). In ML system development, continuous
SE is still an emerging phenomenon. In fact, ML system development in general remains
a novel topic from the point of view of SE [4, 5]. Much of the current discussion on
continuous SE in the context of ML has been focused on the concept of MLOps. With
some simplification, MLOps can be considered to be the application of DevOps into the
context of ML systems [6].

Continuous SE, as Fitzgerald and Stol [7] conceptualize it, however, is a much larger
phenomenon than DevOps (or MLOps), which only comprises a small set of continuous SE
practices. Fitzgerald and Stol [7] posit that continuous SE comprises at least 13 different
continuous practices, split between the areas of business, development, operations, and
innovation. Many of these other continuous SE practices have received little attention
compared to the ones included in DevOps. This is especially the case for ML development,
where little research on continuous SE exists outside the topic of MLOps. Moreover, MLOps
in and of itself is still an emerging phenomenon [6].

Overall, the development of ML systems presents novel challenges in SE, as ML
components need to be incorporated into the software system being developed. These
components require new know-how and are typically developed separately from the rest of
the system by different personnel (e.g., data scientists). Incorporating the development of
ML components into the general SE process (via tooling, methods, practices, etc.) is the
core issue behind these challenges from the point of view of SE [4]. While ML has been
widely studied across disciplines, much of this extant research has focused on technical
challenges in ML instead of looking at the development of these systems through the lens
of SE [4]. This is especially the case for continuous SE in ML, where little research outside
the context of MLOps exists.

In this paper, we begin to address this perceived gap by studying ML development from
a more general continuous SE point of view. In doing so, we look past the lens of MLOps
(and DevOps) in order to explore the thus far largely unexplored (in ML development)
continuous SE practices described by Fitzgerald and Stol [7]. We begin to explore this
topic using an exploratory, qualitative multiple case study (n = 8) research approach.
The specific research question we tackle is formulated as follows: what are the challenges
associated with the use of continuous SE practices in ML development? Additionally, we
are interested in understanding which continuous SE practices are currently used in ML
development, which are not, and why.

2

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

2. Background

In this section, we discuss the theoretical background of this study. In Section 2.1, we
discuss continuous SE in more detail. In Section 2.2, we discuss ML development and how
it relates to conventional software development. In Section 2.3, we discuss related work on
MLOps and challenges in ML development.

2.1. Continuous SE

Continuous SE aims to eliminate discontinuities in SE [7]. While previous lightweight
methodologies have already stressed the importance of focusing on error detection and
quick fixes in particular, continuous SE is more holistic. Indeed, in continuous SE, the
entire software life cycle, including business strategy and operations, is considered to be
a part of development process [7]. Continuous SE builds on agile SE, and agile has been
argued to be an important requirement for adopting, e.g., DevOps [8].

Continuous SE, in practice, encompasses various different practices that Fitzgerald and
Stol [7] refer to as continuous* (continuous star). These, they argue, can be split into three
areas (as seen in Figure 1) that together comprise continuous SE: (1) Business Strategy
and Planning; (2) Development, and (3) Operations. In addition (continuous) improvement
encompasses all three. Whereas DevOps focuses on collaboration between development
and operations, collaboration between business strategy and planning and development is
referred to as BizDev, and collaboration between all three is referred to as BizDevOps [7].

Figure 1. Continuous SE according to Fitzgerald and Stol [7]

Altogether, 13 different continuous* practices are identified by Fitzgerald and Stol
[7]. These 13 practices are as follows. The first area (business strategy and planning)

Article number 240102

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

includes continuous planning and continuous budgeting. The second area (development)
includes continuous integration, continuous deployment, continuous delivery, continuous
verification/testing, continuous security, continuous compliance, and continuous evolution.
The third area (operations) includes continuous use, continuous trust, and continuous
run-time monitoring. Finally, continuous improvement encompasses all the areas, and
continuous experimentation and innovation drive organizations to perform better [7]. These
are all illustrated in Figure 1.

Continuous SE further reinforces the need to break down silos inside organizations.
DevOps focuses on breaking down the silos between development and operations [9].
However, even more comprehensive collaboration between departments may be needed to
achieve continuous SE in some contexts [10]. For example, in the context of ML development,
continuous SE faces new challenges as the continuity needs to be extended to also include the
ML experts working on the ML components of the system [6], as we discuss in Section 2.3.
Next, in Section 2.2, we discuss what makes ML development different from the point of
view of SE.

2.2. ML Development from the point of view of software engineering

AI has largely become synonymous with ML today [5]. ML applications are useful for
poorly understood problem domains, domains with valuable regularities in their databases
waiting to be discovered, and domains in changing environments [11]. In terms of SE
practice, ML systems differ from conventional software systems due to the addition of
ML components. Developing these components requires new know-how and is handled by
various ML experts (e.g., data scientists and ML developers), who are a new addition to
the SE process [5]. Aside from various the technical challenges associated with developing
ML components, integrating the ML experts into the larger SE workflow poses challenges
for organizations developing ML [4].

ML systems are often divided into three classes. The most common is supervised
learning where the training data and the “right answer” are accessible. In unsupervised
learning, the systems learn by trying to find the common structure in the data on their
own. The third, so-called reinforcement learning, refers to systems that evolve by learning
in a sequence that leads it to a given goal [12]. The process requires a lot of testing and
data sets created (or simply used) for training purposes, and the product can still fail to
fulfill its requirements. Moreover, resource estimation in ML development is difficult [13].

Yet, as some existing papers argue, much of ML development is ultimately still software
development. Mikkonen et al. [12] cite Google in stating that “even if ML is at the core of
an ML system, only 5% or less of the overall code of that total ML production system”
is code related to ML. Indeed, ML features are simply “embedded into a larger software
system that hosts, provides access to, and monitors ML features” [10], while the rest of the
development endeavor is conceptually speaking conventional SE.

Nonetheless, the addition of these ML components into the SE process poses challenges
from the point of view of SE. Perhaps most importantly, as already touched upon, the ML
development requires collaboration between ML experts and rest of the development team(s)
[4, 5]. Two studies reviewing existing literature (one systematic literature review [4] and one
systematic mapping study [5]) highlight various challenges in ML development discussed
by existing literature. Martínez-Fernández et al., in their systematic mapping study [5],
list various challenges associated with SE for ML systems, highlighting the wide variety
of challenges associated with ML development from a SE point of view. These include4

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

challenges such as end-to-end ML-based systems including components written in a wide
variety of programming languages, reliance on third party components, ML presenting
challenges from the point of view of changing requirements (whereas ML components create
entanglement), etc.

Giray [4] conducted an SLR specifically focused on SE challenges in ML development,
identifying various challenges unique to ML system development across the following six
main categories: (1) requirements engineering (RE), (2) design, (3) software development
and tools, (4) testing and quality, (5) maintenance and configuration management, and
(6) SE process and management. First, in relation to RE, issues such as difficulties managing
customer expectations due to lack of customer ML understanding, quantitative measure-
ments being new to many stakeholders, and having to deal with new types of quality
attributes (e.g., explainability, fairness) resulted in challenges. Secondly, design-wise, ML
systems posed challenges from the point of view of monitoring performance degradation on
production (concept drift, etc.), as well as in terms of system architecture, as the interplay
of the different parts of an ML system can often result in issues. Thirdly, the vast number
of tools and dealing with development environments and infrastructure, both in terms
of understanding them and simply successfully utilizing them in practice (compatibility,
etc.), were among the key challenges related to software development and tools, in addition
to issues related to dealing with ML models and the data required for ML. Fourthly,
testing ML components remains a challenge due to the non-deterministic nature of ML
systems, including issues related to designing and evaluating test cases, preparing test
data, executing tests, and evaluating test results, as well as actually fixing any bugs that
are found (which may also be bugs in the ML libraries, frameworks, and platforms being
used). Fifthly, dealing with a history of experiments, re-training and re-deployment, and
the configuration management (CM) of data and ML models present new challenges for
maintenance and CM. Finally, harmonizing the activities for developing ML components
with the rest of the software development process, assessing the ML process, and estimating
effort are new challenges related to the SE process and management in ML development.

2.3. Related work: MLOps and continuous SE in ML

Thus far, studies on continuous SE in ML have predominantly approached the topic
through MLOps. MLOps can be largely considered DevOps for ML [6, 14]. John et al. [6]
conceptualize MLOps in their study, highlighting three different pipelines (data, model,
and release), each with 3–4 subprocesses, that together comprise the MLOps pipeline.

Lwakatare et al. [15] discuss SE challenges associated with DevOps in ML development
contexts, focusing on technical aspects such as issues related to data and ML models.
Symeonidis et al. [16] discuss tooling for MLOps and challenges related to it. Granlund et
al. [17] discuss challenges related to implementing MLOps practices in a highly regulated
application domain (medical). A number of other papers on MLOps are listed in the
multi-vocal literature of John et al. [6], and in the systematic literature reviews of Kolltveit
and Li [14] and Lima et al. [18]. Overall, much of the existing research on MLOps has
focused on defining the concept and on challenges related to establishing an MLOps pipeline
(e.g., challenges related to tooling). Fewer papers can be found on human aspects (e.g.,
project communication, etc.).

As our focus is on challenges, papers related to challenges in ML development could
also be seen as related work. Indeed, we find connections between our results and such
papers in Section 6. In this regard, a paper by Serban and van der Blom [19] looks at

Article number 240102

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

SE best practices for ML development in general and discusses the adoption rates of the
practices, pointing towards challenges in some areas. The secondary studies of Giray [4]
and Martínez-Fernández et al. [5] also list various SE challenges related to ML development
based on existing literature, as we have discussed in Section 2.2. Other primary studies
discussing challenges include the study of de Souza Nascimento et al. [20] that looks at
challenges in ML development overall, with the main challenges being: identifying the
clients’ business metrics, lack of a defined development process, and designing the database
structure. Nahar et al. [21] specifically look at communication and collaboration challenges
between data scientists and software developers in ML development in their empirical study.

On the other hand, we are unable to identify existing empirical papers discussing
continuous* more generally for ML development. As established in Section 2.1, MLOps
(and DevOps) only cover some of the 13 continuous* practices discussed by Fitzgerald and
Stol [7]. Thus, in looking at continuous* more generally in this study, we believe this paper
presents a novel contribution in the area with its point of view.

3. Research framework

This study is an empirical study utilizing qualitative, thematic interviews as the data
collection method (see Section 4). Prior to the data collection, to aid in the creation
of a suitable interview instrument, we constructed a research framework. This research
framework is split into five elements. Fitzgerald and Stol [7] classify continuous* practices
into categories as follows: business, development, operations, and innovation. These are
elements (2), (3), (4), and (5) in our framework. In addition, we look at current tools
and the use of methods (1) related to both continuous SE and, more broadly, agile in ML
development, to better understand the development practices being utilized. These five
elements are described in more detail below:

(1) Current tools and use of methods. The first part of the research framework
is focused on understanding the tools and methods used in ML development. In particular,
this part of the research framework is focused on collecting data on development tools
and practices, and especially continuous or agile frameworks or methods used in ML
development.

(2) Business strategy and planning. Continuous SE considers software development
a continuous, holistic process that bridges different organizational units, and also conse-
quently encompasses business strategy and planning [7]. This link between development and
business is referred to as BizDev (which in turn is a part of BizDevOps). The purpose of
this theme is to understand how ML experts see their organizations’ business and strategic
elements. This component is also related to understanding how ML experts deal with
changing customer/business requirements.

(3) Development. This part of the research model aims to understand the ML
development actions, and how they relate to the project as a whole, i.e., whether the
ML related tasks are integrated into the rest of the development process, or more of an
independent, separate, and siloed process.

(4) Operations. Continuous SE also includes bridging together development and
operations (as in DevOps). This part of the research framework is focused on understanding
what practices are used after the project goes into production and how the system is
monitored past this point. Existing DevOps literature argues that agile transformation is
essential for improving the efficiency of the company in optimizing the lifecycle delivery,6

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

breaking the gaps, and creating a continuous feedback loop between the business users and
the development teams [8].

(5) Innovation. Fitzgerald and Stol [7] consider continuous improvement and innova-
tion a part of continuous SE. In continuous SE, a new planning phase starts when new
opportunities are recognized. This part of the research model is focused on understanding
how ML experts feel about new opportunities, innovation, and new technologies. E.g., are
they motivated to suggest new ways of developing ML systems based on lessons learned,
both in terms of technologies and project management? In this regard, the state of their
current project(s) was discussed in relation to what they would do next.

4. Research method

In this section, we discuss the methodology of the empirical study we conducted. In
Section 4.1, we discuss our data collection approach. In Section 4.2, we discuss our data
analysis approach.

4.1. Data collection

The data for this study were collected through qualitative interviews. The interviews
in question were thematic, semi-structured interviews. The themes for the interviews
were based on the research framework discussed in the previous section, i.e., there were
five themes that the questions were focused on: (1) current tools and use of methods,
(2) business strategy and planning, (3) development, (4) operations, and (5) innovation.
The interview instrument in its entirety can be found in the Appendix A.

Eight interviews were conducted with respondents from different organizations working
on AI-related projects. The respondents (and thus cases) were selected through convenience
sampling. The participants had varied job titles, ranging from research assistant to service
manager (see Table 1). Similarly, their past job experience varied greatly, ranging from some
months to decades of working with ML technologies. We preferred to have respondents from
a variety of organizations, as opposed to more in-depth case studies of fewer organizations,
due to the novelty of the topic. Similarly, we opted for a semi-structured and thematic
interview format due to the novelty of the research topic.

The interviews were conducted digitally due to the COVID-19 pandemic situation that
was on-going at the time of the interviews. The interviews were conducted either in Finnish
or English, with the (pre-planned) questions being the same in both cases. Due to the
semi-structured approach, each interview was nonetheless different, as additional questions
were posed based on the responses of each respondent.

Table 1. Respondents

Respondent Job title

Respondent 1 Research assistant
Respondent 2 Data scientist
Respondent 3 Research assistant
Respondent 4 Service manager
Respondent 5 Professor (SE)
Respondent 6 Senior lecturer (SE and applied AI)
Respondent 7 Regulation specialist
Respondent 8 Software developer

Article number 240102

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

The average duration of the interviews (recorded data) was 35 minutes, i.e., not including
introductory statements, instructions, and any post-interview discussion. The interview
recordings were transcribed, and the resulting transcripts were analyzed for this paper. We
discuss our analysis approach next.

4.2. Data analysis

To analyze the data, we utilized qualitative thematic analysis as the primary data analysis
method. More specifically, we utilized deductive coding as our coding approach. In deductive
coding, codes are pre-determined based on a framework and then applied to the data in
the coding process.

We utilized deductive coding as the coding approach, using our research framework
(see Section 3) as the basis for coding. In practice, the codes were the 13 continuous*
practices discussed by Fitzgerald and Stol [7]. As we were interested in exploring how
different continuous* practices are utilized in the context of ML development, we focused
on determining which practices were utilized and how (if at all), resulting in a rather
straightforward coding approach.

These codes were then organized in themes according to our research framework. Thus,
these 13 codes were arranged into 5 themes for reporting as follows: (1) current tools and
use of methods, (2) business strategy and planning, (3) development, (4) operations, and
(5) innovation. These codes and their occurrences are detailed in Table 2. The results of
this analysis are reported next in Section 5.

In addition to this coding process focusing on solely continuous* practices, the data was
analyzed more generally through the five elements of the research framework. For example,
we were interested in the use of tools, which were outside the scope of the continuous*
practices used as a framework for deductive coding. This was also the case for agile in
relation to continuous* in ML.

Table 2. Codes and their occurrences in the data

Code [Continuous…] Occurrence(s)

Planning 4
Budgeting 2
Integration 1
Delivery 2
Deployment 3
Verification 2
Testing 2
Compliance 0
Security 0
Evolution 5
Use 1
Trust 0
Run-time monitoring 2
Improvement 1
Innovation 2
Experimentation 3

8

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

5. Results

In this section, we discuss the results of the empirical study. This section is split into five
subsections, with each subsection covering one of the five themes of our research framework.

While reporting our results, we structure the discussion through the use of PECs
(Primary Empirical Contributions). These PECs are intended to communicate our key
findings in a clear manner. Later, in Section 6, these PECs are also used to structure the
discussion of our results.

Additionally, although we use direct citations from the interviews in the text, it should
be noted that these PECs are not based solely on the few citations found in the text. While
including all relevant citations would not be feasible in the interest of space, we nonetheless
use some citations to liven up the text and to provide some transparency in terms of our
use of our data.

First, before going into more detail in our analysis, we can already make one interesting
observation based on the codes and their occurrences (Table 2): continuous compliance
and continuous security were not present in our data. In addition continuous trust also did
not appear in our data the way it is understood by Fitzgerald and Stol [7] (who consider
it to mean trust developed over time based on the belief that customer expectations are
fulfilled without exploiting their vulnerabilities). In our data, only one of the respondents
discussed continuous trust, and did so on a more general level in relation to having a good
relationship with the client.

PEC1: Continuous compliance, continuous trust, and continuous security were not
present within the data.

5.1. Overview of used tools and methods

The first interview theme (out of the five discussed in Sections 3 and 4) was focused on the
current work role of the respondent and the tools and methods used in the ML projects they
were involved with. The tools of interest included programming languages and software
tools used in ML development, alongside any other tools the respondents considered relevant
enough to mention.

Python was by far the most common language, discussed by seven of the eight respon-
dents. Java was discussed by two. In terms of software tools utilized, the answers of the
respondents were more diverse, especially regarding database systems and cloud services.
For example, Respondent 2 discussed Dataprix, which was not brought up by any other
respondent:

[Development was] 99% or like fully Python based, but then some of the data preparation
was done in a Dataprix, you know the kinda Spark service, so that was used. [...] I would
not say that I followed any framework with intent but rather trying to have like the mindset
within many of the frameworks. [R2]

For the most part, the respondents discussed choosing tools based on their own pref-
erences. Some respondents mentioned having a background in ML as a hobby and, thus,
opted to use the tools they were familiar with. Most respondents worked either alone or
in a small team with other ML experts, and consequently they were the only ones who
needed to understand the tools and the ML components and code. On the other hand,
some organizations had processes in place which determined what tools should/could be
used. Nonetheless, little consensus existed in terms of tooling.

Article number 240102

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

Aside from tooling, we also explored the use of SE methods. The respondents mentioned
Scrum, SAFe, DevOps, and MLOps when asked about the use of methods and other devel-
opment processes. However, the respondents discussed their use critically. The respondents
seemed to consider it more important that, as opposed to strictly following a method,
practices that fit the current project context are used on a case-by-case basis. Moreover, in
this regard, there seemed to be a disconnect between the rest of the organization and the
ML experts. For example, Respondents 2 and 4 both mentioned that their organization
had adopted an agile approach but that it had little impact on their ML development aside
from it being centered around sprints as a result.

The work is planned in sprints. We have 4 planning periods per year. If we speak about
doing AI then you can think that sprints always produce something that can be put into
production, with the next sprint it will be improved and expanded. [R4]

Some respondents felt that they did not use any methodologies in their development,
but rather, a mindset built on many different methods. This seemed common, with many
respondents mentioning frameworks but also specifying that they did not use any of them
strictly (e.g., ScrumBut), either on the level of the entire organization or just the ML
experts.

PEC2: The SE methods used by the organization at large seem to often have little
impact on the ML development processes.

5.2. Business strategy and planning

Questions related to this theme were focused on teamwork, requirements, and resources.
In both continuous* and agile, collaboration between business and development teams is
considered important.

Half (4) of the respondents said that the ML experts in their organization mainly worked
independently. In these cases, only project planning activities (e.g., sprint planning) and
result reviews were carried out with the rest of the project team, while most of their work
was carried out independently. Nonetheless, the majority of the respondents (6) considered
collaboration on a project-level important when discussing teamwork and planning. In
particular, two respondents working in large corporations with highly regulated projects
considered collaboration and communication a critical success factor for producing ML
components that fulfilled their requirements. Yet, aside from one respondent who worked
on a project with internal stakeholders, the respondents felt that their work was very
independent with little collaboration with other employees. To this end, three respondents
felt that they knew very little about the work of other people inside the organization as well.

Multiple respondents discussed issues related to collaboration, or from the point of view
of continuous*, continuous planning (and budgeting, though hardly discussed). To some
extent, this lack of collaboration was attributed to the remote work situation stemming
from the COVID-19 pandemic situation that was on-going at the time, although not
all respondents worked remotely. Respondent 3 highlighted the importance of informal
communication for formulating new ideas and discussing problems with co-workers, while
otherwise collaboration was minimal. In fact, three respondents felt that they did not even
understand the point of the project they were working on and were simply executing tasks:

Personally, the point of the project is unclear to me. [R3]
Customer involvement was also highly varied between projects. In projects with external

customers, customer involvement was not regular from the point of view of the ML experts.
Most felt that they were working in a silo, especially as far as the customer was considered.10

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

The respondents also discussed challenges related to (continuous) budgeting, as well as
resource allocation more generally. Multiple respondents mentioned working on multiple
projects at a time. Respondent 4 specified that their organization had difficulties finding
ML development capabilities, leading to the existing ML experts being stretched thin.

Practically everyone is doing multiple projects. All people are caught in all cases, work
needs to be prioritized. [...] Resourcing is challenging. [...] Plus, there is less and less
expertise. AI needs to have analysts and people who know algorithms, it is not that simple
to have them on every branch. [R4]

I do not know how they [resources] are decided. It feels like my time is being spent on
everything else that is not related to my work. [R3]

As all except one respondent worked on externally commissioned projects, continuous
budgeting was up to the customer(s). While the respondents had some control over suggesting
the addition of new features (or requirements) into the system/project, the customer had
the final say in such matters. Some of the projects had additional resources reserved for
use in case there were changes in the project scope (e.g., due to added functionalities).

If we get a green light from a company, the project price already includes a lump sum
of money either from the company or in the form of some collaboration. And we try to do
our best with that or go as far we can go with that sum of money. [R5]

On the other hand, three respondents felt that the customers’ indecisiveness caused
issues and unpredictability in the development. This, they felt, was frustrating because the
customers seemed to not have a sufficient grasp of the realities of ML development, leading
to unreasonable demands at times.

For example, the clients might change their mind in every two weeks as it has happened
in some projects or the approach to gain some insight to something has changed. [R1]

Overall, the relationship of the respondents and the rest of their organizations, as well
as their clients, was vague. The ML experts were not actively involved in project planning
and seldom interacted with the customer(s). This resulted in various issues, as discussed
above.

PEC3: ML experts seem to often work in a silo. They do not often participate in
business strategy related activities.

5.3. Development

The interview questions related to ML development included questions related to how
functionalities are added, how the product is tested, and when the product is ready
for production. The disconnects between the ML experts and the rest of the project
participants were even more apparent in the respondents’ responses when discussing
practical development matters. When asked about integration, continuous approaches were
not discussed by most respondents. Respondent 3 summarized their issues with the lack of
collaboration in terms of development as follows:

I feel that it is up to you to decide [when to implement your work] because there is no
teamwork, therefore others have nothing to say. I don’t know if it’s because of my own
experience, but it’s hard to trust that that product will work. [R3]

While testing was discussed with all respondents, only one respondent [R7] discussed
continuous testing in the form of automated testing using an MLOps pipeline. Other re-
spondents said that they tested ML functions manually for various reasons. One respondent
specified that they felt that automated testing tools for ML were simply not available
for their particular system context. Another respondent added that ML functionalities

Article number 240102

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

were difficult to test due to the high level of technical know-how required to develop
them, resulting in the tests being carried out by the same individual(s) who developed the
functions.

It was not automated for sure. It was all manual. There was unit testing, then there
was regression testing, also integration testing and all the things that you see. [R5]

You work with simple test cases at first and apply it into a bigger chunk of data. Then
there’s some peer review done by the other data scientist in the product team but it kinda
depends how well that can work because if you are working with something that is pretty
exotic then not even other data scientist might know that much about it. [R2]

PEC4: Automated testing in ML development remains a challenge for organizations
developing ML systems.

Continuous verification was mostly discussed in relation to regulations. This was mostly
in relation to data, with regulations such as the GDPR (the EU’s General Data Protection
Regulation) often affecting ML development due to their use of large amounts of data.

Continuity in general seemed to be less of a concern in situations where the organization
simply developed a narrow ML functionality or a model that the customer then implemented
and monitored on their own. In such situations where no full, functional system was
developed, continuous quality, for example, was of little concern to the respondents. This
also seemed to apply to continuous verification and continuous compliance.

5.4. Operations

The questions about operations focused on what happened to the product and project after
initial deployment. This included usage and monitoring of the product, as well as customer
relations. The questions dealt with user interaction, user expectations, monitoring, as well
as the conclusion of the project.

Continuous use focuses on understanding whether user expectations are fulfilled. How-
ever, the respondents felt that the users were not well understood. The ML experts seldom
had direct contact with the user(s) and only dealt with the representatives of the customer
organization. In some cases the respondents had no contact with the customer at all and
only communicated with their own organization’s project staff. When the ML experts got
feedback from the users, it was gathered by the customer organization and forwarded to
them. No direct channels existed. One of the respondents specifically remarked that such
feedback only reached them if something was “great or terribly wrong.”

[Interaction with the users] is rare, a privilege. [R6]
With internal customers, interaction was more frequent (as discussed by Respondent 4).

With external customers, much depended on who was the end-user and how the project
was organized. On the other hand, some ML experts did not want to interact with the user
or customer in the first place:

I guess some people like it and it can give some valuable feedback for the developers, but
I did not appreciate it in the past. [R2]

PEC5: The lack of user and customer interaction makes it difficult for ML experts to
ensure that the product can be continuously used.

Monitoring practices varied between projects. Monitoring was largely left to the customer.
In some cases, the ML experts were in charge of monitoring and problem detection right after
initial release, until the customer later took over. Active communication with the customer
would typically end after the product was delivered. This also meant that operations was
not of much concern in such projects from the point of view of the ML experts.12

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

Well, there is a short price/crisis period during which I can still provide help if still
needed but it is the customer’s job to deal with the rest. [R1]

None of the respondents mentioned trust (continuous trust) as something that they tried
to actively establish with the customer. The ML experts seemed to nonetheless recognize
the importance of having a good relationship with the customer, e.g., in terms of securing
future projects.

There are less opportunities to do something completely innovative once you’ve released
the project or the product. But if new opportunities arise in the sense, if it is a long-term
relationship with the client, and if you’re continuously working on something bigger, then of
course you have the possibility of improving or actually innovating or completely replacing
something that you’ve already delivered a couple of years ago. [R7]

The lack of interaction between the ML experts and the users of the product is
challenging for operations. Project contracts typically determined what kind of operational
activities the ML experts had in that project. The ML experts themselves, however, seemed
to not mind this situation. In fact, many of the respondents seemed satisfied about not
having to interact with external stakeholders after deployment.

PEC6: The emphasis placed on operations varies greatly depending on project context.
If the customer takes over entirely after release, there is little need for operations from the
development organization.

5.5. Improvement and innovation

Due to the disconnect between development and operations resulting from externally
commissioned projects and their contractual agreements, only R4, whose organization
developed ML systems for internal use, engaged in continuous improvement and innovation.
As the other organizations (four out of eight) largely moved on after deployment, in some
cases following an initial phase where they continued to make sure the system worked as
intended briefly after deployment, opportunities for continuous improvement were limited.
Only if the client proposed further improvements, and provided the funding for them,
would work on the system continue past bug fixes or minor improvements made shortly
after initial deployment, based on contractual obligations. R4, on the other hand, who
worked for internal customers, discussed how feedback gathered after deployment was used
to continuously improve the system.

Because the customers were in charge of the projects, improvements and innovations were
not automatically thought of, or even considered welcome in the project. As the contracts
typically determined the project scope, any potential changes would have to be discussed
with the customer. Three respondents described cases where they had proposed small
improvements. However, larger innovations were often seen as risky by the customer and
the ML experts, and were seldom suggested to the customer. Thus, continuous innovation
on a project level was largely not considered relevant by the respondents.

On the other hand, half of the respondents felt that an innovative mindset was essential
in their line of work on a personal level. As ML is a quickly evolving field, they felt that
they needed to be open to learning new things and coming up with new ideas. Even if the
current project was easier to carry out as planned earlier, new innovations could help with
future ones.

PEC7: New ideas or innovations are not automatically added to on-going ML projects
when an external customer is involved, as the customer sets the scope of the project.

Article number 240102

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

6. Discussion

In this section, we discuss the implications of our results. In Table 3 we summarize the
Primary Empirical Contributions (PECs) we highlighted during our analysis. We use these
PECs to structure the discussion in this section. After covering all the individual PECs,
towards the end of this section we return to the research question we outlined at the start
of this paper and answer it based on our findings.

Table 3. Primary empirical contributions of the study

PEC Description

1 Continuous compliance, continuous trust, and continuous security were not present within the
data.

2 The SE methods used by the organization at large seem to often have little impact on the ML
development processes.

3 ML experts seem to often work in a silo. They do not often participate in business strategy
related activities.

4 Automated testing in ML development remains a challenge for organizations developing ML
systems.

5 The lack of user and customer interaction makes it difficult for ML experts to ensure that the
product can be continuously used.

6 The emphasis placed on operations varies greatly depending on project context. If the customer
takes over entirely after release, there is little need for operations from the development organi-
zation.

7 New ideas or innovations are not automatically added to on-going ML projects when an external
customer is involved, as the customer sets the scope of the project.

PEC1, on a more general level, highlights that some continuous* practices receive less
attention than others, as seen in more detail in Table 2. This, to some extent, supports
our original motivation behind the study: some continuous* practices are seldom studied
compared to the most commonly discussed ones. However, as our data set is not large, given
the exploratory nature of the study, we would not place much emphasis on this particular
observation. It is also worth keeping in mind that the domain of the project may play
a large role in how relevant various regulations are (e.g., medical domain) from the point of
view of continuous compliance, and that issues such as cybersecurity may be delegated to
specific experts within an organization. PEC1 may nonetheless be of interest from the point
of view of future studies, however, as it may give an idea of which continuous* practices
are common out on the field and which are not.

PEC2. Based on our data, ML development is seldom carried out using SE methods by
the book. This is consistent with existing research where the lack of a defined development
process in ML development is identified as an issue [20]. Moreover, some of the respondents
discussed using some practices, such as sprints, as a part of the project in general, but
that 1) the associated method (e.g., SCRUM) was not followed by the book in the project
in general, and 2) they were at best erratically applied to the ML portion of the project.
PEC2 in this fashion highlights one way in which ML experts continue to work in a silo (as
they often seem to do [22] at present). As far as agile approaches are considered, our results
support the observations of Serban and van der Blom [19] who posit, based on a survey,
that traditional SE practices have a lower adoption rate than ML specific practices in ML
development. Our results in this regard provide further insights on how this manifests in
practice. Finally, the respondents of our study discussed a wide variety of tools (database
systems, cloud services, etc.) used in ML development, which corresponds with existing14

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

research where, e.g., Kim et al. [23] highlight that the vast number of available tools can
be a challenge in and of itself.

PEC3 corresponds with extant research in that bridging the gap between the ML
experts and the rest of the developers is a challenge in ML development [4, 21]. It seems
common for ML experts to work in a silo [21, 22], although there are also examples of
successfully integrating ML experts with the rest of the development team(s) found in
existing papers [23]. This is also an issue MLOps aims to tackle as an approach to ML
development, much like how DevOps focused on bridging the gap between development
and operations. Our findings may help further illustrate what this means in practice and
what kind of issues this results in.

Extant research argues that one of the key factors of success in implementing DevOps
is communication [24]. This, thus, presents various problems for adoption of continuous*
as well, as DevOps belongs under the umbrella of continuous*. Communication issues in
ML development are also acknowledged in extent literature, where, indeed, communication
issues between the ML experts and the rest of the development team and organization
are considered a recurring challenge [4, 5]. Educating software engineers on ML and ML
experts on SE could help in this regard by making it easier for the project participants to
develop a mutual understanding of the project [21].

However, communication issues are not an issue unique to ML development or continuous
SE in the context of ML. Indeed, organizations adopting DevOps often face issues related
to communication in and between teams, due to, e.g., differences in the professional and
personal backgrounds of the employees [25]. Issues with communication and siloing are
also seen in relation to software security, where collaboration between security experts and
software developers has been a challenge, and where more recently DevSecOps has looked
to improve the situation in a similar manner to DevOps and MLOps [26]. Just as how
ML experts may have problems communicating with software developers and vice versa
due to their different areas of expertise [21], security experts and software developers face
communication issues as well (e.g., developers may feel attacked when security experts
point out security flaws in their code) [26]. In fact, interdisciplinary collaboration between
team members with differing academic and professional backgrounds is seen as a challenge
in teamwork overall [27].

PEC4 highlights another challenge in adopting continuous practices: lack of experience
with testing among ML experts. Only one respondent discussed utilizing an MLOps pipeline
for automated testing. The other respondents felt that tooling was still lacking in the
area, or were simply not concerned with automated testing. One potential issue here could
be the specific know-how required in ML development: the people otherwise in charge
of testing in the project may not have the required skillset to carry out the testing on
the ML components. This is consistent with existing literature where various challenges
associated with testing ML systems are discussed [4]. Serban and van der Blom also report
that testing ML artefacts overall (even outside doing so in a continuous fashion) remains
a challenge in software organizations based on the low adoption rate of ML testing best
practices [19].

PEC5 further points towards communication issues on a project-level (together with
PEC3). Many of our respondents felt that they had very little interaction with the
(end-)users, or even the customer organization. This further points towards ML experts
working in a silo. ML experts seem to often be in a silo not just in relation to other
project members within the same organization, but also in relation to the customers and
users. Existing research considers identifying the relevant business metrics of the customer

Article number 240102

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

a challenge in ML development, as the customer company itself may not understand what
data or metrics could be important [4, 20]. Not having ML experts interact with the
customer would seem to be a bad practice, unless there is someone acting as a bridge
between the ML experts and the customer who is capable of bridging this communication
gap. Multiple existing studies have highlighted challenges associated with requirements
engineering in ML development, and many of these challenges are related to communication
(e.g., lack of knowledge of ML on the part of the customer(s), dealing with quantitative
measurements for requirements, etc.) [4].

PEC6 provides some additional insights into customer involvement in ML project
contexts. While customer and user involvement more generally is a widely studied topic
in SE, and is at the core of agile SE as well, ML development adds complexity to SE
projects in this regard, too. Maintenance of ML systems results in novel challenges in SE
[4] as, for example, an otherwise technically functioning system may still degrade in (ML)
performance over time due to concept drift [28]. How this is handled in projects where the
system is ultimately handed over to a customer is a practical challenge that the customer
organizations need to be aware of.

Finally, PEC7 highlights a conflict between practical project matters and organiza-
tional/personal interest. The respondents felt that continuous innovation was important,
especially on a personal level, in a field as topical and rapidly evolving as ML development.
Yet, when ML systems or ML components were developed for an external customer,
innovating during projects was not considered beneficial. New innovations would only serve
to increase the scope of on-going projects and doing so was seen as counter-intuitive, or
simply difficult, because it would necessitate having the customer okay the changes first.

6.1. Answers to research questions

Finally, to directly answer the research question we posed at the start of this paper (i.e., what
are the challenges associated with the continuous development of artificial intelligence?),
we summarize our results as follows. Our findings suggest that the adoption of continuous
software engineering in the development of ML has many challenges caused by the addition
of ML components into the SE process. ML development is carried out in a more rigid
fashion than agile SE in the context of conventional software, and ML experts mainly
work independently, i.e., in a silo. This results in difficulties adopting continuous* practices
that require collaboration across teams. Communication issues caused by a lack of shared
knowledge, lack of guiding frameworks, and issues related to the roles and responsibilities
of ML experts meant that the project life cycle did not resemble a continuous cycle
but a step-by-step heavyweight development model. Furthermore, the ML experts rarely
interacted with the customer or the product users, as they felt that their work role did not
include such actions.

Perhaps partially as a result of the types of projects the respondents were involved
in, the respondents also discussed challenges adopting continuous* practices related to
operations. Many of the respondents worked in projects commissioned by external customers
where the customer was largely responsible for the ML system once it had been deployed
(or once the ML component had been finished and delivered). Thus, the ML experts had
little control over the operational life of the system or components past an initial grace
period where it was jointly monitored after release to ensure it worked as intended. Such
practical, project-specific challenges require deliberation from the project participants, as16

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

the maintenance (or continuous development) of such systems is important in ML where,
for example, concept drift can degrade the performance of a system over time.

While ML is currently coveted by organizations everywhere, few organizations pos-
sess ML development competencies themselves. This situation makes externally commis-
sioned ML projects common. Such projects can pose challenges when it comes to utilizing
continuous* practices if the monitoring and operations are left to the customer organization.
This can lead to continuous* practices receiving less emphasis in organizations working on
such ML projects.

6.2. Limitations

We utilized a qualitative thematic interview approach in this study. This study design
poses limitations to the results of the study. First, the respondents held different roles
in their organizations and these roles influenced their answers. For example, one of the
respondents worked in a management role and as such could provide more insights into
the business aspects of the project, but was less knowledgeable about the technical aspects,
and vice versa in the case of some other respondents. Moreover, as we interviewed only
one respondent per organization, we arguably gained a limited understanding of each
organization through the lens of a single respondent. We selected this approach due to
the novelty of the topic, as we wanted to explore a larger number of organizations to
understand how (continuous) ML development is handled in different organizations.

Secondly, in spite of this, the number of the respondents (and organizations, where
n = 8) is a potential limitation when it comes to generalizing the results of the study. To
this end, it is a limitation as well that three of these organizations were research projects
with industry collaboration, as opposed to purely industrial contexts. However, given the
novelty of the topic, we argue that this is a sufficient number for an exploratory study into
a novel topic, e.g., Eisenhardt [29] recommends case study research particularly for novel
research topics. Thirdly, we highlight our utilization of convenience sampling as a further
limitation for this study, both on the level of organizations and respondents.

Finally, due to the novelty of the topic, we also utilized a more general research approach.
We did not focus, for example, only on certain technologies or project contexts. While
this approach let us gather more diverse data, this also presents some further limitations
for the study. This study ultimately provides a look at the current state of practice more
generally, i.e., we studied how different types of organizations develop ML systems. This
makes our findings less specific as well. Another approach to the topic could have been to
study organizations that specifically (claim to) utilize MLOps, for example, and to discuss
what they felt had been the largest challenges in adopting it in the past, or challenges
that they still continued to face. In such a fashion, the scope of the study could have
been very different. As it is, we have studied what aspects of continuous SE are used in
different projects, and which ones are omitted, across a more diverse set of organizations.
We chose this approach due to the fact that we specifically wanted to explore less commonly
discussed continuous* practices as opposed to the ones present in DevOps and MLOps.

7. Conclusions and future research suggestions

In this paper, we have explored the utilization of continuous* practices (as conceptualized
by Fitzgerald and Stol [7]) in the context of ML development. Though continuous SE is

Article number 240102

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

currently state of the art in SE, it has been less studied in the context of ML development.
In particular, continuous* practices outside those related to DevOps, and in this case
MLOps, have received little attention in ML development.

Through qualitative, thematic interviews with 8 respondents from different organizations
involved in ML development, we sought to understand current challenges organizations
face in continuous SE in the ML development context. Our findings are summarized in
Table 3 at the start of the preceding section. In brief, the largest issues across the board
were related to a lack of collaboration and communication between the ML experts and
the rest of the project team(s) and stakeholders. With ML experts largely working in a silo,
utilizing continuous* practices in the development of the ML components is challenging.

This paper presents a starting point for studying continuous SE in the context of ML
development, outside the specific context of MLOps. Much like how DevOps, which it is
based on, MLOps only comprises some continuous SE practices. Many of the continuous
SE practices discussed by Fitzgerald and Stol [7] are out of the scope of these processes. We
hope to encourage further studies into these practices in the context of ML development,
as well as in SE overall. Future studies should adopt more specific points of views to the
topic in delving deeper into the phenomenon (e.g., by focusing on specific, but nonetheless
less commonly studied continuous* practices). The main contribution of this paper is to
provide an initial look at the current state of practice through challenges associated with
the adoption of these practices.

Acknowledgments

This work was partly funded by local authorities (“Business Finland”) under grant agree-
ment ITEA-2020-20219-IML4E of the ITEA4 programme.

References

[1] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas et al., “The top 10 adages in continuous
deployment,” IEEE Software, Vol. 34, No. 3, 2017, pp. 86–95.

[2] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of DevOps concepts and
challenges,” ACM Computing Surveys (CSUR), Vol. 52, No. 6, 2019, pp. 1–35.

[3] S. Moreschini, F. Lomio, D. Hästbacka, and D. Taibi, “MLOps for evolvable AI intensive
software systems,” in IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2022, pp. 1293–1294.

[4] G. Giray, “A software engineering perspective on engineering machine learning systems: State
of the art and challenges,” Journal of Systems and Software, Vol. 180, 2021, p. 111031. [Online].
https://www.sciencedirect.com/science/article/pii/S016412122100128X

[5] S. Martínez-Fernández, J. Bogner, X. Franch, M. Oriol, J. Siebert et al., “Software engineering
for AI-Based systems: A survey,” ACM Transactions on Software Engineering and Methodology,
Vol. 31, No. 2, 2022.

[6] M.M. John, H.H. Olsson, and J. Bosch, “Towards MLOps: A framework and maturity model,”
in 2021 47th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), 2021, pp. 1–8.

[7] B. Fitzgerald and K.J. Stol, “Continuous software engineering: A roadmap and agenda,” Journal
of Systems and Software, Vol. 123, 2017, pp. 176–189. [Online]. https://www.sciencedirect.
com/science/article/pii/S0164121215001430

[8] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying DevOps practices of continuous
automation for machine learning,” Information, Vol. 11, No. 7, 2020. [Online]. https://www.
mdpi.com/2078-2489/11/7/36318

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/
https://www.sciencedirect.com/science/article/pii/S016412122100128X
https://www.sciencedirect.com/science/article/pii/S0164121215001430
https://www.sciencedirect.com/science/article/pii/S0164121215001430
https://www.mdpi.com/2078-2489/11/7/363
https://www.mdpi.com/2078-2489/11/7/363

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

[9] R.V. O’Connor, P. Elger, and P.M. Clarke, “Continuous software engineering – a microservices
architecture perspective,” Journal of Software: Evolution and Process, Vol. 29, No. 11, 2017,
p. e1866. [Online]. https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1866

[10] S. Mäkinen, H. Skogström, E. Laaksonen, and T. Mikkonen, “Who needs MLOps: What data
scientists seek to accomplish and how can MLOps help?” in 2021 IEEE/ACM 1st Workshop
on AI Engineering – Software Engineering for AI (WAIN), 2021, pp. 109–112.

[11] D. Zhang and J.J. Tsai, “Machine learning and software engineering,” Software Quality Journal,
Vol. 11, 2003, pp. 87–119.

[12] T. Mikkonen, J.K. Nurminen, M. Raatikainen, I. Fronza, N. Mäkitalo et al., “Is machine learning
software just software: A maintainability view,” in Software Quality: Future Perspectives on
Software Engineering Quality, D. Winkler, S. Biffl, D. Mendez, M. Wimmer, and J. Bergsmann,
Eds. Cham: Springer International Publishing, 2021, pp. 94–105.

[13] K. Srinivasan and D. Fisher, “Machine learning approaches to estimating software development
effort,” IEEE Transactions on Software Engineering, Vol. 21, No. 2, 1995, pp. 126–137.

[14] A.B. Kolltveit and J. Li, “Operationalizing machine learning models: A systematic literature
review,” in Proceedings of the 1st Workshop on Software Engineering for Responsible AI,
SE4RAI ’22. New York, NY, USA: Association for Computing Machinery, 2023, p. 1–8.

[15] L.E. Lwakatare, I. Crnkovic, and J. Bosch, “DevOps for AI – Challenges in development of
AI-enabled applications,” in 2020 International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), 2020, pp. 1–6.

[16] G. Symeonidis, E. Nerantzis, A. Kazakis, and G.A. Papakostas, “MLOps – Definitions, tools and
challenges,” in IEEE 12th Annual Computing and Communication Workshop and Conference
(CCWC), 2022, pp. 0453–0460.

[17] T. Granlund, V. Stirbu, and T. Mikkonen, “Towards regulatory-compliant MLOps: Oravizio’s
journey from a machine learning experiment to a deployed certified medical product,” SN
Computer Science, Vol. 2, 2021.

[18] A. Lima, L. Monteiro, and A.P. Furtado, “MLOps: Practices, maturity models, roles, tools,
and challenges – A systematic literature review,” in Proceedings of the 24th International
Conference on Enterprise Information Systems, 2022, pp. 308–320.

[19] A. Serban, K. van der Blom, H. Hoos, and J. Visser, “Adoption and effects of software
engineering best practices in machine learning,” in Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM), 2020,
pp. 1–12.

[20] E. de Souza Nascimento, I. Ahmed, E. Oliveira, M.P. Palheta, I. Steinmacher et al., “Un-
derstanding development process of machine learning systems: Challenges and solutions,” in
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 2019, pp. 1–6.

[21] N. Nahar, S. Zhou, G. Lewis, and C. Kästner, “Collaboration challenges in building ml-enabled
systems: Communication, documentation, engineering, and process,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 413–425.

[22] D. Piorkowski, S. Park, A.Y. Wang, D. Wang, M. Muller et al., “How AI developers overcome
communication challenges in a multidisciplinary team: A case study,” Proceedings of the ACM
on Human-Computer Interaction, Vol. 5, No. CSCW1, 2021.

[23] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists in software teams: State
of the art and challenges,” IEEE Transactions on Software Engineering, Vol. 44, No. 11, 2017,
pp. 1024–1038.

[24] L. Riungu-Kalliosaari, S. Mäkinen, L.E. Lwakatare, J. Tiihonen, and T. Männistö, “DevOps
adoption benefits and challenges in practice: A case study,” in Product-Focused Software Process
Improvement: 17th International Conference, PROFES. Trondheim, Norway: Springer, 2016,
pp. 590–597.

[25] M.S. Khan, A.W. Khan, F. Khan, M.A. Khan, and T.K. Whangbo, “Critical challenges to
adopt devops culture in software organizations: A systematic review,” IEEE Access, Vol. 10,
2022, pp. 14 339–14 349.

Article number 240102

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1866

Sini Vänskä et al. e-Informatica Software Engineering Journal, 18 (2024), 240102

[26] N. Tomas, J. Li, and H. Huang, “An empirical study on culture, automation, measurement,
and sharing of devsecops,” in International Conference on Cyber Security and Protection of
Digital Services (Cyber Security). IEEE, 2019, pp. 1–8.

[27] S. Brandstädter and K. Sonntag, “Interdisciplinary collaboration: How to foster the dialogue
across disciplinary borders?” in Advances in Ergonomic Design of Systems, Products and
Processes: Proceedings of the Annual Meeting of GfA 2015. Springer, 2016, pp. 395–409.

[28] L. Baier, F. Jöhren, and S. Seebacher, “Challenges in the deployment and operation of machine
learning in practice,” in ECIS, Vol. 1, 2019. [Online]. https://aisel.aisnet.org/ecis2019_rp/163/

[29] K.M. Eisenhardt, “Building theories from case study research,” The Academy of Management
Review, Vol. 14, No. 4, 1989, pp. 532–550.

Appendix A. Interview instrument

Theme 1: Current job and challenges
1. What is your current work role and what does it include?
2. How is the work divided in your project group? How much do you collaborate with

others?
3. What kind of tools did you use when developing AI?
4. Can you name any framework, model, or mindset that you used to guide the development

process?
Theme 2: Business strategy
1. Can you work independently in the project, or does your work require collaboration

with other project participants?
2. How are the requirements of the project decided? You can use a previous or current

project as an example.
3. How are the resources planned at the beginning of the project?
Theme 3: Development
1. When is a new functionality or part of the code applied to the larger project context at

hand?
2. Can you describe the testing process in some of your projects?
3. How do you decide that the system is ready to be released?
4. Do you know how your work affects the overall quality of the project? For example, the

quality of a software project.
Theme 4: Operations
1. Do you interact with the product users after the release?
2. After the product release, do you know if the user expectations are fulfilled?
3. Is the product monitored after the release? If it is, how?
Theme 5: Improvement and innovation
1. Is the product quality improved after the release by you?
2. Are new innovations added to the product if new opportunities arise?
3. When does your involvement with the project end?

20

Article number 240102

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-2/
https://aisel.aisnet.org/ecis2019_rp/163/

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240103, DOI: 10.37190/e-Inf240103

Software Defect Prediction Using
Non-Dominated Sorting Genetic Algorithm

and k-Nearest Neighbour Classifier

Mohammad Azzeh∗ , Ali Bou Nassif∗∗ , Manar Abu Talib∗∗∗ , Hajra Iqbal∗∗∗∗

∗Department of Data Science, Princess Sumaya University for Technology, Jordan
∗∗Department of Computer Engineering, University of Sharjah, UAE

∗∗∗Department of Computer Science, University of Sharjah, UAE
∗∗∗∗Department of Computer Engineering, University of Sharjah, UAE

m.azzeh@psut.edu.jo, anassif@sharjah.ac.ae, mtalib@sharjah.ac.ae,
u16107036@sharjah.ac.ae

Abstract
Background: Software Defect Prediction (SDP) is a vital step in software development.
SDP aims to identify the most likely defect-prone modules before starting the testing
phase, and it helps assign resources and reduces the cost of testing.
Aim: Although many machine learning algorithms have been used to classify software
modules based on static code metrics, the k-Nearest Neighbors (kNN) method does not
greatly improve defect prediction because it requires careful set-up of multiple configuration
parameters before it can be used. To address this issue, we used the Non-dominated
Sorting Genetic Algorithm (NSGA-II) to optimize the parameters in the kNN classifier
with favor to improve SDP accuracy. We used NSGA-II because the existing accuracy
metrics often behave differently, making an opposite judgment in evaluating SDP models.
This means that changing one parameter might improve one accuracy measure while it
decreases the others.
Method: The proposed NSGAII-kNN model was evaluated against the classical kNN
model and state-of-the-art machine learning algorithms such as Support Vector Machine
(SVM), Naïve Bayes (NB), and Random Forest (RF) classifiers.
Results: Results indicate that the GA-optimized kNN model yields a higher Matthews
Coefficient Correlation (MCC) and higher balanced accuracy based on ten datasets.
Conclusion: The paper concludes that integrating GA with kNN improved defect
prediction when applied to large or small or large datasets.

Keywords: software defect prediction, genetic algorithm, multi-objective opti-
mization, k-nearest neighbor

1. Introduction

Software systems are integral to daily life [1–4]. As such, the quality of our software
systems must be monitored for defects in order to produce perfectly running, defect-free
systems and limit software failures [3, 5–7]. A software defect is simply defined as an error,
fault, bug, or problem in a computer program [8]. Software defects are caused by errors
made during the implementation phase and can lead to software failures when the software

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 30 Apr. 2023; Revised: 28 Sep. 2023; Accepted: 18 Oct. 2023; Available online: 25 Oct. 2023

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0323-6452
https://orcid.org/0000-0003-1570-0897
https://orcid.org/0000-0003-3001-0077
https://orcid.org/0009-0009-6883-6270

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

program is executed [9, 10]. Studies have shown that such defects lead to decreased customer
satisfaction and increased maintenance costs [11]. Therefore, it is essential to locate software
defects and identify which modules require repair or retesting before running a program
application. Software Detection Prediction (SDP) is the process of predicting defect-prone
modules before starting the testing phase [12]. As software complexity increases, the use of
SDP in the software development process has become even more crucial. The necessity of
having proper SDP models results in improved efficiency, reduced development time, and
reducing time spent on testing and error management [4, 5, 13]. Many SDP models were
built in the last decades using several different datasets. The most commonly used publicly
accessible dataset is the NASA repository, produced in 2005 [14]. Researchers have used
the NASA repository with many machine learning models with promising results [15–19].
The most widely used machine learning algorithms include Naïve Bayes (NB), Neural
Networks (NN), k-Nearest Neighbor (kNN), Support Vector Machine (SVM), decision
trees, etc. [20, 21].

Our focus in this paper is on kNN algorithm because it has less attention form researchers,
and it did not offer significant improvements on the prediction accuracy. One reason for
that is the large space of configuration possibilities that govern the execution of kNN which
includes 1) choosing distance measure, 2) optimal features sets, 3) optimal feature weights,
and most notably, 4) the number of nearest neighbors. This resulted in a massive number
of configuration possibilities that extend 100,000 possible solutions. Therefore, searching
for the best subset of kNN configuration parameters is relatively impossible unless a more
robust searching algorithm is used.

This paper applied Non-dominated Sorting Genetic Algorithm (NSGAII) optimization
technique to search for the best kNN solution that fits training data [22]. This algorithm
finds the best solution amongst a vast space of solution sets or a primary population
where an individual is referred to as a chromosome [23], inspired by Darwin’s theory of
“survival of the fittest.” The best individuals have the best probability of being reproduced
in the next generation [24]. GA has been widely used to solve complex problems in
computing and engineering fields [25]. The GA process consists of four main phases:
1) initialization, 2) selection, 3) crossover, and 4) mutation. In each cycle of GA construction,
the chromosomes with high fitness are most likely reproduced to generate new generations.
With the help of crossover and mutation, the GA can make a minor modification to the
most fitted individuals to generate hopefully better solutions [26, 27].

However, the existing accuracy metrics often present opposite judgments in evaluating
SDP models [19, 28]. This means that changing one parameter could improve one accuracy
metric while reducing the other accuracy metrics. Therefore, we used a Pareto front
multiobjective NSGAII to come up with an optimal solution that improves the overall
accuracy of SDP-based kNN without reducing the other accuracy metrics. The effect of
these conflicting parameters together has not been examined before. Thus, we propose to
see the construction of kNN as a multiobjective optimization problem. This research is
driven by the following research questions:
– RQ1. Do the use of NSGAII and the proposed solution vector improve accuracy of

kNN model for software defect prediction problem?
– RQ2. Is there sufficient evidence that the NSGAII algorithm can find the best k value

for each module?
To answer these questions, we integrated the kNN algorithm with NSGAII. We proposed
a new solution vector that combines two main kNN variables that must be optimized. The
first variable is an integer that represents best k value and the second one is a binary2

Article number 240103

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

vector of length m, where m is the number of features. Furthermore, since the evaluation
measure cannot give indication to the superiority of the generated configuration, we used
mutliobjective optimization based on two evaluation measures that are less vulnerable
to imbalanced data, namely, Matthew’s Correlation Coefficient (MCC) and Balanced
Accuracy (BA). In general, the proposed model produced good performance when compared
to baseline kNN and other machine learning algorithms.

The rest of the paper is structured as follows. The first section introduced the research
and the subject matter of the paper, an overview of the literature available on software defect
prediction, the algorithms we tested, and the results of significance obtained from these
research papers. Section 2 presents related work. Section 3 presents a problem presentation.
Section 4 presents multiobjective optimization algorithms. The research methodology is
presented in Section 5. The obtained results are covered in Section 6. Section 7 introduced
threats to validity. Section 8 provides a summarized conclusion to the efforts of this study
and the future works, along with limitations.

2. Related work

Many machine-learning models have been used to predict the defects in software systems.
Shuai et al. [29, 30] Investigated the use of GA with an SVM classifier and particle swarm
algorithm for software fault prediction. Another study investigated a novel dynamic SVM
method based on improved Cost-Sensitive SVM (CSSVM) optimized by GA [29]. Results
demonstrated a high Area Under the Curve (AUC) value for the GA-CSSVM model
compared with only SVM or CSSVM. Recorded results were 0.721 with the KC1 dataset,
0.832 with PC1, and 0.897 with the MC1 dataset. The proposed method resulted in an F1
score of 94.88% with the CM1 dataset, 91.89% with KC1, 94.90 with KC3, 99.7% with
MC1, and 95.78% with the MW1 dataset. Elish et al. [31] compared the effectiveness
of SVM prediction to that of eight machine learning models in predicting defect-prone
software modules. Using the PC1, KC1, and KC3 datasets, the findings showed that SVM
outperformed other machine learning models. Hammad et al. [32] used the kNN machine
learning algorithm to predict faulty software projects. They used public datasets and four
different similarity measures, achieving an accuracy of 87.2% using the Euclidean distance
measure. The researchers [7, 11, 33] studied the detailed performance analysis of various
machine learning classification techniques using publicly available NASA datasets. They
found that evaluation metrics like ROC and accuracy are ineffective performance measures
because they do not react to class imbalance. In contrast, precision, recall, f -measure, and
MCC react to class imbalance. Moreover, Khoshgoftaar et al. [34] worked on a pre-existing
model to enhance the performance of Random Forest by applying feature selection to detect
software defects. They achieved high accuracies with PC2, PC2, PC3, and PC4 datasets.

Mabayoje et al. [35] focused on understanding the effect of kNN tuning on the abilities of
the SDP based on 6 datasets. The result of significance was that the k value should be greater
than 1 and the distance weighting improved the predictive performance of the SDP by 8.82%.
Iqbal et al. [36] used Use of a feature selection-based ensemble classification framework,
divided over four stages, with the framework implemented with and without feature
selection. They Found that the framework proposed in the paper could perform better in
comparison to other popular classification techniques including kNN, NB, MLP and OneR
among others. One issue that the study faced was with regards to imbalance; a solution
was not presented in the paper. Jindal et al. [37] proposed a Solution for defect severity

Article number 240103

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

assessment using text mining and machine learning. The results showed that the kNN
technique could predict defects across all severity levels, with the performance improving
every time the number of corresponding words was increased. The study concluded that the
kNN method is best used for defects of medium severity. Ulumi et al. [38] focused on subject
of SDP for cross-project domain. The study made use of kNN to fill in missing values from
a dataset, followed by classification using the NB or RF methods. Goyal et al. [39] used
the kNN regression as opposed to Ordinary Least Square (OLS) parametric regression
for defect prediction. They found the kNN regression remains unaffected with increasing
number of predictors and provide better performance when using linear regression.

Based on existing research, it appears that using the kNN method in conjunction with
other techniques, such as machine learning, can help develop models capable of conducting
SDP with higher levels of accuracy and reliability. In addition to SDP for single projects,
kNN presents an exciting front for cross-project defect prediction. Without using kNN,
this can be a challenging task since the datasets across domains contain many features.
An issue that is also faced is data imbalance, which is a significant issue in SDP; one
possible solution is the use of resampling techniques, which enhance the accuracy of machine
learning classifiers, including kNN.

Above all, there is little research on the kNN efficacy in predicting defect-prone software
systems, and it does not offer significant improvements in prediction accuracy. This is due
to the multiple configuration possibilities that govern kNN, including 1) choosing distance
measures, 2) optimal feature sets, 3) optimal feature weights, and most importantly, 4) the
number of nearest neighbors [35, 40]. Because these configuration possibilities result in
100 000 possible solutions, a more robust searching algorithm is needed to identify the best
subset of kNN configuration parameters. One possible solution to this problem is to apply
the Multi-Objectives Genetic Algorithm (MOGA) optimization technique to search for the
best kNN solution that fits training data. This study hypothesized that optimizing kNN
with GA would create a more robust algorithm for SDP.

3. Objective functions

Objective function is important termination factor that tells MOGA to stop iteration
before reaching maximum number of iterations. Usually, the classical GA uses one objective
function that tell us we found the best solution for a problem. In case of SDP studies,
the objective function is frequently one of the accuracy measures. However, there are
multiple accuracy measures that are used evaluate SDP models where some of them are
less informative for the model performance. Since these accuracy measures (a.k.a. objective
functions) behave differently we prefer to use multiple objective function functions. The
second important question is which reliable accuracy metrics should be used as objective
functions. After careful investigation we found that almost all SDP datasets suffer from
imbalanced data distribution where number of non-defected modules outnumbers the
defected modules which lead to prediction bias towards majority class which is non-defected
modules. Therefore, we searched in the literature for the best evaluation metrics that
are considered reliable and work well with the existent of imbalanced data. We found
that Matthews Correlation Coefficient (MCC) is the most credible metrics for imbalanced
datasets [19, 41]. The MCC as shown in Eq. (1) uses binary confusion matrix values (i.e.,
True Positive (tp), True Negative (tn), False Positive (fp) and False Negative (fn)) and
returns a value between −1 and +1 corresponding to the relationship between predicted4

Article number 240103

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

output labels and actual output labels. Any value closes to +1 means strong positive
correlation, any value closes to −1 means strong negative correlation and value around
zero means no correlation.

MCC = tp × tn − fp × fn√
(tp + fn)(tp + fp)(tn + fp)(tn + fn)

(1)

The second objective function is the Balanced Accuracy (mathitBA) as shown in
Eq. (2). This measure is considered less important than MCC when data is imbalanced,
but it is still useful because it computes the average of compromises between Sensitivity
and Specificity. This metric is less sensitive to bias than other accuracy metrics.

BA =

tp
tp + fn + tn

tn + fp
2 (2)

The Area Under Precision-Recall Curve is the third objective function (AUPRC).
This measure is thought to be more stable and less susceptible to data imbalances than
Area Under ROC [19]. AUPRC is a binary response evaluation metrics statistic that is
acceptable for unbalanced data and is independent of model specificity. In other fields,
precision-recall curves have been recognized as useful for assessing classification performance
for unbalanced binary responses; its tolerance of skewed data (e.g., many absences and few
presences) makes it well suited for quantifying distribution model performance for minority
cases. All objective functions are supposed to be maximized. These objective functions
have been selected because, even though all of them were initially designed to show the
performance of a model, they can behave in a different way as mentioned in [6, 42, 43].
This enables us to choose as many as possible good solutions that can produce tradeoff
between these objective functions.

4. Multiobjective genetic algorithms

4.1. Basic concepts

Evolutionary algorithm is widely used to solve complex problems with interrelated parame-
ters as encountered in computing. The problem of searching can be defined as follows: Given
a function f : S → < from some set of decision vectors (S) to the set of real numbers (<),
the aim is to find a solution ~so in S such that the objective function is either minimized
(f(~so) ≤ f(~s), ∀s ∈ S) or maximized (f(~so) ≥ f(~s), ∀s ∈ S), where each solution ~s is
defined as vector of variables in the d-dimensional space as shown in Eq. (3).

~s = [s1, s2, . . . , sd]T (3)
For single objective problem, finding the optimal solution is straight forward. But, when the
problem should be optimized by multiple objective functions. We arrive at the conclusion
that there is no one optimum solution, but rather a good trade-off solution that represents
the best compromises between the objectives. Since there are several linked decisions that
need to be optimized based on discovering trade-offs between different accuracy metrics, the
challenge of tuning kNN process can be considered as a multiobjective optimization problem.
The GA has been chosen for three reasons: 1) widely used among research community,

Article number 240103

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

2) simple to implement and 3) it showed astonished accuracy against other evolutionary
algorithms such as Particle Swarm Optimization and Simulated Annealing.

4.2. Genetic algorithm

GA is an evolutionary algorithm based on natural selection. The GA algorithm simulates
natural selection, in which the fittest chromosomes are picked for reproduction in order to
generate the next generation. A particular number of solutions are chosen initially to run
the problem. Some of these solutions (fittest ones) are combined, resulting in new solutions
including pieces (genes) from the generating pair (crossover). A new generation is defined
when the components of other solutions are randomly transformed (mutation). The goal of
all of these procedures is to identify the individuals who perform the best in terms of the
objective function. The current best solutions are always moved to the next generation to
ensure that the algorithm progresses toward improving the objective functions. A careful
selection of all of these parameters, with the conventional technique being to test various
combinations of their values. The size and makeup of the original population, as well as the
number of generations to compute, are also essential assumptions. The last parameter of
the algorithm can be securely examined by observing the evolution of the objective function
over generations and terminating the algorithm when no improvement is obtained after
a specific number of iterations. Finally, because the majority of the above mechanisms are
influenced by random factors, it is common practice to repeat the entire operation for each
fixed set of parameter values. The crossover operator randomly recombines specific parts
from two selected solutions and creates a new solution (chromosome) for the new population.
The mutation operator picks out a point in parent solutions and generates a new random
solution to replace the previously selected solution. In contrast, the reproduction operator
propagates the selected solution to the new population [44]. The process repeats until the
maximum iteration set has been reached or the objective function has been met [44].

4.3. Chromosome construction

This section describes the proposed chromosome that is used with NSGAII to improve kNN
model for defect prediction. Usually, the kNN model can accept two decision variables:
1) feature weights (w), and 2) number of nearest analogies (k). The first decision variable
determines the importance of each feature in the training data set during distance calculation
as shown in Eq. (4). The kNN classifier is defined as retrieving by similarity [42, 45]. The
Euclidean distance is usually used to determine the closest observations. The value of k
determines the number of nearest neighbors that will be used to make final prediction.
Figure 1 illustrates the effect of k variable on the final prediction. Usually choosing small
k value will result in ignoring other useful instances, whereas choosing large k value will
results in potential misclassification. Therefore, the good k value is the one that can identify
the actual nearest instances without degrading the accuracy.

The use of kNN is a practical application for SDP applications, given its ability to
predict defects across all severity levels. The kNN method is used in addition to the other
techniques, including practices such as the Euclidean distance measure to improve the
accuracy of fault prediction.6

Article number 240103

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

Figure 1. kNN classification example [46]

distance =

√√√√ m∑
u=1

wu (xiu − xju)2 (4)

where m is the number of features, xi and xj are instances under investigation, u is the
index of the feature and wu is the weight of feature u that is identified by MOGA algorithm.

The second decision variable determines how many nearest neighbors should be retrieved
from training data sets for which the final prediction will be made from them using voting
technique. Each feasible solution (−→s) in the search space is represented as a vector of two
choice variables, as indicated in Eq. (5).

−→s = 〈k, w〉 (5)
where k is the number of nearest neighbors which must be bounded by 1 and n/2 (i.e.,
k ∈ [1, n/2]) where n is the number of training instances, w is a numeric vector whose
coordinate represent the weight in addition to the presence or absence of feature. If the
any value in the w is zero, then that feature is not important. Each possible weight can
take value between zero and one (i.e., wij ∈ [0, 1]) and the summation of weight values
should equal to 1 as shown in Eq. (6). Finally, the dimension of w should be equivalent to
number of input features in the training dataset.

m∑
i=1

wi = 1 (6)

To illustrate that, assume the following solution vector −→s = 〈5, 0.2, 0.4, 0.1, 0.15, 0.05, 0.1〉
are the best identified solution and assume the number of features is 6 (m = 6). This
solution vector shows that only 5 nearest analogies should be retrieved, and the remaining
values after 5 (i.e., from 0.2 to 0.1) represent the weight of each feature. It is important to
note that all features should be included in distance computation because all of weights
are above zero. As mentioned earlier, this solution vector is generated from NSGAII as
explained in the methodology section.

4.4. Multiobjective genetic algorithm

The multiobjective optimization is defined as searching for a solution vector (~s) that
meet d inequality constraints (gi(x) ≥ 0, i = 1, 2, . . . , d.) and p equality constraints
(hi(x) = 0, i = 1, 2, . . . , p.) while simultaneously optimizing a vector of M conflict objective

Article number 240103

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

functions as indicated in Eq. (7). The constraints determine the feasible zone, which includes
all viable options. As depicted in Figure 2, the ideal solution is reached as a trade-off
between two or more competing objectives, which is known as a Pareto optimal solution.
Here are some key terms to remember when it comes to multiobjective optimization:

~f(~x) = [f1(~x), f2(~x), . . . , fM (~x)] (7)

Figure 2. The Pareto front of a set of solutions in a two-objectives space
(f1 and f2 are supposed to be minimized)

– Definition 1 (Dominance): A solutionx ~xi ∈ <m is strictly dominated by a solu-
tion ~xj ∈ <m (~xi ≺ ~xj and ~xi 6= ~xj) iff fl (~xi) ≤ fl (~xj), ∀l ∈ 1, 2, . . . , M and fl (~xi) <
fl (~xj), ∃l ∈ 1, 2, . . . , M .

– Definition 2 (Non-dominance): The solution ~xi ∈ <m is non-dominated solution, if there
does not exist another solution ~xj ∈ <m such that fl(~xi) ≤ fl(~xj), ∀l ∈ 1, 2, . . . , M and
i 6= j.

– Definition 3 (Pareto optimal): We say that a solution ~x∗ ∈ η ⊂ Rm is a Pareto optimal
if it is non-dominated with respect to the feasible region (η).

– Definition 4 (Pareto optimal set): a set ρ ⊂ X non-dominated solutions is called Pareto
Optimal set which is formally defined as: ρ = {~x ∈ η | ~x} is a Pareto optimal set.

– Definition 5 (Pareto front): is defined as ρf = {f(~x) ∈ Rm | ~x ∈ η}.
In this paper, we used a modified version of the GA method called NSGAII [22], which

supports Pareto-front optimization. This algorithm employs a strong elitism technique
to provide a number of Pareto fronts solutions, taking non-dominance into account as
illustrated in Figure 3. All non-dominated solutions make up the initial front solution. The
second one has the solutions dominated by only one solution, and the fronts are generated
until all solutions are classified. To maintain the diversity of solutions, another sort is
performed using the crowding distance for solutions of the same front. The crowding distance
defines how distant a solution’s neighbors are from it, where the solutions are ranked in
decreasing order. The selection operator employs both front and crowding distance sorting
processes. Individuals with lower fronts are picked in the binary tournament; if the fronts
are the same, the solution with the greatest crowding distance is chosen. Recombination
and mutation are used to create new populations.8

Article number 240103

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

Figure 3. NSGAII algorithm pseudo code [22]

5. Methodology

5.1. Using the solutions produced by NSGAII in kNN

Figure 4 illustrates the research methodology of our study. We used repeated 10 folds cross
validation to validate our model. In order to show how the NSGAII algorithm works with
kNN we first start with describing the process of initialization as shown in Figure 5. Each
vector represents a potential solution which is composed of two variables – k and w. Each
solution is randomly initialized such that the value of k can take random integer number
between 1 and n/2 and w can randomly take value between 0 and 1.

Figure 4. Research methodology

Figure 5. The algorithm of population generation

Article number 240103

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

When NSGAII starts execution, the k and w values are updated based on crossover and
mutation. Figure 3 depicts how each solution in this study is updated using Pseudo code.
Recent research publications show that the solution’s values frequently surpass the search
space’s bounds. This is most likely to take place when a solution is far away from best
solution. The conventional method is to truncate the location at the exceeded boundary
in this iteration and reflect the values in the boundary in the following generation such
that the solution moves away. It does, however, limit the size of the solution step, limiting
additional solution divergence and allowing the solution to stay near to the bounds during
the search process.

In this study, we used the following configuration parameters for GA: 1) The mutation
probability was 0.05, and 2) cross over operation has been performed using single point
cross over.

To test the accuracy of our proposed, we also implemented a model without GA. To
do this, we ran the classical kNN model and recorded the evaluation metrics to verify
that the model with optimization gave us good results. We used the kNN classifier in our
experiment to check the accuracy of our proposed model with and without optimization.
One additional benefit of using kNN is its ability to enhance its performance as the size of
the dataset increases. A larger training dataset typically provides a more comprehensive
representation of the underlying data distribution. This increased coverage helps the kNN
algorithm make more accurate predictions by capturing a wider range of data patterns and
reducing the influence of outliers. The kNN model has also a better chance of learning the
underlying patterns and relationships within the data. This improved generalization ability
enables the model to make more accurate predictions on unseen or test data. The kNN
model is less likely to overfit the training data. Overfitting occurs when the model becomes
too specialized to the training set and fails to generalize well to new data. Increasing the
training dataset size helps alleviate this issue. The kNN determines the class of a new
data point based on the majority vote of its kNN. When the training dataset is larger, the
decision boundaries between different classes can become more refined, leading to better
classification performance.

These features ensure that software of higher complexities can use the kNN method for
SDP. It is also assuring that the methodology will consider all the different parameters and
produce an accurate representation of the defect probability in the system. In addition to
the kNN classifier, we also tested the code using SVM, NB, and RF classifiers to compare
our results and prove that the optimized model gave the best results. We chose these
classifiers because they have been used widely in SDP in combination with other algorithms
to evaluate results.

5.2. Datasets

The employed datasets have been obtained from the PROMISE repository [5, 12], which
consisted of six imbalanced datasets from the NASA Metrics Data Program (NASA MDP),
one dataset from ReLink [47], and three from the Modular Open Robotics Platform for
Hackers (MORPH) [48]. These datasets are used in many studies related to SDP due to
similar data points and the respective fault data, which helped us assess NSGAII-kNN
performance during the testing, training, and evaluating process. Table 1 lists and describes
the datasets we used in this experiment. Before implementation, we checked the datasets
for missing attributes, and we applied data normalization. Before running NSGAII-kNN,10

Article number 240103

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

we also normalized the input features using the Min-Max scaler to avoid errors in our
results.

Table 1. Datasets description

Dataset Source No. of No. of Defective
attributes instances instances

CM1 NASA 37 344 12
KC1 NASA 21 2107 15
KC3 NASA 40 458 9
MC1 NASA 38 9277 1
AR3 NASA 29 63 12
PC4 NASA 37 1399 12
Safe ReLink 26 56 39

Poi- 1.5 MORPH 20 237 59
Ant- 1.3 MORPH 20 125 16
Redktor MORPH 20 176 15

6. Results

This section focuses on the design and implementation of NSGAII-kNN.
To answer the research questions, we first installed required libraries and packages,

followed by the dataset import. We set up GA parameters manually before running the
experiment. The GA was used to find the best features weight and k number that produced
a minimized objective function value. Therefore, we tuned the GA parameters to a set
number of maximum iterations, creating a population size. The objective function class
defined how we made the population and assigned weights. Then we split our data into
training and testing sets using the 10 × 10-Folds cross-validation method. For the genetic
algorithm, the objective function focused on minimizing the false-negative and maximizing
the true positive. Before generating the optimized function, we normalized the input
features using the Min-Max scaler and then applied the kNN classifiers to output results.
Next, with the aid of this optimized function class, we passed on the genetic algorithm and
found out the best solution that consisted of optimal weights and k numbers. We used the
10 × 10-Folds cross-validation technique, and the iterations were repeated many times for
each dataset. Finally, we recorded the output results. We used MCC and balanced accuracy
to conclude our results. In addition, we ran the overall model on datasets CM1, KC1, KC3,
MC1, PC4, AR3, Safe, Ant- 1.3, Poi- 1.5, and Redktor. Along with the optimized model
setup, we ran a classical kNN model, splitting the dataset into training and testing, then
normalizing the features using the Min-Max scalar before fitting the model and predicting
results. We tested the accuracy of this model using the same evaluation measures as we did
for the optimized model. We also set up classical SVM, NB, and RF models to compare the
results with GA-kNN. The configuration parameters of these machine learning alogrithms
are presented in Table 2. The layout of the code was the same as the classical kNN model.
We used the same evaluation metrics to record the results.

Tables 3 and 4 summarize the results. Table 3 summarizes the MCC values obtained
with all the models, including the SVM, NB, and RF classifier models, while table 4 shows
the balanced accuracy for all models. The tables show that the NSGAII-kNN classifier
performed better than the other classifier models in both MCC and balanced accuracy. The

Article number 240103

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

Table 2. Configuration parameters of the employed machine learning algorithms

Model Best configuration parameters

kNN n_neighbors = 5, weights=’uniform’, algorithm=’ball_tree’
RF n_estimator= 100, learning_rate=0.01, tree_method=’hist’
NB Kernel=’Gaussian function’
SVM Gamma=’scale’, kernel=’rbf’, epsilon=0.1

Table 3. MCC recorded for all models

Datasets NSGAII Classica SVM NB RF
kNN kNN

CM1 0.893 0.796 0.511 0.256 0.0963
KC1 0.974 0.950 0.967 0.433 0.379
KC3 0.326 0.198 0.056 0.278 0.0987
MC1 0.241 0.189 0.0 0.117 0.241
AR3 0.330 0.293 0.130 0.401 0.330
PC4 0.342 0.339 0.156 0.319 0.389
Safe 0.426 0.367 0.325 0.288 0.304
Poi- 1.5 0.405 0.367 0.386 0.184 0.532
Ant- 1.3 0.341 0.326 −0.009 0.234 0.0240
Redktor 0.466 0.447 0.383 0.099 0.370

Table 4. Balanced accuracy recorded for all models

Datasets NSGAII Classical SVM NB RF
kNN kNN

CM1 0.941 0.897 0.686 0.622 0.527
KC1 0.987 0.975 0.987 0.678 0.676
KC3 0.716 0.582 0.517 0.674 0.536
MC1 0.821 0.796 0.700 0.804 0.800
AR3 0.882 0.782 0.715 0.860 0.815
PC4 0.683 0.669 0.547 0.650 0.633
Safe 0.734 0.682 0.659 0.649 0.666
Poi- 1.5 0.718 0.687 0.683 0.574 0.767
Ant- 1.3 0.690 0.668 0.495 0.630 0.489
Redktor 0.771 0.723 0.719 0.510 0.722

highest MCC was scored with the KC1 dataset, while the highest balanced accuracy was
also with the KC1 dataset. If we compare the classical kNN model with other classifiers,
the kNN classifier proved to be better than the others in most of the datasets, proving to
be a good classifier for SDP.

Tables 3 and 4 provide different combinations of parameters and conditions, which we
used to obtain different results. NSGAII-kNN yielded the highest overall recorded MCC of
0.974 on the KC1 dataset, while NSGAII-kNN’s lowest MCC value was .241 in MC1 dataset.
By comparison, the classical kNN model’s highest MCC was 0.796 in the CM1 dataset and
an MCC of 0.189 in the MC1 dataset. Overall, the NSGAII-kNN model yielded MCC values
ranging from 0.241 to 0.974 while the classical kNN model yielded MCC values ranging
from 0.189 to 0.950. For balanced accuracy, again, NSGAII-kNN outperformed, yielding the
highest value of 0.987. By comparison, the classical kNN model’s highest value was 0.975.
GA-kNN yielded balanced accuracy values between 0.650 and 0.987, while the classical
kNN model yielded balanced accuracy values between 0.582 and 0.975. These results
demonstrate that GA performed well on all datasets and that the NSGAII-kNN model12

Article number 240103

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

works better than the classical kNN model across the majority of datasets. When comparing
NSGAII-kNN with the SVM, NB, and RF models, NSGAII-kNN performed better again.
MCC and balanced accuracy remained high for GA-kNN in all the datasets and low in the
SVM model, proving that NSGAII-kNN performs SDP better. The NB model also yielded
poor results with MCC ranging from 0.099–0.433, a short-range compared to 0.241–0.974
for NSGAII-kNN. Balanced accuracy recorded with the SVM model also produced poor
results with the minimum MCC value of 0.517 with the KC3 dataset compared to 0.650
with the optimized model. Lastly, the RF model’s MCC range was relatively low compared
to NSGAII-kNN, similar to the other classifier models. The balanced accuracy was also low,
0.489–0.815, compared to NSGAII-kNN’s range of 0.650–0.975. These results demonstrate
that overall, NSGAII-kNN performed better than SVM, NB, and RF.

The results obtained from these experiments used the same high-performance methods
to define the accuracy of the results. Our results support previous findings that both kNN
and NSGA-II are effective methodologies in SDP. Our experiments resulted in balanced
accuracy and MCC values comparable to those found in the literature, supporting our
hypothesis that using kNN with NSGAII is an effective method of SDP. Using NSGAII
with kNN is a unique approach in terms of the algorithm that governs this experiment’s
classification methodology. Most of the literature review focused on the sole use of kNN,
which has produced high-reliability results. However, our study demonstrates that the
addition of GA enhances the accuracy and reliability of results and is a methodology
superior to one solely reliant on kNN. Table 5 provides an analytical comparison of some
of these literature reviews to our study. Many different methodologies and frameworks
have been considered for application for SDP. The kNN classification method has been
assessed and applied under various conditions and to other datasets, yielding results that
display a high potential for application in SDP modules. The classical kNN model gave us
good results when testing it as a classifier for a software defect prediction model with high
accuracy values.

Finally, we revisited the proposed research questions to facilitate drawing the conclusions:
– RQ1. Do the use of NSGA-II and the proposed solution vector improve accuracy of

kNN model for software defect prediction problem?
Answer. Yes, as we have seen from Tables 3 and 4, the proposed NSGA-II model can
produce significant results over all results.

Table 5. Analytical comparison with the existing literature

Ref. Used algorithms Key findings in comparison to our study

[32] Used the kNN algorithm, like our
study, in addition to constructing
using Euclidean distance, weighted
ED, Manhattan distance, and Haus-
dorff distance measures.

This study achieved an accuracy of 87.2% with the same
datasets as our research used. However, we used an op-
timized approach with GA and kNN and gained higher
balanced accuracy, 94.1%, and 98.7%, with CM1 and KC1
datasets, respectively.

[49] This study used variant-based en-
semble learning and feature selec-
tion techniques.

KC1 dataset achieved an MCC of 0.482, very low in com-
parison to our study. We achieved an MCC of 0.974 with
the KC1 dataset, proving to be a better algorithm for SDP.

[50] The authors in this study used the
kNN based probability density esti-
mation approach using fuzzy mem-
berships to eliminate classification
errors.

The results were a balanced accuracy of 72.76% with CM1,
71.78% with KC1, and 64.27% with KC3. In comparison
to these values, we obtained high-performance results that
are 94.1%, 98.7%, and 65% with the CM1, KC1, and KC3
datasets, respectively.

Article number 240103

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

– RQ2. Is there sufficient evidence that the NSGA-II algorithm can find the best k value
for each module?
Answers. Yes, if we compare performance between our proposed model and classical
kNN, we can reach to a conclusion that our model that uses dynamic selection of k
produces better performance than classical kNN that uses static k value for all samples.

7. Threats to validity

This section aims to discuss the threats to validity encountered in the present study.
The identified threats are categorized as either internal or external. External validity is
further subdivided into three aspects: datasets, SDP scenarios, and evaluation measures.
To ensure accurate conclusions, the utilization of an adequate number of diverse datasets
that encompass a wide spectrum of features is vital. In this investigation, a comprehensive
analysis was performed on 10 public datasets obtained from three software repository,
which exhibit variations in module numbers and defect percentages. Moreover, the findings
of this research are specific to “within-project” defect prediction scenarios, and the practical
guidelines derived may not be readily applicable to other contexts. Additionally, while
evaluation measures such as MCC and BA are generally robust against changes in the
confusion matrix, the utilization of MCC and BA is recommended for enhanced sensitivity
and informative results when dealing with imbalanced data.

The internal validity of this study is susceptible to three potential threats: the validation
approach and feature selection. Although the conducted experiments employed a 10-fold
cross-validation technique, it is acknowledged that leave-one-out cross-validation may yield
better results by minimizing potential bias stemming from data sampling. Furthermore,
feature selection algorithms were not employed in the current investigation to identify the
optimal features for each dataset. Previous empirical studies have indicated that utilizing
all available features often produces accuracy similar to that achieved by using the best
feature subset. Consequently, the impact of the feature selection process on the final results
is deemed insignificant and thus not recommended for utilization.

8. Conclusion

Predicting defects in the software modules helps developers detect faulty modules and
identify the classes that might need refactoring. In this research paper, we trained the kNN
classifier with a multi-optimization model called Genetic Algorithm (GA), resulting in our
model, GA-kNN. Model performance was measured using MCC and balanced accuracy.
The dataset KC1 yielded the highest MCC of 0.974 with k = 3 for GA-kNN, while the
classical kNN model recorded an MCC value of 0.950 with the same k number. All the other
datasets yielded a higher MCC and AUC when trained with the NSGAII-kNN model. Our
experiments proved that the NSGAII-kNN model is better than the classical kNN model
and can be used with various datasets. Our results demonstrated that the kNN classifier
gave us good results for all the datasets proving that it is a good classifier for SDP datasets
when compared to other classifiers such as SVM, NB, and RF, and thus, a good base for
our model. Furthermore, NSGAII-kNN also showed superior performance when compared
to other classifier models, including classical kNN because it yielded a high range of MCC
and balanced accuracy values. In this study, we analyzed the kNN method for the purpose14

Article number 240103

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

of SDP, and we evaluated its performance based on three different classifiers. Our study
was limited to understanding the optimization of kNN parameters using the GA. This is
one possible method, although alternatives such as multilayer perceptron, neural networks
and binary trees need to be analyzed for similar SDP applications on a dataset. As well,
our study applied NSGAII-kNN to a limited number of datasets. Ideally, NSGAII-kNN
should be applied to other varying datasets consisting of different types of data to analyze
whether the results and accuracy are maintained. As well, we used three classifiers as
evaluation metrics to determine the accuracy of our NSGAII-kNN model; this proves to
be a limitation as numerous classifiers are available and the accuracy for SDP should be
evaluated against each one of these classifiers. One final limitation of the study is that it was
limited to the study of single platform algorithms and not on cross-platform systems, so it is
unknown whether the proposed algorithm will provide the same results in a cross-platform
environment. Future studies could investigate more developed optimization algorithms and
other classification techniques for SDP. Furthermore, the NSGAII-kNN could be applied to
in cross-platform applications, applications of software development, with different types
and weights of datasets. Finally, future studies could evaluate the accuracy and efficiency
of the proposed algorithm for use as a mainstream algorithm for SDP.

References

[1] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang et al., “Software defect prediction based on kernel
PCA and weighted extreme learning machine,” Information and Software Technology, Vol. 106,
2019, pp. 182–200.

[2] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman et al., “Local versus global lessons for
defect prediction and effort estimation,” IEEE Transactions on Software Engineering, Vol. 39,
No. 6, 2013, pp. 822–834.

[3] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software defect prediction
with a simplified metric set,” Information and Software Technology, Vol. 59, 2015, pp. 170–190.

[4] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous defect prediction,” IEEE
Transactions on Software Engineering, Vol. 44, No. 9, 2018, pp. 874–896.

[5] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in Third Interna-
tional Workshop on Predictor Models in Software Engineering, PROMISE ’07, 2007.

[6] C. Tantithamthavorn, A.E. Hassan, and K. Matsumoto, “The impact of class rebalancing tech-
niques on the performance and interpretation of defect prediction models,” IEEE Transactions
on Software Engineering, 2018.

[7] M. Liu, L. Miao, and D. Zhang, “Two-stage cost-sensitive learning for software defect prediction,”
IEEE Transactions on Reliability, Vol. 63, No. 2, 2014, pp. 676–686.

[8] M. Singh Rawat and S. Kumar Dubey, “Software defect prediction models for quality improve-
ment: A literature study,” IJCSI International Journal of Computer Science Issues, Vol. 9,
No. 5, 2012. [Online]. www.IJCSI.org

[9] E. Erturk and E.A. Sezer, “A comparison of some soft computing methods for software fault
prediction,” Expert Systems with Applications, Vol. 42, No. 4, 2015, pp. 1872–1879.

[10] B. Turhan, T. Menzies, A.B. Bener, and J. Di Stefano, “On the relative value of cross-company
and within-company data for defect prediction,” Empirical Software Engineering, Vol. 14, No. 5,
2009, pp. 540–578. [Online]. https://link.springer.com/article/10.1007/s10664-008-9103-7

[11] I. Arora and A. Saha, “Software defect prediction: A comparison between artificial neural
network and support vector machine,” in Advances in Intelligent Systems and Computing,
Vol. 562. Springer Verlag, 2018, pp. 51–61. [Online]. https://link.springer.com/chapter/10.100
7/978-981-10-4603-2_6

[12] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang et al., “Defect prediction from static
code features: Current results, limitations, new approaches,” Automated Software Engineering,

Article number 240103

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/
www.IJCSI.org
https://link.springer.com/article/10.1007/s10664-008-9103-7
https://link.springer.com/chapter/10.1007/978-981-10-4603-2_6
https://link.springer.com/chapter/10.1007/978-981-10-4603-2_6

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

Vol. 17, No. 4, 2010, pp. 375–407. [Online]. https://link.springer.com/article/10.1007/s10515-
010-0069-5

[13] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: Do different classifiers find the
same defects?” Software Quality Journal, Vol. 26, No. 2, 2018, pp. 525–552.

[14] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,” IEEE
Transactions on Reliability, Vol. 62, No. 2, 2013, pp. 434–443.

[15] X. Yang and W. Wen, “Ridge and lasso regression models for cross-version defect prediction,”
IEEE Transactions on Reliability, Vol. 67, No. 3, 2018, pp. 885–896.

[16] X. Yang, K. Tang, and X. Yao, “A learning-to-rank approach to software defect prediction,”
IEEE Transactions on Reliability, Vol. 64, No. 1, 2015, pp. 234–246.

[17] F. Wu, X.Y. Jing, Y. Sun, J. Sun, L. Huang et al., “Cross-project and within-project semisu-
pervised software defect prediction: A unified approach,” IEEE Transactions on Reliability,
Vol. 67, No. 2, 2018, pp. 581–597.

[18] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for software defect
prediction,” IEEE Transactions on Software Engineering, Vol. 46, No. 12, 2020, pp. 1267–1293.

[19] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive investigation of the role of imbalanced
learning for software defect prediction,” IEEE Transactions on Software Engineering, Vol. 45,
No. 12, 2019, pp. 1253–1269.

[20] M.A. Khan, N.S. Elmitwally, S. Abbas, S. Aftab, M. Ahmad et al., “Software defect prediction
using artificial neural networks: A systematic literature review,” Scientific Programming,
Vol. 2022, No. 1, 2022.

[21] M.S. Alkhasawneh, “Software defect prediction through neural network and feature selections,”
Applied Computational Intelligence and Soft Computing, Vol. 2022, No. 1, 2022, pp. 1–16.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 2002,
pp. 182–197.

[23] I. Maleki, A. Ghaffari, and M. Masdari, “A new approach for software cost estimation with
hybrid genetic algorithm and ant colony optimization,” International Journal of Innovation
and Applied Studies, Vol. 5, No. 1, 2014, pp. 72–81. [Online]. https://www.academia.edu/dow
nload/52287242/IJIAS-13-292-35.pdf

[24] H. Alsghaier and M. Akour, “Software fault prediction using particle swarm algorithm with
genetic algorithm and support vector machine classifier,” Software: Practice and Experience,
Vol. 50, No. 4, 2020, pp. 407–427.

[25] M.M. Rosli, Noor Hasimah Ibrahim Teo, Nor Shahida M. Yusop, and N. Shahriman Mohamad,
“Fault prediction model for web application using genetic algorithm,” in International conference
on computer and software Modeling (IPCSIT), 2011, pp. 71–77. [Online]. https://www.rese
archgate.net/profile/Marshima-Rosli/publication/264890205_Fault_Prediction_Model_
for_Web_Application_Using_Genetic_Algorithm/links/55d4fcc308ae43dd17de4df4/Fault-
Prediction-Model-for-Web-Application-Using-Genetic-Algorithm.pdf

[26] W. Afzal and R. Torkar, “On the application of genetic programming for software engineering
predictive modeling: A systematic review,” Expert Systems with Applications, Vol. 38, No. 9,
2011, pp. 11 984–11 997.

[27] S. Chatterjee, S. Nigam, and A. Roy, “Software fault prediction using neuro-fuzzy network and
evolutionary learning approach,” Neural Computing and Applications, Vol. 28, No. 1, 2016,
pp. 1221–1231. [Online]. https://link.springer.com/article/10.1007/s00521-016-2437-y

[28] S. Goyal, “Handling class-imbalance with knn (neighbourhood) under-sampling for software
defect prediction,” Artificial Intelligence Review, Vol. 55, No. 3, 2022, pp. 2023–2064.

[29] B. Shuai, H. Li, M. Li, Q. Zhang, and C. Tang, “Software defect prediction using dynamic
support vector machine,” in 9th International Conference on Computational Intelligence and
Security, 2013, pp. 260–263.

[30] M.P. Sasankar and G. Sakarkar, “Cross project defect prediction using deep learning tech-
niques,” in International Conference on Artificial Intelligence and Big Data Analytics, 2022.

[31] K.O. Elish and M.O. Elish, “Predicting defect-prone software modules using support vector
machines,” Journal of Systems and Software, Vol. 81, No. 5, 2008, pp. 649–660.16

Article number 240103

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/
https://link.springer.com/article/10.1007/s10515-010-0069-5
https://link.springer.com/article/10.1007/s10515-010-0069-5
https://www.academia.edu/download/52287242/IJIAS-13-292-35.pdf
https://www.academia.edu/download/52287242/IJIAS-13-292-35.pdf
https://www.researchgate.net/profile/Marshima-Rosli/publication/264890205_Fault_Prediction_Model_!for_Web_Application_Using_Genetic_Algorithm/links/55d4fcc308ae43dd17de4df4/Fault-Prediction-Model-for-Web-Application-Using-Genetic-Algorithm.pdf
https://www.researchgate.net/profile/Marshima-Rosli/publication/264890205_Fault_Prediction_Model_!for_Web_Application_Using_Genetic_Algorithm/links/55d4fcc308ae43dd17de4df4/Fault-Prediction-Model-for-Web-Application-Using-Genetic-Algorithm.pdf
https://www.researchgate.net/profile/Marshima-Rosli/publication/264890205_Fault_Prediction_Model_!for_Web_Application_Using_Genetic_Algorithm/links/55d4fcc308ae43dd17de4df4/Fault-Prediction-Model-for-Web-Application-Using-Genetic-Algorithm.pdf
https://www.researchgate.net/profile/Marshima-Rosli/publication/264890205_Fault_Prediction_Model_!for_Web_Application_Using_Genetic_Algorithm/links/55d4fcc308ae43dd17de4df4/Fault-Prediction-Model-for-Web-Application-Using-Genetic-Algorithm.pdf
https://link.springer.com/article/10.1007/s00521-016-2437-y

Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

[32] M. Hammad, A. Alqaddoumi, H. Al-Obaidy, and K. Almseidein, “Predicting software faults
based on k-nearest neighbors classification,” International Journal of Computing and Digital
Systems, Vol. 8, No. 5, 2019, pp. 461–467.

[33] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “MULTI: Multi-objective effort-aware just-in-time
software defect prediction,” Information and Software Technology, Vol. 93, 2018, pp. 1–13.

[34] T.M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and imbalanced data: Problems
in software defect prediction,” in International Conference on Tools with Artificial Intelligence,
ICTAI, Vol. 1, 2010, pp. 137–144.

[35] M.A. Mabayoje, A.O. Balogun, H.A. Jibril, J.O. Atoyebi, H.A. Mojeed et al., “Parameter
tuning in kNN for software defect prediction: an empirical analysis,” Jurnal Teknologi dan
Sistem Komputer, Vol. 7, No. 4, 2019, pp. 121–126.

[36] A. Iqbal, S. Aftab, I. Ullah, M. Salman Bashir, and M. Anwaar Saeed, “Modern education and
computer science,” Modern Education and Computer Science, Vol. 9, 2019, pp. 54–64. [Online].
http://www.mecs-press.org/

[37] R. Jindal, Ruchika Malhotra, and Abha Jain, “Analysis of software project reports for defect
prediction using kNN,” in Proceedings of the World Congress on Engineering, Vol. 1, 2014.
[Online]. http://www.iaeng.org/publication/WCE2014/WCE2014_pp180-185.pdf

[38] D. Ulumi and D.S. Series, “Weighted knn using grey relational analysis for cross-project defect
prediction,” Journal of Physics: Conference Series, Vol. 1230, No. 1, 2019, p. 12062. [Online].
https://iopscience.iop.org/article/10.1088/1742-6596/1230/1/012062/meta

[39] R. Goyal, P. Chandra, and Y. Singh, “Suitability of kNN regression in the development of
interaction based software fault prediction models,” IERI Procedia, Vol. 6, 2014, pp. 15–21.

[40] M.A. Mabayoje, A.O. Balogun, S.M. Bello, J.O. Atoyebi, H.A. Mojeed et al., “Wrapper feature
selection based heterogeneous classifiers for software defect prediction,” 2019.

[41] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC)
over F1 score and accuracy in binary classification evaluation,” BMC Genomics, Vol. 21, No. 1,
2020, pp. 1–13. [Online]. https://link.springer.com/articles/10.1186/s12864-019-6413-7https:
//link.springer.com/article/10.1186/s12864-019-6413-7

[42] D. Tomar and S. Agarwal, “Prediction of defective software modules using class imbalance
learning,” Applied Computational Intelligence and Soft Computing, Vol. 2016, 2016, pp. 1–12.

[43] A.D. Chakravarthy, S. Bonthu, Z. Chen, and Q. Zhu, “Predictive models with resampling:
A comparative study of machine learning algorithms and their performances on handling imbal-
anced datasets,” 18th IEEE International Conference on Machine Learning and Applications,
ICMLA 2019, 2019, pp. 1492–1495.

[44] P.K. Kudjo, E. Ocquaye, and W. Ametepe, “Review of genetic algorithm and application
in software testing,” International Journal of Computer Applications, Vol. 160, No. 2, 2017,
pp. 1–6.

[45] S. Agarwal, D. Tomar, and Siddhant, “Prediction of software defects using twin support
vector machine,” in Proceedings of the International Conference on Information Systems and
Computer Networks, ISCON. IEEE, 2014, pp. 128–132.

[46] G.D. Boetticher, “Nearest neighbor sampling for better defect prediction,” ACM SIGSOFT
Software Engineering Notes, Vol. 30, No. 4, 2005, pp. 1–6.

[47] L. Gong, S. Jiang, Q. Yu, and L. Jiang, “Unsupervised deep domain adaptation for heteroge-
neous defect prediction,” IEICE Transactions on Information and Systems, Vol. E102D, No. 3,
2019, pp. 537–549.

[48] S. Hosseini, B. Turhan, and M. Mäntylä, “A benchmark study on the effectiveness of
search-based data selection and feature selection for cross project defect prediction,” In-
formation and Software Technology, Vol. 95, 2018, pp. 296–312.

[49] U. Ali, S. Aftab, A. Iqbal, Z. Nawaz, M. Salman Bashir et al., “Software defect prediction
using variant based ensemble learning and feature selection techniques,” Modern Education
and Computer Science, Vol. 5, 2020, pp. 29–40. [Online]. http://www.mecs-press.org/

[50] S. Zheng, J. Gai, H. Yu, H. Zou, and S. Gao, “Software defect prediction based on fuzzy
weighted extreme learning machine with relative density information,” Scientific Programming,
Vol. 2020, No. 1, 2020.

Article number 240103

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/
http://www.mecs-press.org/
http://www.iaeng.org/publication/WCE2014/WCE2014_pp180-185.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1230/1/012062/meta
https://link.springer.com/articles/10.1186/s12864-019-6413-7 https://link.springer.com/article/10.1186/s12864-019-6413-7
https://link.springer.com/articles/10.1186/s12864-019-6413-7 https://link.springer.com/article/10.1186/s12864-019-6413-7
http://www.mecs-press.org/

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240104, DOI: 10.37190/e-Inf240104

Migrating a Legacy System
to a Microservice Architecture

Kristian Tuusjärvi∗ , Jussi Kasurinen∗ , Sami Hyrynsalmi∗
∗School of Engineering Sciences, LUT University, Finland

kristian.tuusjarvi@student.lut.fi, jussi.kasurinen@lut.fi, sami.hyrynsalmi@lut.fi

Abstract
Background: In software engineering, each software product has a life cycle that at
some point results in a decision being made with regard to extending its maintenance or
upgrading the system to a new platform and architecture via a re-engineering or migration
process. However, sometimes this decision is a non-starter; the technical dept accumulates,
and platforms cease to exist, meaning that there will always be a time when extending
the life support of a legacy system is no longer simply an option, and the service must be
modernized.
Aim: In this paper, we focus on the migration processes, where a legacy system is updated
to a microservice architecture, to understand the current state-of-the-art, applied industry
practices and potential pitfalls or research gaps in the topic domain. The study aims to
explore previous research to find related trends and expose gaps in the literature.
Method: We conducted a systematic mapping study on the research trends within the
topic of redesign and re-engineering projects related to microservice architectures to
understand what we know about microservices, what the current research trends in the
area are, and if possible, what the common nominators for successful migration processes
are.
Results: Our observations reveal that most microservice migration research is confined to
journal articles and conference proceedings. However, a severe fragmentation in publication
venues exists within the field. Furthermore, the focus of the research field is primarily
on the transformation phase of the re-engineering process, with the majority of the
contributions being managerial in nature, particularly of the process type. Additionally,
over 50% of the research conducted is empirical in nature.
Conclusion: Based on the results, microservice migration research is maturing well; most
of the research is empirical. The research field is scattered. There are notable technical,
managerial, and organizational challenges and differing motivations. To better understand
the motivations and challenges of the practitioners, we are going to conduct survey and
interview studies within this field.
Keywords: legacy systems, microservice architecture, monolithic architecture,
microservice migration

1. Introduction

In the software life cycle, each product reaches a point where a decision has to be made
between extending the system maintenance, killing the software, or modernizing and
migrating the legacy system into a new architecture and modern platform. In this work,

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 13 Jun. 2023; Revised: 14 Nov. 2023; Accepted: 15 Nov. 2023; Available online: 17 Nov. 2023

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0008-3974-4038
https://orcid.org/0000-0001-9454-8664
https://orcid.org/0000-0002-5073-3750

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

we conducted a systematic mapping study (SMS) [1] to study one such legacy software
modernization trend – the trend of migrating monolithic legacy software systems toward
microservice architecture (MSA). MSA has become popular due to recent technological
advancements, such as cloud computing and containerization, which promise to allow easier
service scaling, cost management, maintenance, and faster development cycles, amongst
other benefits. Furthermore, the overall digitalization of the business world is forcing
companies to search for more dynamic and adaptive software architectures.

1.1. Microservice technology

Microservices are small, self-sufficient processes that interact with each other using messag-
ing protocols, such as Representational State Transfer (REST) [2–4]. MSA is a distributed
cloud-native architecture that is based on service architecture (SOA) [5, 6], where developers
can create, test, and deploy microservices using different development stacks and platforms
[5]. Traditionally, the software has been developed as monolithic, meaning that a single
executable handles all the features of a given software system [6].

Three core technologies are often utilized when using MSA. First is cloud computing;
microservice based systems often run in a cloud environment where computing resources
can be scaled up or down depending on the user traffic. The second is containerization;
microservices are often containerized, which enables them to be deployed quickly and
managed by container management software, such as Kubernetes [7]. Third, continuous
integration and delivery automation processes [8] mean that the entire process, from
development and quality assurance to staging and deployment, is automated to enable fast
iterations and even roll-backs in case of faulty releases.

1.2. State of the industry

The research related to microservices has seen an increase during the past decade. In around
2010, the term microservice started to rise in popularity [9], with many large companies
using MSA to build their software systems. For example, Sound Cloud [10], Netflix [11],
and Uber [12] have adopted MSA as their service architecture. However, as the MSA model
is mainly based on industry-driven needs and development, this might also correlate to the
need for more literature and stricter definitions of MSA [13].

Large and complex monolithic software systems are prime candidates for MSA migration.
Software systems built with MSA are less prone to accumulating complexity during
their lifetimes. Software developed with distributed architecture is more self-contained
than software with a monolithic architecture. It allows components to be developed and
maintained separately from other parts, allowing the software system to stay robust and
responsive [4]. Companies often choose to adopt MSA depending on their needs, as MSA
has a reputation for having quality attributes such as availability, flexibility, maintainability,
scalability, and loose coupling as built-in features [14, 15].

The motivation for this research arose from a previous study where we documented
migrating from a legacy system to an MSA. During the research process, we found a lack
of related research into migrating from legacy systems to MSA, which was unusual as the
revision, replacement, and re-engineering work of legacy systems is not in any way an
uncommon activity in the software industry. For this reason, we decided to conduct a more
comprehensive literature review on migrating from legacy software to MSA.2

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

This study aims to explore previous research to find related trends and expose gaps
in the literature. In this study, we want to review the literature on migrating to MSA
from legacy systems. More precisely, we want to study the research trends (publication
venues and periods), the migration process phase in which migration to MSA research is
focused (reverse engineering, transformation, or forward engineering), and the research
contribution types to understand how MSA migration processes have been investigated
in the prior works. The rest of this research paper is structured as follows: related work,
methods, analysis, threats to validity, discussion, and conclusion.

2. Related work

This section discusses the research related to our topic: migrating to MSA. We will give
short summaries of the related research papers, discuss their relevance to this study, and
synthesize how they motivated it.

Carrasco et al. [16] conducted a literature study on microservice migration bad smells.
They wanted to know what architectural and migration-related bad smells are common with
MSA and how to avoid them. Their study identified nine common pitfalls as architectural
smells from 58 sources, including academic and gray literature, between 2014 and 2018. The
nine pitfalls are divided into five new architectural bad smells and four migration-related
smells. The most common pitfalls were single-layered teams, including multiple services in
one container, being greedy with containers, and simultaneously rewriting the entire system
for microservices. They offer solutions for detecting and solving the pitfalls mentioned
earlier. Carrasco et al.’s [16] research has an architectural focus, researching architectural
pitfalls. Their study relates to ours by investigating the migration process toward MSA.
However, they focus on specific architectural problems, whereas our work is more general
and considers the literature and its visible trends. They also use grey literature, while we
focus on academia [16].

In 2018, Knoche et al. [17] conducted a survey study on German professionals with 71
participants. They studied the primary drivers for MSA adoption, barriers to adoption, the
goals of modernizing MSA, and how data consistency affects performance. They conclude
that the prime drivers for modernization are scalability, maintainability, and time to market.
The skills of developers and other staff were seen as the main barriers. As for goals, early
adopters desired scalability from MSA, while traditional companies wanted maintainability.
Performance was considered a minor issue. The authors call for similar work from other
countries. They also researched migration to MSA. However, they conducted an empirical
study in the form of a survey study. Furthermore, their research focuses on the motivation
for migration and the barriers to adoption [17].

Velepucha et al. [18] conducted an SMS on migrating to microservices. The study
included 32 primary research papers from 2012 to 2020. The research papers were only
from academia. In their study, Velepucha et al. wanted to determine the types of migration
proposals present in the literature and which are based on the information hiding principle.
They found multiple proposals related to migrating to microservices, for example, those
using DevOps, cloud computing, and performance in infrastructure. They identified that
only two papers discussed migration principles, of which only one was the information
hiding principle. None of the research papers proposed a software development principle to
migrate from a monolithic system to MSA [18]. Our work shares some similarities with
Velepucha et al. [18] as they also classified research papers based on the type of research.

Article number 240104

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

However, unlike our approach, they did not use Wieringa et al.’s [19] classification. We
limited our review to literature published after 2015 as we focused on the current state of
the art rather than the early stages of MSA. Additionally, we analyzed various metrics
related to research approaches and publication year, venue, and type.

Hassan et al. [20] conducted a large SMS based on academic and industrial literature.
They analyzed 877 publications from various sources between January 2013 and April 2020.
Their study had two objectives: first, to study the transition process to microservices and,
second, to understand the fundamental problem of transitioning, the granularity problem of
transitioning to microservices. Additionally, they classified the analyzed literature [20]. Our
research shows some similarities with the SMS conducted by Hassan et al. [20] regarding
MSA migrations. Like us, they also used the classification schema by Wieringa et al. [19] to
classify their research. However, their research mainly focused on the issue of granularity
when transitioning to microservices. Additionally, their study included grey literature,
which is not the case in our research.

Auer et al. [21] conducted an interview study. They researched why companies migrate
to MSA, the information metrics used, and the most helpful information metrics. Their
interview study included 52 respondents from software development practitioners over five
days in 2018. Based on the interviews, the authors generated an assessment framework to
ease the decision-making when migrating to MSA. Their interviews with practitioners found
that the most common reason for migrating to MSA was to improve maintainability. Other
common reasons were independent teams, deployability, and cost, whereas modularity,
complexity, fault tolerance, scalability, and reusability were less popular characteristics.
The research by Auer et al. [21] relates to our study by discussing the MSA migration
process. However, their study focuses on the motivation of the practitioners and the metrics
they use to collect information. In contrast, our study focuses more on general information
about the research field, the re-engineering phase, and the research contribution types.
Moreover, their study is a survey study rather than an SMS [21].

Razzaq et al. [22] conducted an SMS study on MSA migrations. The study included
73 primary research papers from 2010 to 2021. Their goal was to evaluate the state and
practice of MSA literature. They researched publication trends and venues, research focus,
migration approaches and challenges, success factors post-migration, and the potential
for industrial adoption. Related to the publication trends, they note that the volume of
publications is progressively rising. They suggest future researchers focus on MSA in the
context of the Internet of Things [22]. Razzaq et al. [22] and our study analyze publication
trends, venues, and types. However, our approach differs as we delve into the publication
contributions and re-engineering phase the research focuses on.

Our study on SMS migration to MSA did not have much directly comparable research
available. However, we have identified the research papers that are most similar to our
study in terms of the research period, method, contributions, and goals. The list of these
research papers can be found in Table 1. While we found more secondary research related
to MSA from different perspectives, there was no MSA-related research available in 2014,
according to secondary sources cited in [23] and [24]. There has been a significant increase
in MSA-related research since 2015 [23] and 2016 [24]. Waseem et al. [25] also reported
a growth in MSA-related research between 2015 and 2018 [25]. Pahl et al. [23] suggest that
follow-up research should be directed toward aspects such as microservices migration [23].
Furthermore, multiple authors highlight the novelty of the MSA research field [13, 20, 23, 24].
More recently (2022), Razzaq et al. [22] reported a progressively rising number of research
from year to year.4

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table 1. Main findings from the studies similar to ours

Author(s) Sources Main findings Type Year

Carrasco et al. [16] 58 (including grey
literature)

Their study identified nine common pitfalls
as architectural smells.

SMS 2018

Velepucha et al.
[18]

32 They found that only two papers discussed
migration principles, one of which was the
information hiding principle.

SMS 2020

Hassan et al. [20] 877 (including grey
literature)

They found and defined the granularity
problem present in MSA migrations.

SMS 2020

Razzaq et al. [22] 73 They found that the number of
publications is progressively rising.

SMS 2022

Many of the studies in our related research indicate the novelty of the research field and
room for more research from different perspectives, including research within the subfield
of migrating to MSA. We only found six directly related studies [16–18, 20–22], from which
only four [16, 18, 20, 22] were SMSs. Our research attempts to fill this gap by summarizing
the current state of research related to MSA migrations and by observing the specific
re-engineering phase where the research is focused.

3. Methods

This section goes through the main phases of our research process; we followed the SMS
guidelines described by Petersen et al. [1], also illustrated in Figure 1. An SMS is a research
methodology that categorizes research papers and visualizes these to create a map of the
researched subject [26] in the form of a conceptual map, categorization, or some other
layout. An SMS is recommended as the research methodology in software engineering when
the research area is still emerging and a substantial quantity of high-quality studies have
yet to be completed. However, the data collection and analysis scheme is not as in-depth
in similar systematic literature review models [26]. SMSs are commonly used in several
domains [27], with medicine and software engineering being the most prominent areas of
application [28]. The main phases of our research process are defining research questions,
conducting the search, screening papers, keywording, and data extraction and mapping,
as defined by Petersen et al., with all the phases having an output forwarded to the next
stage; the final product is the systematic map that visualizes the results.

Based on our background work, we defined three research questions for this study.
We wanted to research the period from 2015 to 2023 to capture the trends found in the
microservice migration literature during that time and minimize the number of non-related

Figure 1. Systematic mapping study process as defined by Petersen et al. [1]

Article number 240104

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

topics that might share similar terminology; we also wanted to analyze the research trends,
the focus of research within the re-engineering process, and the contributions of the existing
research work. These goals are reflected in the research questions as follows:
RQ1 – What are the research approaches implemented by the researchers?

This research question provides us with general information about the research field,
which is important for analyzing the current trends in the literature.

RQ2 – What phase of the re-engineering process is addressed by the research papers?
The answer to this research question allows us to analyze which part of the re-engineering
process is the most researched and where gaps in the research exist. We used the
horseshoe model to define the different phases of re-engineering [29].

RQ3 – What are the contribution types of the research papers?
This question explores the concrete contributions to microservice migration research
and the broader scientific community. We developed a contribution-type classification
using an iterative process based on an example by Petersen et al. [1].
We used Google Scholar’s research database to get research material for this SMS.

We chose to use Google Scholar because it obtains research material from many different
publishers and databases, such as ACM, IEEE, and Springer while having few to no
limitations regarding the research domains or areas of expertise. Google Scholar can query
articles with words using the following options: all, exact phrase, at least one, and without.
These different options can be combined. It is possible to select where in the article the
words appear: anywhere in the article or only in the title. Additionally, the author and
publisher of the article can be specified, and publication dates can be indicated. We used
the default search, which returned articles that included all the words from our search
string, and looked for the latter anywhere in the article [30]. The only limitations we set
for Google Scholar were not to include patents and the time frame. Google Scholar orders
the results according to their relevance based on the full text, source, author, and number
of citations [31].

The search was conducted using a search string developed by testing keywords against
the database. The goal was to find a search string that yielded all the meaningful research
papers that reflect the research area. The search results were evaluated manually to estimate
whether they matched the research area. The evaluation was performed by the number
of citations, the text’s topic (related to the research topic), the author, and the source.
As suggested by Petersen et al. [1], the search string reflected the research questions.
The final search string was “microservices legacy software migration modernization”. We
conducted two searches on Google Scholar: the first in 8/2020 (from 2015 to 8/2020) and
the second in 8/2023 (from 2020 to 8/2023) to update the primary research papers. The
search yielded 487 initial results in 2020 and an additional 821 results in 2023, giving
a total of 1308 search results. Because Google Scholar’s results change over time, we
have saved the original search results list to a cloud service for repeatability purposes
(https://dx.doi.org/10.6084/m9.figshare.24426889).

Selection criteria were applied to the search results to filter out the unwanted results.
The filtering used the inclusion and exclusion criteria shown in Tables 2 and 3, respectively.
The number of citations was not considered as it would have given a less realistic view
of the research area. Figure 2 shows the search process and application of the selection
criteria. First, we applied our selection criteria to the initial research and removed any
duplicates that could be identified. Later, during the data extraction phase, a few papers
were removed as they did not fit the scope of this study.

6

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/
https://dx.doi.org/10.6084/m9.figshare.24426889

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table 2. The inclusion criteria applied to our search results

ID Inclusion criteria

I1 Research with more than four pages of text.
I2 Research from 2015 to 8/2020 in the first search and 2020 to 8/2023 in the second search
I3 Research in the following publication formats: books, research papers, conference papers, and

journal articles.
I4 Research written in English.
I5 Research that is publicly accessible.
I6 Research that explicitly discusses the theme of this SMS (i.e., the migration of legacy software

systems to MSA).

Table 3. The exclusion criteria applied to our search results

ID Exclusion criteria

E1 Research duplicates matched with regard to the author, publication year, and title.
E2 Research that is not peer-reviewed.
E3 Research discussing microservices but not the process for migrating to MSA.

Figure 2. The process of screening the research papers

We used existing and generic classification methods to manage the data extraction
process for the first two research questions. We generated a classification through the
keywording process for the third research question. For the research approaches (RQ1), we
used the following parameters: publication type, venue, and date; publisher; and research
strategy. This research question queries general information about the research field. For
the publication type, we use a simple categorization: journal, workshop paper, book, or
conference proceeding and the publication venue, publisher, and date. Finally, we used the
classification by Wieringa [19] to classify the research strategies, illustrated in Table 4. This
categorization method is general and does not depend on any specific research field [1].

For the re-engineering phase (RQ2), we used the horseshoe model to divide the re-engi-
neering process into reverse engineering, transformation, and forward engineering. Reverse
engineering includes the acts of understanding, abstracting, and extracting a high-level
model of the source system. For example, this could include software that helps understand
existing systems or identifies microservice candidates. Transformation improves, restruc-
tures, and extends the previously mentioned high-level system model. For example, this
could be in the form of processes or tools that help shape the new architecture. Finally,
forward engineering generates a new, improved system [29]. For example, this could include
guidelines and tools that help generate the new system in practice. We categorized the

Article number 240104

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table 4. Classification of the primary papers identified,
based on the principles presented in Wieringa et al. [19]

Category Description

Validation Research The techniques investigated are novel and have not yet been implemented. The
techniques used are, for example, experiments (i.e., work done in the lab).

Evaluation Research Techniques are implemented in practice and evaluated. This type of research
shows how a technique is implemented in practice (solution implementation)
and the consequences of the implementation in terms of benefits and drawbacks
(implementation evaluation). This also includes identifying problems in the
industry.

Solution Proposal A solution for a problem is proposed; the solution can be either novel or a sig-
nificant extension of an existing technique. A small example or a good line of
argumentation shows the solution’s potential benefits and applicability.

Philosophical Papers These papers sketch a new way of looking at existing things by structuring the
field in the form of a taxonomy or conceptual framework.

Opinion Papers These papers express the opinion of somebody on whether a certain technique is
good or bad or how things should be done. They do not rely on related work
and research methodologies.

Experience Papers Experience papers explain what and how something has been done in practice
based on the author’s personal experiences.

research papers by reading them and assigning them to one or more categories based on their
topics and content, as a research paper can discuss multiple phases of the re-engineering
process.

Finally, to assess the research contributions (RQ3), we classified them using an iterative
keywording process by Petersen et al. [1]. We read through the studies and collected
keywords and concepts representing their contributions. The context of the research was also
identified. After collecting the keywords, we combined them to form a classification scheme.
The classification scheme we ended up with consists of the following: process, analysis, tool,
method, best practices, experience sharing, and metrics. A process is a structured approach
to migrating to MSA. Analysis covers papers focusing on migration’s issues and benefits
and other literature. The tool assists in the migration process (i.e., software that can help
with the migration process). A method provides systematic ways to achieve specific tasks
within the broader migration process. Best practices are guidelines based on successful
migrations. Experience sharing offers practical insights from real-world migration scenarios.
The metrics can measure and evaluate different aspects of the migration process.

4. Analysis

This study aims to discover trends related to legacy software modernization, specifically
migrating from legacy applications to microservices. The study was conducted as an SMS.
A pool of 1308 research papers was the starting point. After the inclusion and exclusion,
109 were chosen for further analysis and categorization. In this section, we analyze the
results of the categorization process.

4.1. Research areas and approaches (RQ1)

In this section, we review the results of the first research question: “(RQ1) What are the
research approaches?” The first research question queried the research approaches and8

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Figure 3. Publication type totals. References in Table 5

Table 5. References for the publication types

Publication type ID

Workshop Paper P25, P29, P36, P41
Book P12, P15, P22, P79, P106
Conference Proceeding P2, P3, P4, P5, P6, P7, P11, P13, P16, P17, P18, P19, P23, P26, P27, P28,

P30, P31, P32, P33, P34, P35, P37, P38, P39, P40, P42, P43, P44, P46, P47,
P48, P49, P50, P52, P54, P55, P57, P60, P61, P65, P66, P67, P68, P70, P72,
P73, P76, P77, P80, P82, P83, P86, P88, P89, P94, P98, P99, P101, P102,
P103, P104, P108

Journal Article P1, P8, P9, P10, P14, P20, P21, P24, P45, P51, P53, P56, P58, P59, P62,
P63, P64, P69, P71, P74, P75, P78, P81, P84, P85, P87, P90, P91, P92, P93,
P95, P96, P97, P100, P105, P107, P109

publication information in relation to the primary research. These include the publication
venue, publication time, publication type, and research type. The publication information
helps us understand the current state of the research field and find any gaps that need to
be filled.

We divided the publications into four groups: journal articles, conference papers, books,
and workshop papers. Figure 3 shows the total numbers of the different publication types.
Most research papers were either conference papers (58%) or journal articles (34%). In
contrast, there is a relatively small amount of workshop papers.

Figure 4 shows the number of publications published annually from 2015 to 2023. It
should be noted that 2023 has only partial data, as this study was conducted during the
fall of that year. Also notable is that, in our primary research, there were no publications
from 2015; the first MSA migration-related publications in our primary research material
are from 2016. The lack of research is understandable since microservice technology only
started to attract interest from 2010 onward [9]. We can observe a significant increase
in publications from 2018, with a slight decrease in 2019 and a steady level thereafter.
Regarding the publication types, we can see that conference papers and journal articles
have more stable publication numbers than books and workshop papers.

Article number 240104

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Figure 4. Publication trends from 2015 to 2023. References in Table 6

Table 6. References for the publication types per year

Book Conference proceeding Journal article Workshop paper

2016 P3, P5, P6 P36
2017 P18
2018 P2, P13, P19, P23, P26, P30,

P31, P32, P33
P1, P9, P10, P14, P21

2019 P15 P7, P17, P27, P28, P35, P37,
P48

P8 P25, P29

2020 P12, P22 P4, P11, P16, P34, P38, P39,
P43, P65, P66, P67, P73, P77,
P99, P103, P108

P20, P24, P62, P85, P92,
P100, P107

2021 P40, P42, P44, P46, P50, P52,
P55, P60, P70, P72, P80, P83,
P86, P89, P104

P58, P69, P93, P96, P105

2022 P79, P106 P47, P57, P61, P68, P82, P94,
P102

P45, P51, P53, P59, P74, P75,
P78, P81, P84, P87, P91, P95,
P97, P109

P41

2023 P49, P54, P76, P88, P98,
P101

P56, P63, P64, P71, P90

With regard to the various publication venues listed in Table 7, we can see severe
fragmentation; only a few research papers are published through the same publication venues,
meaning that 109 research papers are published through 91 different ones. The exceptions
are the IEEE ICSA-C conference (4), IEEE Software Journal (3), IEEE International
Conference on Software Architecture (ICSA) (3), Euromicro Conference on Software
Engineering and Advanced Applications (SEAA) (3), and International Journal of Advanced
Computer Science and Applications (IJACSA) (3), all with three or more publications.
The publication venues also have distinct focus areas, for example, software architecture
(i.e., ICSA, ICSA-C), cloud computing (i.e., ESOCC), software maintenance (i.e., ICSME,
VEM), development operations (i.e., DEVOPS), software refactoring (i.e., IWoR), data
analysis (i.e., SADASC), and software engineering (i.e., APSEC, SBES, and SEAA). The
rest of the publication venues are listed in Table B1 in Appendix B.10

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table 7. Publication venues with more than one publication from our primary research papers.
The rest of the publication venues are listed in Appendix B

Publication venue # ID

IEEE International Conference on Software Architecture Companion
(ICSA-C)

4 P11, P34, P41, P54

IEEE Software 3 P1, P9, P10
IEEE International Conference on Software Architecture (ICSA) 3 P26, P61, P88
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA)

3 P38, P60, P66

International Journal of Advanced Computer Science and Applications
(IJACSA)

3 P51, P63, P107

Software: Practice and Experience 2 P14, P64
On the Move to Meaningful Internet Systems: OTM Workshops 2 P16, P43
International Journal of Computer Applications (IJCA) 2 P24, P92
Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment (DEVOPS)

2 P25, P29

Brazilian Symposium on Software Components, Architectures, and Reuse
(SBCARS)

2 P42, P89

Empirical Software Engineering (EMSE) 2 P56, P59
International Conference on Advanced Information Systems Engineering
(CAiSE)

2 P104, P108

Figure 5. Research types of the papers discussing re-engineering or system migration.
References in Table 8

The research types were analyzed using the classification schema by Wieringa et al. [19].
We chose this classification method because of its wide use in other systematic mapping
studies (e.g., Di Francesco [24], Agilar et al. [32], Alshuqayran et al. [13]) and because it is
often possible to classify a study without reading the whole paper, which saves time [1].
The classification schema consists of the following categories: validation research, evaluation
research, solution proposals, philosophical papers, opinion papers, and experience papers,
as listed in Table 2.

Figure 5 shows the distributions of the research types. The most used research type is
validation research (33%), which investigates novel techniques in controlled environments.
Philosophical papers (23%) are the second most popular research type; these papers review
the research area and create taxonomies and conceptual frameworks. The third most
popular research type is evaluation research (19%), meaning that many researchers are

Article number 240104

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table 8. References for research types

Research type ID

Philosophical paper P7, P8, P9, P25, P26, P27, P28, P31, P35, P37, P41, P42, P44, P48, P56, P58,
P64, P68, P71, P74, P79, P80, P84, P90, P100

Experience paper P5, P10, P11, P12, P19, P30, P38, P47, P62, P66, P72, P82, P87, P103
Solution proposal P15, P16, P17, P22, P40, P46, P53, P60, P63, P67, P81, P85, P106
Validation paper P4, P6, P29, P32, P33, P34, P43, P49, P50, P51, P52, P55, P59, P61, P69, P70,

P75, P76, P78, P83, P86, P88, P89, P91, P92, P93, P95, P96, P98, P99, P101,
P102, P104, P105, P107, P108

Evaluation research P1, P2, P3, P13, P14, P18, P20, P21, P23, P24, P36, P39, P45, P54, P57, P65,
P73, P77, P94, P97, P109

testing their techniques in practice and showing the benefits and drawbacks of those
techniques (evaluating their implementations). The fourth most popular research type is
experience research (13%), indicating that many researchers in this field only reported
their experiences. Finally, the least popular research types are solution proposals (12%)
and opinion papers (0%).

The research types can be divided into empirical and non-empirical research. Non-
empirical types are solution proposals, opinion papers, experience papers, and philosophical
papers. Empirical study types are validation and evaluation research. Most of the studies
(52%) are empirical and use verified data and observations to support research results,
while only (48%) are non-empirical. Empirical studies are critical for validating theories,
models, tools, and other migration-related artifacts.

4.2. Re-engineering phase (RQ2)

The second research question deals with the re-engineering phase: “(RQ2) What phase of
the re-engineering process is addressed by the research papers?” To research this question,
we utilized the horseshoe model, which divides the re-engineering process into three phases:
reverse engineering, transformation, and forward engineering [29]. We classified the primary
research papers according to the three re-engineering phases. The distribution of the
re-engineering phases can be seen in Figure 6. It should be noted that a research paper can
cover multiple re-engineering phases, meaning that the sum of the results is not the sum of
the research papers. Almost half of the research papers (48%) focused on transformation,

Figure 6. The re-engineering phases described as parts of the horseshoe model.
References in Table 9

12

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table 9. References for the re-engineering phases

Re-engineering phase ID

Reverse engineering P1, P3, P10, P11, P13, P17, P19, P22, P23, P26, P33, P35, P36, P37, P38, P39,
P40, P41, P42, P43, P44, P45, P48, P49, P52, P53, P56, P59, P60, P61, P66,
P67, P68, P71, P73, P76, P78, P80, P85, P86, P89, P90, P92, P96, P98, P99,
P100, P101, P102, P103, P104, P108, P109

Transformation P2, P4, P5, P6, P7, P8, P9, P10, P11, P12, P14, P15, P16, P17, P19, P21, P22,
P24, P25, P26, P27, P28, P29, P30, P31, P32, P33, P34, P35, P36, P37, P38,
P39, P40, P41, P42, P43, P44, P45, P48, P49, P50, P51, P52, P54, P55, P56,
P57, P58, P60, P62, P63, P65, P66, P67, P69, P70, P71, P72, P74, P75, P77,
P79, P80, P81, P82, P83, P84, P85, P86, P87, P88, P90, P91, P92, P93, P94,
P95, P97, P100, P103, P105, P106, P107, P108, P109

Forward engineering P2, P5, P8, P10, P11, P12, P16, P18, P20, P22, P24, P26, P31, P37, P38, P40,
P41, P42, P44, P45, P46, P47, P48, P49, P52, P56, P60, P64, P66, P67, P71,
P80, P85, P86, P90, P92, P100, P103, P109

while around a third (30%) covered reverse engineering, and around a fifth (22%) focused
on forward engineering, as shown in Figure 6.

4.3. Contributions to the domain (RQ3)

This section answers the third research question: “(RQ3) What are the contribution types
of the research papers?” Seven different contribution categories were identified from the
research papers: process, experience sharing, best practice, analysis, method, tool, and
metric. Figure 7 shows the distribution of the research contributions. Nearly half (44%) of
the research papers contributed to the research topic with a process, most often describing
the actions that can or should be taken to accomplish the goal of migrating to MSA. After
the process, the next most popular contribution type was analysis (24%), followed by
tool (9%) and method (8%). Conversely, best practice (7%), experience sharing (6%), and
metrics (2%) were the least common contribution types.

To better understand the contributions, they can be further categorized according to the
contribution type into technical and managerial contributions. Agilar et al. [32] used this
categorization method in their research for a similar purpose. A managerial contribution
describes a process, method, or approach that manages the migration process. A technical

Figure 7. Distribution of the research paper contribution types toward
the legacy system migration domain. References in Table 10

Article number 240104

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table 10. References for the research types

Contribution classification ID

Process P1, P2, P3, P6, P10, P11, P12, P14, P15, P16, P17, P19, P21, P29, P32,
P34, P36, P39, P40, P43, P45, P46, P47, P49, P50, P51, P53, P54, P59,
P60, P61, P62, P65, P67, P70, P72, P73, P75, P77, P78, P81, P85, P91,
P95, P96, P97, P98, P99, P106, P109

Analysis P4, P7, P8, P18, P20, P26, P27, P28, P35, P37, P41, P42, P44, P48, P56,
P57, P58, P64, P68, P71, P74, P79, P80, P82, P84, P90, P100

Tool P13, P33, P76, P89, P93, P101, P104, P105, P107
Method P13, P33, P76, P89, P93, P101, P104, P105, P107
Best practice P9, P22, P25, P31, P69, P92, P100, P103
Experience sharing P5, P30, P38, P52, P66, P87, P103
Metric P24, P63

contribution might be a tool, a metric, or software to support migration efforts. Using this
categorization method on our primary research documents yielded 90% managerial and
10% technical contributions.

4.4. Key findings

Our main findings are summarized in Table 11. While not all-inclusive, these gaps in the
research and observations are worth highlighting. We can observe the publication trends,
research approaches, and publication venues, as well as gain a better understanding of the
MSA migration process.

Table 11. Observations regarding the research gaps related to migration processes

Source Observation

RQ1 The year 2018 saw a significant increase in published research writings, mostly journal articles
and conference papers. Overall, conference papers and journal articles dominate the publication
types.

RQ1 Research into MSA migration has grown significantly between 2015 and 8/2023.
RQ1 Publication venues are scattered across different application domains and distinct topics.
RQ1 The primary research identified is split between empirical (52%) and non-empirical (48%)

work.
RQ2 Primary research papers mostly focused on the transformation (48%) phase of the re-engineering

process, rather than reverse engineering (30%) or forward engineering (22%)
RQ3 Managerial contributions account for 90% of all contributions, with processes being the most

common type (44%).

5. Discussion

The first research question focused on the publication trends related to the primary research.
Based on our results, the research on migrating legacy systems to MSA has increased from
2016 onward, as seen from Figure 4. Our primary research found no papers related to
MSA migrations from 2015. However, the increasing number of publications in our primary
research suggests growth, possibly supported by technological innovations (cloud platforms,
containers, and DevOps), shifts in the software architectural landscape, and a move away
from monolithic architecture and toward distributed architecture. Related to the growth of14

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

MSA migration research, we observed common motivations for migration in the primary
research papers: scalability (P5, P8, P12, P17, P19, P21, P25, P27, P28, P32, P42, P47,
P58, P65, P71, P86, P87, P90, P103, P106, P107, P109), maintainability (P1, P2, P8, P18,
P24, P25, P28, P32, P38, P42, P51, P65, P66, P77, P86, P103), time to market (P8, P30),
adaptability to new technologies (P2, P25, P30), and flexibility (P42, P56, P57, P87, P90,
P107). A possible reason for these motivations may be the need for more flexible software
architectures in the increasingly digitalized world.

The distribution of research types in our primary research is dominated by validation
research (33%), suggesting a strong emphasis on testing and validating new research
artifacts in controlled settings. Research in the field of philosophy (23%) often involves the
creation of taxonomies and conceptual frameworks, which provides clarity to the field and
suggests a mature research area. Evaluation research, which accounts for 19% of the research
conducted, serves as a bridge between theory and practice. The significant representation
of evaluation research suggests that the field of research is increasingly focused on applying
theoretical knowledge to practical situations and discovering the practical benefits and
limitations of research techniques. Experience research accounts for only 13% of the data
and is based on anecdotal evidence, lacking in testing or validation. Nevertheless, it still
provides valuable real-world information. The presence of experience research indicates
that practical insights and lessons learned from practitioners are still highly valued in the
field. Solution proposals account for only 12% of papers in the field, focusing on validating
rather than proposing new solutions.

Related to the research type, we found that a majority of it is empirical, indicating that
the research field is developing and becoming more mature. This suggests that researchers
are gaining a better understanding of the challenges, benefits, and nuances of migrating to
MSA by validating their theories and strategies with real-world data. The abundance of
validation and evaluation research also indicates that researchers are willing to test and
improve the existing theories and strategies related to the migration process. Additionally,
practitioners can benefit from the wealth of tried and tested tools, processes, and techniques
available to them. Meanwhile, researchers have the opportunity to develop new methods
by building on previous successful ones or experimenting with untested approaches.

Our primary research publications are mostly journal articles or conference proceedings.
Similar results are reported in the related research by Di Francesco et al. [24] and Hassan
et al. [20]. The tilt toward journals and conferences is understandable as they are more
scientifically rewarding than workshop publications. Targeting more challenging publication
venues is a good sign as that indicates that the research is of higher quality. We also
observed fragmentation in the publication venues, as was also noted by Di Francesco et
al. [24]; their study did not directly relate to ours as it focused on architecting with MSA
rather than migrating to MSA; however, there is a clear parallel between their findings
and ours regarding the publication venues. The fragmentation of publication venues
suggests that researchers approach the MSA migration process from multiple disciplines
with differing concerns. The fragmentation can also make it difficult for researchers and
practitioners to navigate the literature on MSA migrations. This can make it challenging
to identify influential research, gather knowledge, and ensure comprehensive coverage when
conducting literature reviews. Furthermore, the fragmentation can cause redundancy as
multiple researchers may work on similar research in isolation. For practitioners, this can
cause obstacles when trying to access the latest best practices available, which can delay
the introduction of new ones.

Article number 240104

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

The second research question queried the phase of the re-engineering process that the
research papers discussed. It was found that the most commonly discussed re-engineering
phase was transformation, accounting for 48% of the papers, which was more popular
than reverse engineering (30%) and forward engineering (22%). The difference between
the transformation phase and the other re-engineering phases indicates that researchers
are most interested in studying tools, workflows, and processes that transition the legacy
architecture to a more modern form. This might imply that while reverse engineering and
forward engineering are essential, the transformation phase is the most difficult of the
three or that there are more well-established practices in the other two. From the primary
research, we observed the following challenges related to the re-engineering process: the
absence of suitable decomposition approaches (P28), the high level of coupling between
software components (P23, P26, P27, P30, P35, P84), the lack of guidelines and best
practices for migration (P7, P27, P30, P50, P67), and the identification of microservices
from existing systems and boundary recognition (P3, P11, P13, P16, P17, P27, P28,
P30, P32, P33, P34, P36, P39). However, many solutions are also proposed to identify
microservices (P53, P55, P59, P61, P78).

The third research question aimed to identify the types of contributions made in each
research paper. The results showed that the most popular contribution type was process
(44%), which indicates that migration is a challenging task that requires precise and
straightforward processes to guide practitioners. The analysis research type accounted for
24% of research, indicating interest in understanding migration’s issues and benefits. Out of
all the research articles, 9% describe tools. This indicates that the field is gradually moving
toward creating software that can help with the migration process. However, further research
into tooling related to the migration process toward MSA could benefit the field. Only 8%
of the research articles were related to the method. This suggests less focus on refining and
introducing new techniques to address specific challenges. Best practices (7%) are crucial
for organizations migrating to MSA. However, their relatively low percentage suggests that
the field is still consolidating these practices. As more organizations migrate, consolidating
and documenting best practices will become increasingly important. Experience sharing
is only responsible for 6% of contributions. Experience sharing provides valuable lessons
for practitioners, given the unique challenges that each migration can present. The field
could benefit from more experience-sharing contributions. Metrics account for only 2% of
the contribution types. Their low percentage implies that standard metrics are yet to be
developed. As the field grows, there may be an increasing demand for standardized metrics
to assess the MSA migrations.

Further analysis shows that 90% of the research contributions are managerial instead
of technical; Hassan et al. report similar results regarding MSA migration literature [20].
The significant difference between managerial and technical contributions might be that
managerial contributions are more relevant in the migration process.

Other trends we noticed were the limitations of MSA, particularly that MSA is not
a silver bullet solution for legacy migrations (P4, P5, P7, P25, P31). P4 and P7 analyzed
different migration methods and concluded that there are many different methods for
migration, and practitioners must choose the right one depending on their circumstances.
The authors of P5 report on their experience working with an MSA migration project;
they conclude that microservices are not a one-size-fits-all solution as they introduce new
complexities into systems, and many factors, such as distribution complexities, should be
considered before adopting this style. P31 argues that there is no single way to implement
an MSA into an existing system but that practitioners should know the common pitfalls16

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

of such processes. Additionally, it is noted in P35 that there is a lack of evidence for the
benefits of mixing different migration methods.

Challenges worth researching are organizational challenges, such as the mindsets of
developers during the migration process (P27), the skill sets of developers (P8, P28), and
convincing management of the importance of migration (P30). Decentralizing databases is
another challenge worth investigating further (P35, P26, P27, P42, P49, P68, P87, P103). In
addition, our research suggests that the transactions between microservices are a challenge
for practitioners to deal with, so research defining proper guidelines on migrating without
performance degradation is critical (P6, P27, P38, P32).

The future of migration toward MSA can be seen through various automated tools,
frameworks, and methods for migration, identification, or refactoring. These tools are
highlighted in the following research papers: P75, P76, P78, P86, P88, P89, P90, P91,
P95, P96, P99, P100, P101, and P108. Advanced techniques and innovations, such as
reinforcement learning, are introduced in papers P81, P94, P101, and P104 to support the
migration process.

Our research has identified areas with significant challenges or a lack of research, and we
recommend conducting further research in these fields. Evaluation research is a significant
part of primary research but could still be expanded. This is because practitioners find it
challenging to adopt scientific implementations without evidence that they work in practice.
There may be a lack of opportunities for evaluation research, as modernizing software from
old legacy systems to MSA is still relatively rare. Additionally, companies may hesitate to
invite researchers to join or find it hard to enter these large projects that continue for many
years. We suggest exploring experience research and solution proposals to provide more
real-world insights and challenges and address unresolved issues with innovative solutions.

Regarding the fragmentation of publication venues, we suggest several potential solutions
to address this issue. These include conducting more literature reviews that provide an
overview of the research field, creating centralized repositories to gather literature and
increase accessibility, organizing interdisciplinary workshops and conferences to bring
together researchers from different disciplines working with MSA migrations, implementing
unified standards for all publication venues, promoting open access publishing to increase
availability, and educating new researchers about the research field.

Related to re-engineering, much of the research is focused on the transformation phase.
We suggest conducting more research on reverse and forward engineering to understand
the whole migration process better. Additionally, it would be useful to investigate the
challenges of re-engineering, such as the absence of suitable decomposition strategies and
the handling of high coupling in software components.

It is essential to encourage more research toward developing tools and methods that
can support the process of migrating. The documentation and consolidation of the best
practices for MSA migration should be promoted, and experts should share experiences to
capture real-world insights. Developing standardized metrics for evaluating MSA migrations
is also crucial.

Promoting research that provides guidelines for choosing the appropriate migration
method based on specific circumstances is important. Additionally, organizational challenges,
such as those related to the developer mindset and skill set, as well as the role of management in
MSA migration, should be investigated. Research on decentralizing databases and managing
transactions between microservices can also be promoted. The development of automated
tools, frameworks, and methods should be encouraged to simplify the MSA migration

Article number 240104

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

process. Furthermore, promoting research on advanced techniques, such as reinforcement
learning, can help to support the MSA migration process.

The challenges and motivations we observed from our primary research have inspired
us to do more research in this field. In particular, we want to focus on the motivations and
challenges related to MSA migrations. We will conduct empirical research on this topic
using survey research and interviews.

6. Threats to validity

The threats to validity are classified according to the classification by Wohlin et al. [33].
They give four categories for threats to validity: conclusion, internal, external, and construct.
The threats that we have identified are classified as internal and external. Internal threats
are those that can affect the study results without the knowledge of the researcher. External
threats limit the applicability of the results to the real world.

Regarding the internal validity threats, we implemented inclusion and exclusion criteria
to enhance the exactness of the primary research further. As part of our criteria, we
restricted the language to English only, which excluded 67 potential research papers from
the study. Furthermore, we did not include any grey literature in our study. We do not
believe that the lack of grey literature impacts the validity of our research, as peer-reviewed
papers must go through strict quality gates, which improves the quality of the research
papers included in this study. Another possible threat to validity is bias in selecting research
papers. One researcher chose the research papers manually, which may have introduced
bias in the selection process. The potential for bias was mitigated by strictly following the
exclusion and inclusion criteria.

In terms of the external validity threats, the research in this paper is limited to the
research discussing the migration of legacy systems to MSA. The most critical external
threat to the validity of this study is that we did not do backward-forward snowballing to
gather more potential primary research papers. The potentially missed primary research
papers mean our study may not entirely represent the MSA migration research field. We
utilized Google Scholar to search for research articles. The results are limited by publication
policies, which may affect the accessibility and visibility of the results. Further limitations
of Google Scholar are the inability to create complex search strings using Boolean operators
and nesting. It is also only possible to search based on the title or full text; it cannot define
proximity to the searched words; it cannot use complex dates, only date ranges. In addition,
the subject area is broad because there are no predefined sections for each subject matter.

7. Conclusion

Interest in MSA has seen an increase during the past decade. The interest is fuelled by
technological advancements, such as cloud computing, automation (DevOps), and container-
ization, as well as by the overall trend of digitalization and the way software is consumed
through the internet via browsers and mobile devices. Therefore, in this study, we have
studied the literature related to migrating from legacy systems to MSA.

We identified a pool of 1308 research publications and narrowed it down to 109 primary
sources discussing migrating from a legacy system to an MSA-based system. Our first
research question focused on the primary research and, more specifically, looked into the18

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

research strategy, publication year, and publication venue. The second research question
covered the specific area of research related to migrating from legacy systems to MSA.
Lastly, the third research question investigated the contributions of the research papers.

From the primary document analysis, we identified the following observations. Legacy
system to MSA migration research has increased from 2016 and reached a stable level
from 2018 onward. The amount of evaluation research suggests that the research field is
maturing. Another indication is that researchers in this field mostly target challenging
publication venues (conferences and journals). Related to the publication venues, we also
observed that there is major fragmentation in the publication forums, which suggests that
researchers approach the MSA migration process from multiple disciplines with differing
goals. This can make the research harder to find as it is scattered across many different
publication forums. Regarding the focus of the research (estimated with the horseshoe
model), we found that more studies focused on the transformation phase compared to
reverse engineering or forward engineering. Finally, the most common research contribution
type was a process.

The other trends identified from the literature include migration motivations: scalability,
maintainability, time to market, and adaptability to new technologies. We also note the
challenges observed in the research: that MSA is not a silver bullet solution for legacy
migrations, the decomposition of existing systems and identifying microservice candidates
from existing legacy systems, organizational challenges, decentralizing databases, the
migration of databases, and performance degradation during migration.

The MSA migration research is mature based on the publication venues and research
types utilized. The research field is scattered across many publication venues. There are
notable technical, managerial, and organizational challenges and differing motivations.
We have included our recommendations for future research in the discussion section. We
will continue conducting research in this field with survey and interview studies to study
industry practitioner’s challenges and motivations to understand the current problems and
pitfalls that affect the migration processes and the reverse engineering and re-engineering
tasks required.

Information about funding/support sources

We received no funding for this research.

References

[1] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping studies in software
engineering,” in 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE), 2008, pp. 1–10.

[2] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables DevOps:
Migration to a cloud-native architecture,” IEEE Software, Vol. 33, No. 3, 2016, pp. 42–52.

[3] M. Garriga, “Towards a taxonomy of microservices architectures,” in Software Engineering and
Formal Methods. SEFM 2017, Lecture Notes in Computer Science, A. Cerone and M. Roveri,
Eds., Vol. 10729. Springer, 2018, pp. 203–218.

[4] M. Richards, Microservices vs. service-oriented architecture. O’Reilly Media, 2016.
[5] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert, “Microservices,” IEEE Software,

Vol. 35, No. 3, 2018, pp. 96–100.
[6] N. Dragoni, S. Dustdar, S.T. Larsen, and M. Mazzara, “Microservices: Migration of a mission

critical system,” arXiv preprint arXiv:1704.04173, 2017.

Article number 240104

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

[7] P. Jamshidi, C. Pahl, N.C. Mendonça, J. Lewis, and S. Tilkov, “Microservices: The journey so
far and challenges ahead,” IEEE Software, Vol. 35, No. 3, 2018, pp. 24–35.

[8] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-native architectures using
microservices: An experience report,” in European Conference on Service-Oriented and Cloud
Computing. Springer, 2015, pp. 201–215.

[9] M. Fowler, “Microservices guide,” martinfowler.com, Tech. Rep., 2014.
[10] P. Calcado, “Building products at SoundCloud – Part II: Breaking the monolith,” SoundCloud,

Tech. Rep., 2014. [Online]. https://developers.soundcloud.com/blog/building-products-at-
soundcloud-part-2-breaking-the-monolith

[11] C. Bampis, C. Chen, A. Moorthy, and Z. Li, “Netflix video quality at scale with cosmos
microservices.” Medium, Tech. Rep., 2021. [Online]. https://netflixtechblog.com/netflix-video-
quality-at-scale-with-cosmos-microservices-552be631c113

[12] E. Haddad, “Service-oriented architecture: Scaling the Uber engineering codebase as we grow.”
Uber, Tech. Rep., 2015. [Online]. https://eng.uber.com/service-oriented-architecture/

[13] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in microservice archi-
tecture.” in 9th International Conference on Service-Oriented Computing and Applications
(SOCA), Vol. 9. IEEE, 2016, pp. 44–51.

[14] D.S. Linthicum, “Practical use of microservices in moving workloads to the cloud,” IEEE
Cloud Computing, Vol. 3, No. 5, 2016, pp. 6–9.

[15] W. Hasselbring and G. Steinacker, “Microservice architectures for scalability, agility and
reliability in e-commerce,” in International Conference on Software Architecture Workshops
(ICSAW). IEEE, 2017.

[16] A. Carrasco, B.V. Bladel, and S. Demeyer, “Migrating towards microservices: Migration and
architecture smells,” in Proceedings of the 2nd International Workshop on Refactoring. ACM,
2018, pp. 1–6.

[17] H. Knoche and W. Hasselbring, “Drivers and barriers for microservice adoption – A survey
among professionals in Germany. Enterprise modelling and information systems architectures,”
IEEE Software, Vol. 14, 2019, pp. 1–35.

[18] V. Velepucha, P. Flores, J. Torres, M. Botto-Tobar, J. León-Acurio et al., “Migration of mono-
lithic applications towards microservices under the vision of the information hiding principle:
A systematic mapping study,” in Advances in Emerging Trends and Technologies. Springer,
2020, pp. 90–100.

[19] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements engineering paper classifica-
tion and evaluation criteria: A proposal and a discussion,” Requirements engineering, Vol. 11,
No. 1, 2006, pp. 102–107.

[20] S. Hassan, R. Bahsoon, and R. Kazman, “Microservice transition and its granularity problem:
A systematic mapping study,” Software: Practice and Experience, Vol. 50, 2020, pp. 1651–1681.

[21] H. Knoche and W. Hasselbring, “From monolithic systems to microservices: An assessment
framework,” Information and Software Technology, Vol. 137, 2021.

[22] A. Razzaq and S.A.K. Ghayyur, “A systematic mapping study: The new age of software archi-
tecture from monolithic to microservice architecture – awareness and challenges,” Computer
Applications in Engineering Education, Vol. 31, No. 2, 2023, pp. 421–451.

[23] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,” in 6th International
Conference on Cloud Computing and Services Science, Vol. 1. ACM, 2016, pp. 137–146.

[24] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microservices: A systematic
mapping study,” Journal of Systems and Software, Vol. 150, 2019, pp. 77–97.

[25] M. Waseem, P. Liang, and M. Shahin, “A systematic mapping study on microservices architec-
ture in DevOps,” Journal of Systems and Software, Vol. 170, 2020.

[26] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in
software engineering,” EBSE, Tech. Rep., 2007.

[27] E. Vanhala, J. Kasurinen, A. Knutas, and A. Herala, “The application domains of systematic
mapping studies: A mapping study of the first decade of practice with the method,” IEEE
Access, Vol. 10, 2022, pp. 37 924–37 937.

20

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-2-breaking-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-2-breaking-the-monolith
https://netflixtechblog.com/netflix-video-quality-at-scale-with-cosmos-microservices-552be631c113
https://netflixtechblog.com/netflix-video-quality-at-scale-with-cosmos-microservices-552be631c113
https://eng.uber.com/service-oriented-architecture/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

[28] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brereton et al., “Evidence relating to
object-oriented software design: A survey,” in First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007). IEEE, 2007, pp. 482–484.

[29] R. Kazman, S. Woods, and C. S.J, “Requirements for integrating software architecture and
reengineering models: CORUM II,” in Proceedings Fifth Working Conference on Reverse
Engineering. IEEE, 1998.

[30] M. Bangert, Research Guides: Google Scholar: Advanced Searching. [Online]. https://semo.
libguides.com/google-scholar/advanced-searching

[31] S.H.S. University, What is Google Scholar and how do I use it?, 2022. [Online]. https://www.
shsu.edu/research/guides/tutorials/googlescholar/index.html

[32] E. de Vargas Agilar, R.B. de Almeida, and E.D. Canedo, “A systematic mapping study on
legacy system modernization,” SEKE, 2016, pp. 345–350.

[33] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell et al., Experimentation in Software
Engineering. Springer. [Online]. http://link.springer.com/10.1007/978-3-642-29044-2

Article number 240104

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/
https://semo.libguides.com/google-scholar/advanced-searching
https://semo.libguides.com/google-scholar/advanced-searching
https://www.shsu.edu/research/guides/tutorials/googlescholar/index.html
https://www.shsu.edu/research/guides/tutorials/googlescholar/index.html
http://link.springer.com/10.1007/978-3-642-29044-2

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Appendix A. Primary studies

Table A1. Primary research papers

ID Title Author Year

P1 Using Microservices for Legacy Software
Modernization

Holger Knoche, Wilhelm Hasselbring 2018

P2 On the Modernization of ExplorViz
towards a Microservice Architecture

Christian Zirkelbach, Alexander Krause,
Wilhelm Hasselbring

2018

P3 Towards the Understanding and Evolution
of Monolithic Applications as
Microservices

Daniel Escobar, Diana Cárdenas, Rolando
Amarillo, Eddie Castro, Kelly Garcés,
Carlos Parra, Rubby Casallas

2016

P4 Analysis of Legacy Monolithic Software
Decomposition into Microservices

Justas Kazanavičius, Dalius Mazeika 2020

P5 Migrating to cloud-native architectures
using microservices: An experience report

Armin Balalaie, Abbas Heydarnoori,
Pooyan Jamshidi, Antonio Celesti,
Philipp Leitner

2016

P6 Sustaining Runtime Performance while
Incrementally Modernizing Transactional
Monolithic Software towards Microservices

Holger Knoche 2016

P7 Migrating Legacy Software to
Microservices Architecture

Justas Kazanavičius, Dalius Mažeika 2019

P8 Drivers and Barriers for Microservice
Adoption – A Survey among Professionals
in Germany

Holger Knoche, Wilhelm Hasselbring 2019

P9 Migrating enterprise legacy source code to
microservices: On multitenancy,
statefulness, and data consistency

Andrei Furda, Colin Fidge, Olaf
Zimmermann, Wayne Kelly, Alistair
Barros

2018

P10 Microservices Xabier Larrucea, Izaskun Santamaria,
Ricardo Colomo-Palacios, Christof Ebert

2018

P11 Microservice Decomposition via Static and
Dynamic Analysis of the Monolith

Alexander Krause, Christian Zirkelbach,
Wilhelm Hasselbring, Stephan Lenga, Dan
Kröger

2020

P12 Principles of the Newdimensions Software
Creation for a Control Centre of the
Future: Cloud Computing and Software
Architecture

Rúben Araújo, Joaquim Nunes, Afonso
Fernandes, Rolando Martins

2020

P13 Extracting Candidates of Microservices
from Monolithic Application Code

Manabu Kamimura, Keisuke Yano,
Tomomi Hatano, Akihiko Matsuo

2018

P14 Microservices migration patterns Armin Balalaie, Abbas Heydarnoori,
Pooyan Jamshidi, Damian A. Tamburri,
Theo Lynn

2018

P15 Migrating to Microservices Alexis Henry, Youssef Ridene, Antonio
Bucchiarone, Nicola Dragoni, Schahram
Dustdar, Patricia Lago, Manuel Mazzara,
Victor Rivera, Andrey Sadovykh

2019

P16 Translating a Legacy Stack to
Microservices Using a Modernization
Facade with Performance Optimization for
Container Deployments

Prabal Mahanta, Suchin Chouta,
Christophe Debruyne, Hervé Panetto,
Wided Guédria, Peter Bollen, Ioana
Ciuciu, George Karabatis, Robert
Meersman

2020

P17 From Monolith to Cloud Architecture
Using Semi-automated Microservices
Modernization

Salvatore Augusto Maisto, Beniamino
Di Martino, Stefania Nacchia, Leonard
Barolli, Peter Hellinckx, Juggapong
Natwichai

2019

22

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table A1 continued
ID Title Author Year

P18 Using Microservices and Software Product
Line Engineering to Support Reuse of
Evolving Multi-tenant SaaS

Leonardo P. Tizzei, Marcelo Nery, Vinícius
C.V.B. Segura, Renato F.G. Cerqueira

2017

P19 Cracking the Monolith: Challenges in
Data managementing to Cloud Native
Architectures

Mishra Mayank, Kunde Shruti, Nambiar
Manoj

2018

P20 Does Migrate a Monolithic System to
Microservices Decreases the Technical
Debt?

Valentina Lenarduzzi, Francesco Lomio,
Nyyti Saarimäki, Davide Taibi

2020

P21 Microservices: Migration of a Mission
Critical System

Manuel Mazzara, Nicola Dragoni, Antonio
Bucchiarone, Alberto Giaretta, Stephan T.
Larsen, Schahram Dustdar

2018

P22 Migrating from Monoliths to Cloud-Based
Microservices: A Banking Industry
Example

Alan Megargel, Venky Shankararaman,
David K. Walker, Muthu Ramachandran,
Zaigham Mahmood

2020

P23 Function-Splitting Heuristics for Discovery
of Microservices in Enterprise Systems

Adambarage Anuruddha Chathuranga De
Alwis, Alistair Barros, Artem Polyvyanyy,
Colin Fidge, Claus Pahl, Maja Vukovic,
Jianwei Yin, Qi Yu

2018

P24 A Decoupled Health Software Architecture
using Microservices and OpenEHR
Archetypes

Marcio Silva, André Araújo, Paulo
Caetano da Silva

2020

P25 From Monolith to Microservices:
A Classification of Refactoring Approaches

Jonas Fritzsch, Justus Bogner, Alfred
Zimmermann, Stefan Wagner

2019

P26 Migrating Towards Microservice
Architectures: An Industrial Survey

Paolo Di Francesco, Patricia Lago, Ivano
Malavolta

2018

P27 Strategies Reported in the Literature to
Migrate to Microservices Based
Architecture

Heleno Cardoso da Silva Filho, Glauco
de Figueiredo Carneiro, Shahram Latifi

2019

P28 Microservices Migration in Industry:
Intentions, Strategies, and Challenges

Jonas Fritzsch, Justus Bogner, Stefan
Wagner, Alfred Zimmermann

2019

P29 A Model-Driven Approach Towards
Automatic Migration to Microservices

Antonio Bucchiarone, Kemal Soysal,
Claudio Guidi, Jean-Michel Bruel, Manuel
Mazzara, Bertrand Meyer

2019

P30 An Experience Report on the Adoption of
Microservices in Three Brazilian
Government Institutions

Welder Luz, Everton Agilar, Marcos César
de Oliveira, Carlos Eduardo R. de Melo,
Gustavo Pinto, Rodrigo Bonifácio

2018

P31 Migrating towards microservices:
Migration and architecture smells

Andrés Carrasco, Brent van Bladel, Serge
Demeyer

2018

P32 Discovering Microservices in Enterprise
Systems Using a Business Object
Containment Heuristic

Adambarage Anuruddha Chathuranga De
Alwis, Alistair Barros, Colin Fidge, Artem
Polyvyanyy, Hervé Panetto, Christophe
Debruyne, Henderik A. Proper, Claudio
Agostino Ardagna, Dumitru Roman,
Robert Meersman

2018

P33 Migrating Web Applications from
Monolithic Structure to Microservices
Architecture

Zhongshan Ren, Wei Wang, Guoquan Wu,
Chushu Gao, Wei Chen, Jun Wei, Tao
Huang

2018

P34 Towards Identifying Microservice
Candidates from Business Rules
Implemented in Stored Procedures

Marx Haron Gomes Barbosa, Paulo
Henrique M. Maia

2020

P35 Migrating from monolithic architecture to
microservices: A Rapid Review

Francisco Ponce, Gastón Márquez,
Hernán Astudillo

2019

P36 Towards a Technique for Extracting
Microservices from Monolithic Enterprise
Systems

Alessandra Levcovitz, Ricardo Terra,
Marco Tulio Valente

2016

Article number 240104

23

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table A1 continued
ID Title Author Year

P37 Migration to Microservices: Barriers and
Solutions

Javad Ghofrani, Arezoo Bozorgmehr 2019

P38 From a Monolithic Big Data System to
a Microservices Event-Driven Architecture

Rodrigo Laigner, Marcos Kalinowski,
Pedro Diniz, Leonardo Barros, Carlos
Cassino, Melissa Lemos, Darlan Arruda,
Sergio Lifschitz, Yongluan Zhou

2020

P39 Automatic Microservices Identification
from a Set of Business Processes

Mohamed Daoud, Asmae El Mezouari,
Noura Faci, Djamal Benslimane, Zakaria
Maamar, Aziz El Fazziki

2020

P40 Modernizing legacy systems with
microservices: A roadmap

Daniele Wolfart, Wesley K.G. Assunção,
Ivonei F. da Silva, Diogo C.P. Domingos,
Ederson Schmeing, Guilherme L. Donin
Villaca, Diogo do N. Paza

2021

P41 A Systematic Literature Review on
Migration to Microservices: A Quality
Attributes perspective

Roberta Capuano, Henry Muccini 2022

P42 Are we speaking the industry language?
The practice and literature of modernizing
legacy systems with microservices

Thelma Colanzi, Aline Amaral, Wesley
Assunção, Arthur Zavadski, Douglas
Tanno, Alessandro Garcia, Carlos Lucena

2021

P43 Translating a legacy stack to microservices
using a modernization facade with
performance optimization for container
deployments

Prabal Mahanta, Suchin Chouta 2020

P44 Monoliths to microservices-migration
problems and challenges: A SMS

Victor Velepucha, Pamela Flores 2021

P45 SPReaD: service-oriented process for
reengineering and DevOps: Developing
microservices for a Brazilian state
department of taxation

Carlos Eduardo da Silva, Yan de Lima
Justino, Eiji Adachi

2022

P46 Migration of monoliths through the
synthesis of microservices using
combinatorial optimization

Gianluca Filippone, Marco Autili, Fabrizio
Rossi, Massimo Tivoli

2021

P47 The Adoption of Microservices
Architecture as a Natural Consequence of
Legacy System Migration at Police
Intelligence Department

Murilo Góes de Almeida, Edna Dias
Canedo

2022

P48 Migration of monolithic applications
towards microservices under the vision of
the information hiding principle:
A systematic mapping study

Victor Velepucha, Pamela Flores, Jenny
Torres

2019

P49 An Approach to Migrate from Legacy
Monolithic Application into Microservice
Architecture

Justas Kazanavičius, Dalius Mažeika 2023

P50 A multi-criteria strategy for redesigning
legacy features as microservices: An
industrial case study

Wesley K.G. Assunção, Thelma Elita
Colanzi, Luiz Carvalho, Juliana Alves
Pereira, Alessandro Garcia, Maria Julia
de Lima, Carlos Lucena

2021

P51 From Monolith to Microservices:
A Semi-Automated Approach for Legacy
to Modern Architecture Transition using
Static Analysis

Mohd Hafeez Osman, Cheikh Saadbouh,
Khaironi Yatim Sharif, Novia
Admodisastro

2022

P52 Design Patterns and Microservices for
Reengineering of Legacy Web Applications

V. Dattatreya, K.V. Chalapati Rao,
M. Raghava

2021

P53 Improving microservices extraction using
evolutionary search

Khaled Sellami, Ali Ouni, Mohamed
Aymen Saied, Salah Bouktif, Mohamed
Wiem Mkaouer

2022

24

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table A1 continued
ID Title Author Year

P54 The Quality-Driven Refactoring Approach
in BIM Italia

Roberta Capuano, Fabio Vaccaro 2023

P55 Applying Microservice Refactoring to
Object-oriented Legacy System

Junfeng Zhao, Ke Zhao 2021

P56 An empirical study of the systemic and
technical migration towards microservices

Hamdy Michael Ayas, Philipp Leitner,
Regina Hebig

2023

P57 Towards a Multi-Tenant Microservice
Architecture: An Industrial Experience

Cesar Batista, Bruno Proença, Everton
Cavalcante, Thais Batista, Felipe Morais,
Henrique Medeiros

2022

P58 Review of methods for migrating software
systems to microservices architecture

Aleksandra Stojkov, Zeljko Stojanov 2021

P59 Analysis of a many-objective optimization
approach for identifying microservices
from legacy systems

Wesley K.G. Assunção, Thelma Elita
Colanzi, Luiz Carvalho, Alessandro Garcia,
Juliana Alves Pereira, Maria Julia de
Lima, Carlos Lucena

2022

P60 Migrating monoliths to
microservices-based customizable
multi-tenant cloud-native apps

Sindre Grønstøl Haugeland, Phu H.
Nguyen, Hui Song, Franck Chauvel

2021

P61 Leveraging the layered architecture for
microservice recovery

Pascal Zaragoza, Abdelhak-Djamel Seriai,
Abderrahmane Seriai, Anas Shatnawi,
Mustapha Derras

2022

P62 The collaborative modularization and
reengineering approach CORAL for open
source research software

Christian Zirkelbach, Alexander Krause,
Wilhelm Hasselbring

2020

P63 From Monolith to Microservice: Measuring
Architecture Maintainability

Muhammad Hafiz Hasan, Mohd. Hafeez
Osman, Novia Indriaty Admodisastro,
Muhamad Sufri Muhammad

2023

P64 Adopting microservices and DevOps in the
cyber‐physical systems domain: A rapid
review and case study

Jonas Fritzsch, Justus Bogner, Markus
Haug, Ana Cristina Franco da Silva,
Carolin Rubner, Matthias Saft, Horst
Sauer, Stefan Wagner

2023

P65 Microservice migration using strangler fig
pattern: A case study on the green button
system

Chia-Yu Li, Shang-Pin Ma, Tsung-Wen Lu 2020

P66 From a monolithic big data system to
a microservices event-driven architecture

Rodrigo Laigner, Marcos Kalinowski,
Pedro Diniz, Leonardo Barros, Carlos
Cassino, Melissa Lemos, Darlan Arruda,
Sérgio Lifschitz, Yongluan Zhou

2020

P67 Towards a process for migrating legacy
systems into microservice architectural
style

Daniele Wolfart, Ederson Schmeing,
Gustavo Geraldino, Guilherme Villaca,
Diogo Paza, Diogo Paganini, Wesley K.G.
Assunção, Ivonei F. da Silva, Victor F.A.
Santander

2020

P68 Using Database Schemas of Legacy
Applications for Microservices
Identification: A Mapping Study

Antonios Mparmpoutis, George
Kakarontzas

2022

P69 Patterns for Migration of SOA Based
Applications to Microservices
Architecture.

Vinay Raj, Ravichandra Sadam 2021

P70 A Hot Decomposition Procedure:
Operational Monolith System to
Microservices

Nikolay Ivanov, Antoniya Tasheva 2021

P71 A systematic mapping study: The new age
of software architecture from monolithic to
microservice architecture–awareness and
challenges

Abdul Razzaq, Shahbaz A.K. Ghayyur 2023

Article number 240104

25

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table A1 continued
ID Title Author Year

P72 From Monolithic to Microservice
Architecture: The Case of Extensible and
Domain-specific IDEs

Romain Belafia, Pierre Jeanjean,
Olivier Barais, Gurvan Le Guernic,
Benoit Combemale

2021

P73 On the performance and adoption of
search-based microservice identification
with tomicroservices

Luiz Carvalho, Alessandro Garcia, Thelma
Elita Colanzi, Wesley K.G. Assunção,
Juliana Alves Pereira, Baldoino Fonseca,
Márcio Ribeiro, Maria Julia de Lima,
Carlos Lucena

2020

P74 Transformation of Monolithic Applications
towards Microservices

Zaigham Mushtaq, Najia Saher,
Faisal Shazad, Sana Iqbal, Anam Qasim,
Imran Imran

2022

P75 An Approach to Migrate a Monolith
Database into Multi-Model Polyglot
Persistence Based on Microservice
Architecture: A Case Study for Mainframe
…

Justas Kazanavičius, Dalius Mažeika,
Diana Kalibatienė

2022

P76 Code vectorization and sequence of
accesses strategies for monolith
microservices identification

Vasco Faria, António Rito Silva, Irene
Garrigós, Juan Manuel Murillo Rodríguez,
Manuel Wimmer

2023

P77 Microservice Decompositon: A Case Study
of a Large Industrial Software Migration
in the Automotive Industry.

Heimo Stranner, Stefan Strobl, Mario
Bernhart, Thomas Grechenig

2020

P78 Expert system for automatic microservices
identification using API similarity graph

Xiaoxiao Sun, Salamat Boranbaev,
Shicong Han, Huanqiang Wang,
Dongjin Yu

2022

P79 Re-engineering Legacy Systems as
Microservices: An Industrial Survey of
Criteria to Deal with Modularity and
Variability of Features

Luiz Carvalho, Alessandro Garcia, Wesley
K.G. Assunção, Thelma Elita Colanzi,
Rodrigo Bonifácio, Leonardo P. Tizzei,
Rafael de Mello, Renato Cerqueira, Márcio
Ribeiro, and Carlos Lucena

2022

P80 The migration journey towards
microservices

Hamdy Michael Ayas, Philipp Leitner,
Regina Hebig

2021

P81 Facilitating the migration to the
microservice architecture via model-driven
reverse engineering and reinforcement
learning

MohammadHadi Dehghani, Shekoufeh
Kolahdouz-Rahimi, Massimo Tisi, Dalila
Tamzalit

2022

P82 Migration from monolithic to microservice
architecture: Research of impacts on
agility

Josef Doležal, Alena Buchalcevová 2022

P83 Mono2micro: A practical and effective tool
for decomposing monolithic java
applications to microservices

Anup K. Kalia, Jin Xiao, Rahul Krishna,
Saurabh Sinha, Maja Vukovic, Debasish
Banerjee

2021

P84 Accumulation and prioritization of
architectural debt in three companies
migrating to microservices

Saulo Soares De Toledo, Antonio Martini,
Phu H. Nguyen, Dag I.K. Sjøberg

2022

P85 How to transition incrementally to
microservice architecture

Karoly Bozan, Kalle Lyytinen, Gregory M.
Rose

2020

P86 Materializing Microservice-oriented
Architecture from Monolithic
Object-oriented Source Code

Pascal Zaragoza, Abdelhak-Djamel Seriai,
Abderrahmane Seriai, Anas Shatnawi,
Hinde-Lilia Bouziane, Mustapha Derras

2021

P87 Developing a Microservices Integration
Layer for Next-Generation Rail
Operations Centers

Andrei Furda, Lionel van den Berg,
Graeme Reid, Giancarlo Camera,
Matteo Pinasco

2022

26

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table A1 continued
ID Title Author Year

P88 From monolithic to microservice
architecture: An automated approach
based on graph clustering and
combinatorial optimization

Gianluca Filippone, Nadeem Qaisar
Mehmood, Marco Autili, Fabrizio Rossi,
Massimo Tivoli

2023

P89 Microservice decomposition and
evaluation using dependency graph and
silhouette coefficient

Ana Santos, Hugo Paula 2021

P90 Decomposition of Monolith Applications
Into Microservices Architectures:
A Systematic Review

Yalemisew Abgaz, Andrew McCarren,
Peter Elger, David Solan, Neil Lapuz,
Marin Bivol, Glenn Jackson, Murat
Yilmaz, Jim Buckley, Paul Clarke

2023

P91 Migrating Monoliths to Microservices
Integrating Robotic Process Automation
into the Migration Approach

Burkhard Bamberger, Bastian Körber 2022

P92 Mind Overflow: A Process Proposal for
Decomposing Monolithic Applications in
Microservices

Tcharles Pereira, Kleinner Farias 2020

P93 Benchmarks and performance metrics for
assessing the migration to
microservice-based architectures.

Nichlas Bjørndal, Antonio Bucchiarone,
Manuel Mazzara, Nicola Dragoni,
Schahram Dustdar

2021

P94 CARGO: AI-guided dependency analysis
for migrating monolithic applications to
microservices architecture

Vikram Nitin, Shubhi Asthana,
Baishakhi Ray, Rahul Krishna

2022

P95 From Legacy to Microservices:
A Type-based Approach for Microservices
Identification using ML and Semantic
Analysis

Imen Trabelsi, Manel Abdellatif,
Abdalgader Abubaker, Naouel Moha,
Sébastien Mosser, Samira
Ebrahimi-Kahou, Yann-Gaël Guéhéneuc

2022

P96 A multi-model based microservices
identification approach

Mohamed Daoud, Asmae El Mezouari,
Noura Faci, Djamal Benslimane,
Zakaria Maamar, Aziz El Fazziki

2021

P97 Building a Performance Efficient Core
Banking System Based on the
Microservices Architecture

Fikri Aydemir, Fatih Başçiftçi 2022

P98 A DDD Approach Towards Automatic
Migration To Microservices

Malak Saidi, Anis Tissaoui, Sami Faiz 2023

P99 Automated Planning for Software
Architectural Migration

Nacha Chondamrongkul, Jing Sun,
Ian Warren

2020

P100 Design principles, architectural smells and
refactorings for microservices:
A multivocal review

Davide Neri, Jacopo Soldani, Olaf
Zimmermann, Antonio Brogi

2020

P101 Improving Industry 4.0 Readiness:
Monolith Application Refactoring using
Graph Attention Networks

Tanisha Rathod, Christina Terese Joseph,
John Paul Martin

2023

P102 Incremental analysis of legacy applications
using knowledge graphs for application
modernization

Saravanan Krishnan, Alex Mathai, Amith
Singhee, Atul Kumar, Shivali Agarwal,
Keerthi Narayan Raghunath, David Wenk

2022

P103 Keep it in Sync! Consistency Approaches
for Microservices – An Insurance Case
Study

Arne Koschel, Andreas Hausotter, Moritz
Lange, Sina Gottwald

2020

P104 Microservice remodularisation of
monolithic enterprise systems for
embedding in industrial IoT networks

Adambarage Anuruddha Chathuranga
De Alwis, Alistair Barros, Colin Fidge,
Artem Polyvyanyy

2021

P105 An Approach to Break Down a Monolithic
App into Microservices

Taimoor Syed, Jun Long, Vijay Khatri,
Mansoor Khuhro

2021

Article number 240104

27

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table A1 continued
ID Title Author Year

P106 A Novel Methodology to Restructure
Legacy Application onto
Micro-Service-Based Architecture System

T.R. Vinay, Ajeet A. Chikkamannur 2022

P107 Impacts of Decomposition Techniques on
Performance and Latency of Microservices

Chaitanya K. Rudrabhatla 2020

P108 Remodularization analysis for microservice
discovery using syntactic and semantic
clustering

Adambarage Anuruddha Chathuranga
De Alwis, Alistair Barros, Colin Fidge,
Artem Polyvyanyy

2020

P109 Analysis and Development of
Microservices Architecture in Loan
Application System of Cooperative
Enterprise in Indonesia

Reynaldi Lie, Ahmad Nurul Fajar 2022

Appendix B. Publication venues

Table B1. Publication venues of the primary research papers

Publication venue # ID

IEEE International Conference on Software Architecture Companion (ICSA-C) 4 P11, P34,
P41, P54

IEEE Software 3 P1, P9, P10
IEEE International Conference on Software Architecture (ICSA) 3 P26, P61,

P88
Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 3 P38, P60,

P66
International Journal of Advanced Computer Science and Applications (IJACSA) 3 P51, P63,

P107
Software: Practice and Experience 2 P14, P64
On the Move to Meaningful Internet Systems: OTM Workshops 2 P16, P43
International Journal of Computer Applications (IJCA) 2 P24, P92
Software Engineering Aspects of Continuous Development and New Paradigms of
Software Production and Deployment (DEVOPS)

2 P25, P29

Brazilian Symposium on Software Components, Architectures, and Reuse
(SBCARS)

2 P42, P89

Empirical Software Engineering (EMSE) 2 P56, P59
International Conference on Advanced Information Systems Engineering (CAiSE) 2 P104, P108
Collaborative Workshop on Evolution and Maintenance of Long-Living Software
Systems

1 P2

Conferencia Latinoamericana En Informatica (CLEI) 1 P3
Baltic DB&IS Conference Forum and Doctoral Consortium 1 P4
Advances in Service-Oriented and Cloud Computing (ESOCC) 1 P5
Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering (ICPE)

1 P6

Open Conference of Electrical, Electronic and Information Sciences (eStream) 1 P7
Enterprise Modelling and Information Systems Architectures (EMISAJ) 1 P8
Computers in Railways XVII 1 P12
Asia-Pacific Software Engineering Conference (APSEC) 1 P13
Microservices 1 P15
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC) 1 P17
International Systems and Software Product Line Conference (SPLC) 1 P18
European Conference on Software Architecture (ECSA) 1 P19

28

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table B1 continued
Publication venue # ID

Journal of Systems and Software (JSS) 1 P20
IEEE Transactions on Services Computing 1 P21
Software Engineering in the Era of Cloud Computing 1 P22
Service-Oriented Computing (ICSOC) 1 P23
International Conference on Information Technology-New Generations (ITNG) 1 P27
IEEE International Conference on Software Maintenance and Evolution (ICSME) 1 P28
Brazilian Symposium on Software Engineering (SBES) 1 P30
International Workshop on Refactoring (IWoR) 1 P31
On the Move to Meaningful Internet Systems (OTM) 1 P32
Asia-Pacific Symposium on Internetware 1 P33
International Conference of the Chilean Computer Science Society (SCCC) 1 P35
Workshop on Software Visualization, Evolution, and Maintenance (VEM) 1 P36
Applied Informatics (ICAI) 1 P37
Smart Applications and Data Analysis (SADASC) 1 P39
International Conference on Evaluation and Assessment in Software Engineering
(EASE)

1 P40

Second International Conference on Information Systems and Software Technologies
(ICI2ST)

1 P44

1 P45
Service Oriented Computing and Applications (SOCA)
IEEE International Conference on Software Reliability Engineering Workshops
(ISSRE Wksp)

1 P46

International Conference on Computational Science and Its Applications (ICCSA) 1 P47
The International Conference on Advances in Emerging Trends and Technologies
(ICAETT)

1 P48

IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream) 1 P49
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER)

1 P50

International Conference on Smart Computing and Informatics 1 P52
Information and Software Technology 1 P53
International Conference on Dependable Systems and Their Applications (DSA) 1 P55
IEEE Annual Computers, Software, and Applications Conference (COMPSAC) 1 P57
Journal of Engineering Management and Competitiveness (JEMC) 1 P58
International Journal on Advances in Software (IARIA) 1 P62
International Computer Symposium (ICS) 1 P65
Anais Da Escola Regional De Engenharia De Software (ERES) 1 P67
International Conference on Algorithms, Computing and Systems (ICACS) 1 P68
Journal of Web Engineering (JWE) 1 P69
International Conference Automatics and Informatics (ICAI) 1 P70
Computer Applications in Engineering Education 1 P71
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C)

1 P72

International Conference on Software Maintenance (ICSM) 1 P73
International Journal of Innovations in Science and Technology (IJIST) 1 P74
Applied Sciences 1 P75
International Conference on Web Engineering (ICWE) 1 P76
International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE)

1 P77

Expert Systems 1 P78
Handbook of Re-Engineering Software Intensive Systems into Software Product
Lines

1 P79

Product-Focused Software Process Improvement (PROFES) 1 P80
Software and Systems Modeling (SoSyM) 1 P81
Digitalization of society, business and management in a pandemic: Interdisciplinary
Information Management Talks (IDIMT)

1 P82

Article number 240104

29

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

Kristian Tuusjärvi et al. e-Informatica Software Engineering Journal, 18 (2024), 240104

Table B1 continued
Publication venue # ID

ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE)

1 P83

IEEE Access 1 P84
Communications of the ACM (CACM) 1 P85
International Conference on Software Technologies (ICSOFT) 1 P86
IEEE Software 1 P87
IEEE Transactions on Software Engineering (TSE) 1 P90
Journal of Automation, Mobile Robotics and Intelligent Systems (JAMRIS) 1 P91
Journal of Object Technology (JOT) 1 P93
IEEE/ACM International Conference on Automated Software Engineering (ASE) 1 P94
Journal of Software: Evolution and Process 1 P95
Journal of Systems Architecture (JSA) 1 P96
Journal of Grid Computing 1 P97
International Conference on Advanced Systems and Electric Technologies
(IC_ASET)

1 P98

IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS)

1 P99

Software-Intensive Cyber-Physical Systems (SICS) 1 P100
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
Workshops (CCGridW)

1 P101

Joint International Conference on Data Science and Management of Data
(CODS-COMAD)

1 P102

International Conference on Advanced Service Computing 1 P103
Sylwan Journal 1 P105
Emerging Research in Computing, Information, Communication and Applications
(ERCICA)

1 P106

Journal of Theoretical and Applied Information Technology (JATIT) 1 P109

30

Article number 240104

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-4/

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240105, DOI: 10.37190/e-Inf240105

Measuring End-user Developers’
Episodic Experience

of a Low-code Development Platform
A Preliminary Study

Dongmei Gao∗ , Fabian Fagerholm∗

∗Department of Computer Science, Aalto University
dongmei.gao@aalto.fi, fabian.fagerholm@aalto.fi

Abstract
Background: As low-code development platforms (LCDPs) are becoming a trend,
understanding how end-user developers think and feel as they work with such platforms
is important. Particularly, assessing experiences during episodes of use can contribute to
overall experience throughout long-term use.
Aim: This paper aims to understand end-user developers’ episodic experience when they
are building an application on a low-code platform and to provide guidance on how such
experiences can be measured.
Method: We designed the Episodic Developer Experience Questionnaire for LCDPs
based on prior literature and refined it through expert Delphi sessions. The instrument
contains 10 individual experience items, capturing various aspects of episodic experience.
We further validated it through remote online tests on an LCDP.
Results: The results showed significant differences in the relationships between items
describing aspects of overall experience and items describing perceptions of tool quality
and task difficulty. Programming expertise also affected end-user developers’ episodic
experience.
Conclusion: The study illustrates the design of questionnaire-based experience assessment
in the context of development and identifies the importance of separating personal
experience from assessment of tasks and tools since tool quality and task difficulty do not
necessarily influence experience straightforwardly.

Keywords: developer experience, episodic experience, low-code development plat-
forms, experience measurement, software engineering, human-computer interaction

1. Introduction

Developer experience (DX) refers to the subjective experiences arising from the involvement
in software development [1, 2]. Understanding and improving DX can contribute to better
support and increased well-being for software developers and may ultimately lead to higher
levels of creativity and productivity [3, 4]. Developer motivation and happiness – factors of
a positive experience – are also regarded to be correlated with the success of a project [5, 6].

Software developers have often been understood as having expert programming knowl-
edge, while end-user developers [7] may have different kinds of domain knowledge but

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 15 Jun. 2023; Revised: 15 Dec. 2023; Accepted: 5 Feb. 2024; Available online: 1 Mar. 2024

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0000-7332-8208
https://orcid.org/0000-0002-7298-3021

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

are not specialised in software development. End-user developers therefore need software
development tools that allow them to generate software programs or applications using
domain concepts without needing to delve into the details of the implementation. Recently,
Low-Code Development Platforms (LCDPs) have emerged in the industry to enable domain
experts without programming knowledge to build applications [8, 9]. LCDPs offer a variety
of ready-made components and features that allow making applications easily, usually by
manipulating visual objects. Because they allow rapid expression of ideas, even developers
experienced with textual programming languages may prefer to use LCDPs to save effort
and time for certain kinds of tasks. Given the diverse levels of knowledge among developers,
some LCDPs are designed to support both inexperienced and expert developers. They
aim to enable developers of all levels to achieve their goals and to give them a positive
developer experience.

LCDPs are still new and it is unclear how widespread their use will become. Some recent
studies have discussed the conceptual understanding of LCDPs [10, 11], their characteristics [8],
and challenges and opportunities associated with their use [12]. To understand how LCDPs
could fit into the tool landscape of developers at different skill levels, it is important to
understand how they affect DX.

DX can be observed on different time scales, varying from a developer’s earliest awareness
of a tool to use over a long period of time [2]. In this study, we focus on episodic experience
to understand how developers feel after a single session of LCDP use where they focus
on a bounded task, such as developing an individual application feature, in a given time.
Their experience may change over time as they use an interactive product. They may
be excited to use a new product for the first time, or attracted by its appearance, then
become anxious by the complexity of the interaction during use, or satisfied because of the
intuitiveness and efficiency of the functionality, and finally develop a complex experience
about the product after a longer period of use.

Measuring and tracking episodic experience can yield insights into how the long-term
experience has formed. It can also inform iterative design improvements to the platform.
Our study design works by eliciting episodic experiences through naturally-bounded sessions
of work that can be completed within a given period. Particularly, each session has a small
set of goals and utilises a particular set of tool features, which we believe is an important
unit of observation to inform the understanding of DX and assist in improving the design
of LCDPs and other development tools.

To facilitate the comparison of experiences of LCDP use, we propose EDEQ-LCDP,
a questionnaire instrument that captures important dimensions of developers’ episodic
experience. The intent is to provide an instrument that can be used rapidly after a develop-
ment session to give an indication of the contents and quality of the developer’s experience.
The development of the questionnaire also illustrates how measuring DX is different from
measuring UX in two senses: in terms of what experiential content or characteristics are
relevant to the context of development rather than the context of use, and in terms of the
object of assessment, which can vary between the experience itself and an assessment of
a tool or product. We seek to disentangle the experience from assessments of the tool and
the task and discuss the challenges of doing so.

The aim of the present study is therefore to provide an understanding of end-user
developers’ episodic experience while performing application-building tasks on an LCDP
so that the development of measurement instruments for episodic developer experience can
be better guided. We formulated the following research question:

2

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

RQ: How can end-user developers’ episodic experience of low-code development platforms
be measured?
The paper also contributes to the EDEQ-LCDP instrument as a basis for episodic

developer experience measurement. To our knowledge, the instrument proposed in this
paper is the first to focus specifically on the episodic experience of LCDPs. We take some
steps towards examining the construct validity of the questionnaire as well as its content
validity for practical and conceptual purposes, while properties of statistical generalisability
are of secondary importance. While our study is performed using a particular LCDP, the
instrument is not tied to any of its special features, and could, bearing limitations in mind,
be used in tasks with other LCDPs as well.

2. Related work

DX has been defined as “a means for capturing how developers think and feel about their
activities within their working environments” [1]. Fagerholm and Münch [1] proposed
a conceptual framework for developer experience with three main dimensions – cognition
(perception of development infrastructure), affect (emotional state about work) and conation
(the value of one’s own contribution). An extended discussion of the three dimensions was
provided in a study of measuring DX toward the use of a Deep Learning (DL) platform
[13]. Here, “cognition” is the rational basis provided by the DL platform, “affection” is
explained as the emotional state, and “conation” is about the developer’s tendency to use
the DL platform voluntarily.

Transferring from the concept of user experience (UX), Fagerholm and Münch [1]
conceptualised DX as experiences arising from the context of development, with impacts
for individual developers and teams of developers, but also for organisational and product
outcomes such as process adherence, productivity, and the quality of the end product.
Thus, DX is a concern for developers themselves and for the organisations they work in
and has implications for the customers and end-users of the software they produce.

Time seems to have an impact on the importance people attribute to different qualities
of the experience with interactive products [14]. Anticipated experience refers to evaluations
that occur before use, immediate or momentary experience is related to in-the-moment
impressions, episodic experience emerges during a specific time-bounded duration, and ac-
cumulated experience (also known as cumulative experience) happens after long-term usage.
Fagerholm’s theoretical framework also categorises developer experience into immediate,
episodic, and cumulative experience [2].

Episodic experience has drawn attention in various contexts: for example, research on
learning to become a coach has shown that it can affect the way that individuals perceive
what they know, and have the potential to influence their perception of future learning [15].
Marti and Iacono [16] recorded users’ experiences during four weeks of using a product,
showing that their episodic experience changed over time. Despite the crucial importance of
usability in the product’s initial acceptance, aspects of reliability, motivation, comparison
with other products, change in behaviour and touch points – how the product communicates
with the user, for example by notifications and alerts – are even more crucial for a user to
resonate with a product and value it in the long term.

Greiler et al. [17] proposed an actionable conceptual framework to better understand
and improve DX. They suggest putting the framework to work using an Ask-Plan-Act
process: make problems visible by qualitative or quantitative means, determine the area to

Article number 240105

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

be improved, and make continuous and small improvements. A survey instrument could be
utilised in such an improvement cycle.

To facilitate the development of a DX instrument for the LCDP context, we should first
understand more about the factors influencing DX, learn more about the characteristics
of end-user developers as a particular group of LCDP users, and finally describe current
research on LCDPs themselves. We discuss these topics in the following sub-sections.

2.1. Factors influencing developer experience

While some attempts have been made to construct survey instruments to assess developer
experience (e.g., the DEXI scale [18]), there is currently a lack of instruments designed to
measure DX in specific settings and for particular categories of experience. Previous studies
have aimed to identify metrics or factors that impact developer experience. Kuusinen [19]
conducted a survey considering a particular cross-platform IDE and found characteristics
such as efficiency of use, flexibility, informativeness, intuitiveness, and reliability to be
appreciated by developers. While developers in this study concentrated mainly on the
pragmatic qualities of the tool, they also related experiences of hedonic aspects, such as
affection for the tool, and expressions of feeling at home with it and that it has a good
atmosphere.

The importance of developers’ motivation for work has been widely emphasised in
software engineering [20]. Intrinsic factors, such as autonomy and sense of achievement,
have been found to be essential motivators of software developers [5]. Graziotin et al. [21]
investigated factors associated with developer unhappiness, finding several factors to
negatively influence happiness, such as being stuck in problem-solving, time pressure, bad
code quality and coding practices, mundane or repetitive tasks, imposed limitations on
development, and personal issues. Storey et al. [4] found that developers’ job satisfaction
can in turn impact their perceived productivity. To improve developer satisfaction, they
identified several factors: how managers manage, and whether developers can effectively use
their skills and believe their work has an impact. Linberg [22] found a large gap between
developers’ definition of job success and traditional definitions. Developers might remain
satisfied with their jobs even if the project seems like a failure by others. Motivation is
thus a complex dimension of experience that may be very personal and not only be driven
by external outcomes.

Previous research has presented numerous factors to describe developer experience in
different contexts. Bobkowska [23] built a model to explain the intuitiveness of software
engineering techniques using UX concepts. It includes four perspectives: cognitive processes
(users’ familiarity with the technique), motivations (using the technique to solve a problem),
actions (actions lead to good or poor results) and emotions (positive or negative attitudes).
The model attempts to explain how episodic experiences with the techniques build up into
cumulative experience and a perception of intuitiveness. Here, the episodic experiences
are related to specific actions taken within the frame of a particular technique, and those
experiences then accumulate and are generalised into cumulative experiences. The latter
may then include the notion of intuitiveness regarding the technique. However, intuitiveness
may also be the starting point: early experiences influence motivation to learn, they influence
affective attitudes towards the technique, and they moderate the results of learning and
actions, which then set the direction for the development of further experiences.

Despite the many existing studies on cognitive (cf. [24]) and affective (cf. [25]) aspects
involved in software development, how to measure episodic DX, such as what dimensions4

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

to measure to capture the salient features of developers’ experiences as compared to users’
experiences, remains an open question.

2.2. End-user developers

End-user development (EUD) has been defined as “the set of methods, techniques, tools,
and socio-technical environments that allow end users to act as professionals in those
ICT-related domains in which they are not professionals, by creating, modifying, extending
and testing digital artefacts without requiring knowledge in traditional software engineering
techniques” [26]. In the context of EUD, the term end-user developer is also widely used to
describe people who have neither the skills nor the interest to customise a system in the
way that software professionals do [27].

Cotterman and Kumar [28] defined an end user as “any organizational unit or person
who has an interaction with the computer-based information system as a consumer or
producer/consumer of information”. They mapped out three dimensions across which the
role of users can vary: operation, development, and control. Operation refers to tasks and
actions necessary for operating a computer system, development refers to tasks related
to the development of such a system, and control refers to the decision-making authority
to acquire, deploy, and use resources necessary for operation and development. The role
of a user may then involve more or less of the activities across these dimensions, and
according to this taxonomy, end users share some traits with persons whose primary role
is to develop a system.

Today, the boundary between development and non-development tasks in the roles of
employees who are not primarily hired as software developers can be considered somewhat
fluid because of the flexible ways in which many software products can be customised or
controlled programmatically after they have been deployed to users. In the case of LCDPs,
this fluidity goes even further. End-users of LCDPs become end-user developers when they
begin to develop their software applications using LCDPs, shifting their role across the
development dimension of Cotterman and Kumar’s taxonomy.

Most importantly, we assume that end-user developers range from professional developers
to people who are not experienced with or specialised in conventional software development
(so-called citizen developers) [29]. As far as we know, the term citizen developer first
appeared alongside LCDP in a 2014 Forrester report [30]. Since then, the term has been
widely embraced by LCDP vendors and organizations as their potential user groups [12]. The
promise of LCDPs is that they allow citizen developers to build their software applications
without the help of professional developers [11, 29] while professional developers can also
benefit from LCDPs, for example by being more productive and reducing time spent on
repetitive tasks. The low-code platforms on the market today are also increasingly focused
on freeing people from heavy, monotonous underlying development tasks and focusing more
on the realisation of ideas.

The two terms EUD and citizen developer thus have a significant overlap, with the
latter originating in industry and focusing attention on the role of an employee in relation
to the IT function of an organisation [29], and the former being a more long-standing
and established term in research which we perceive as subsuming the other term. We
have chosen to use the term EUD in this paper because of its longer history, broader
and more elaborate definition, and because we do not investigate the aspects of citizen
development that relate the citizen developer and the applications they produce to the
larger IT infrastructure and governance in an organisation. We consider the end-user

Article number 240105

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

developer as a person who has two roles, being an end-user of the product and a developer
of an application at the same time, a definition that shares many important aspects of
the citizen developer term and is consistent with terminology used in human-computer
interaction and software engineering research (see, e.g., [26–29]).

2.3. Low-code development platforms (LCDPs)

In recent years, Low-Code Development Platforms (LCDPs) have emerged as a specific
kind of EUP tool that reduces the effort of implementing simple applications. LCDPs can
provide developers with the means to generate and deliver business applications quickly with
minimum effort in terms of installation and configuration of the development environment,
training, and implementation of the project [31]. They contain a set of components and
features for programmers and non-programmers. LCDPs are primarily aimed at developers
with a limited programming background [11]. These end-user developers rely on LCDPs
to achieve their creative ideas without going through conventional development cycles to
build applications from scratch as traditional developers do. In addition, faced with the
ever-changing customer needs in the software business, firms often adopt LCDPs for fast
delivery with a minimum of hand-coding, quick setup and deployment. They also address
the ability of LCDPs to test business ideas within days or weeks [30]. Thus, professional
developers (professionals with an education or career in software development) can benefit
from LCDPs as well, for example by being more productive [29].

Waszkowski [31] pointed out three main features of LCDPs: databases, business processes
and user interface. They simplify the development process, reduce the learning costs and
visualise the coding environment to allow developers to spend less time on coding and
focus on their goals. Although there is a varied range of different types of LCDPs, some
typical functionalities and features can be identified [11]. Two major structures of LCDPs
have been described: UI to Data and Data to UI [11], denoting the flow of design from
either the user interface or the data model. Sahay et al. [11] list four LCDP characteristics
that have a large impact on DX: 1) interoperability, by creating standards and a friendly
ecosystem in a domain to mitigate issues caused by closed sources; 2) extensibility, allowing
developers to customise capabilities to reduce the design constraints; 3) the learning curve,
which is still less intuitive for end-user developers; and 4) scalability, such as running on
the cloud to manage intensive computing [11].

The term no-code is closely related to low-code. It is sometimes used as a slight variation
of low-code [10, 29] or a synonym to refer to low-code development practices [8]. As we
can see in the market, LCDP vendors define their products as no-code or low-code tools
according to their business goals. The distinction of them is still ambiguous and practitioners
also use these two terms interchangeably. In this paper, we view the no-code platform as
a subset of a low-code platform. End-user developers can use the basic functionality of the
low-code platform without writing any code but are still required to write several lines of
code to get access to more advanced features.

3. Research approach

In this paper, we present the development of a new questionnaire instrument that aims to
identify important influencing factors of developers’ episodic experience of LCDPs. The
instrument we designed aims at end-user developers including both professional developers6

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

and citizen developers. The purpose of developing the instrument is primarily to structure
the phenomenon of developer experience in the context of LCDPs, to provide further
understanding of it, and to provide guidance on how such experiences can be measured.
To a lesser extent, we are also interested in the questionnaire instrument itself for purposes
of measuring DX in an LCDP context, but we do not aim to fully validate the instrument
for general use.

The process of developing the questionnaire and providing a preliminary validation of it
involved three stages, as shown in Figure 1. First, we analysed related literature to collect
potentially relevant question items and constructed a preliminary questionnaire based on
these items (Stage 1). Second, we used a Delphi study [32] to gather opinions from a panel
of experts, helping us to capture important nuances and refine the questionnaire (Stage 2).
In the third stage, we ran a task-based test in which 19 developers were asked to use an
LCDP in individual sessions (Stage 3). After each task, they filled in our questionnaire,
providing us with data to further analyse it. The result of this research process is the final
questionnaire proposed in this paper.

A total of 110 items
from the literature

Development of the
questionnaire

Preliminary
questionnaire with 12

experience items
Delphi study

Refined questionnaire
with 10 experience

items
Task-based test Final questionnaire

6 experts 19 testers

Question items on
assessment of task

and tool

Stage 1: Literature-based development
February - March, 2022

Stage 2: Expert refinement
April - May, 2022

Stage 3: Empirical test
June - July, 2022

Figure 1. Overview of the research approach

The questionnaire aims to capture end-user developers’ episodic experiences in relation
to tasks performed using an LCDP. Assessing episodes with a limited number of tasks that
involve known features enables assessment of specific parts of an LCDP, which may be
helpful when using the questionnaire for design improvements in the tool.

We assume that the degree of familiarity with software development could influence
individual developers’ experience. Their prior familiarity can influence how much effort
and time they need to invest in learning the platform. Therefore, the impact of prior
programming background was taken into account in this study by introducing a set of
background questions for the participants of the task-based test. Another factor that
could influence a developer’s experience is the complexity of the task and the environment
in which it needs to be conducted. For example, a complex IT environment with many
existing applications made using an LCDP presents a more challenging environment because
the developer may have to consider existing software when they develop something new.
However, in this study, we focus on the individual experience of an LCDP in a bounded
development task. The questionnaire instrument does not assess the difficulty of the
environment but aims to capture basic information about a developer’s personal experience.
To differentiate between the experience of the platform and the task, we included question
items that asked for assessments of the tool and the task. We discuss the details and output
of each stage in the following sections.

Article number 240105

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

4. Literature-based development of a preliminary questionnaire

We developed an initial questionnaire by collecting experience items from existing studies
with relevance to DX. Our starting point was a set of factors reported in a multi-vocal liter-
ature review of LCDP, which collected factors both from scientific and grey literature [33].
We also searched for articles which presented questionnaire instruments to measure DX or
UX using Google Scholar and used items from those questionnaires as potential candidate
items for our questionnaire.

4.1. Source literature

Nylund [33] presented factors that improve and worsen DX based on existing literature.
The list of 17 DX influencers includes topics such as mood and feelings, project onboarding,
and factors related to the software development methodology, such as Agile software
development. This study facilitated our search for literature associated with DX by providing
a systematically collected set of relevant literature. We expanded this set by a search for
DX and UX measurement instruments. We first used Google Scholar with the keywords
“developer experience measurement” to find additional candidate items. We also used
the keywords “user experience measurement” to extend the search scope. We selected
papers that presented questionnaire-based instruments that could potentially be relevant
for measuring different aspects of developer experience.

We included items from the Developer Experience Scale (DEXI) [18], one of the first
questionnaire instruments that aim to measure the DX of development tools. Its word
pairs were obtained from several sources and selected based on their relevance to software
development. It contains one item for measuring general quality, five items for pragmatic
quality, and six items for hedonic quality. We also collected 20 items from a recent study
conducted by Lee and Pan [13] which aimed to evaluate sub-constructs of DX – cognitive,
emotional and behavioural – and which itself is based on items from various sources.

We found only a few instruments intended specifically for DX measurement. Because of
the commonalities between UX and DX and the greater breadth and depth of UX research,
we also considered other widely used UX surveys: the Short Dispositional Flow State Scale
(SDFS-2) [34], Intrinsic Motivation Inventory (IMI) [35], and Short AttrakDiff-2 (SAD-2) [36].

4.2. Item selection and categorisation

We initially considered all items from the candidate questionnaires and proceeded to exclude
items that did not fit our purpose. We de-duplicated items, removing those that were the
same in two or more of the original questionnaires. We retained items that concerned episodic
experience and discarded items that were referred only to immediate (e.g., “The appearance
is beautiful.”) and cumulative experience (e.g., “I will recommend it to my friends.”).

Under the episodic experience category, we continued to subdivide the items by cognition,
affect and conation to ensure that the instrument would cover the three aspects of the DX
framework [1]. To perform this subdivision, we used the following guidelines:
1. Cognition: Items related to performing tasks and the efficiency or effectiveness of

performing them, or to the usefulness of a tool in helping to perform them.
2. Affect: Items that describe emotions in a situation or related to a task or activity.
3. Conation: Items that describe the result or value obtained by a developer or that are

related to developers’ motivation or volition.8

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

We did not assume that the final questionnaire should consist of items that are possible
to map exactly to a single dimension in the framework. The purpose of this stage was to
ensure a good starting point for the following steps in the questionnaire development.

At this stage, we wanted respondents’ responses to focus only on their own experiences
with the application development process, avoiding comments and perceptions about the
tool or the task. Personal experience is complicated and can be influenced by various factors.
Considering the aims of the questionnaire, it is more important to capture developers’
notions of the overall experience of making an application than perceptions of the tool
itself or the task they have just completed. For example, they might be satisfied with
the user interface of the tool but anxious about the slow speed at which they progress in
making their application; or they might feel that the platform is hard to use but the task
in itself is easy to complete. With our focus being on individual developers’ experience,
we wanted the questionnaire to capture their assessment of their internal experience and
not their observations of the tool or task. Also, focusing on the experience of the process
of developing an application makes the questionnaire more general and not tied to any
specific features of an LCDP. For these reasons, we removed items that referred to features
or characteristics of tools, such as “It has explicit guidelines.” and “It has a high level of
information.”

4.3. Questionnaire format

Since our questionnaire is meant to be used after episodes that may range from minutes to
a few hours at most, we wanted a format that is quick to fill in. To that end, we adopted
a semantic differential format (polar word pairs), following some existing and widely used
UX questionnaires such as AttrakDiff-2 [36]. We also wanted a granular enough scale to let
respondents capture nuances between the polar ends of each item. Psychometric literature
suggests that more scale points provide better statistical properties for the data [37], but this
has to be balanced with complexity for participants. While the issue can be debated, we opted
for a seven-point scale based on current psychometric research (see, e.g., Taherdoost [38] for
a summary).

The outcome of the preliminary design stage was a set of 12 items. These are available
in the supplementary material [39].

5. Delphi study and final questionnaire

Delphi studies aim to improve decision-making by seeking the most reliable consensus
from a group of experts [32]. The preliminary questionnaire described above was based
on a literature review and our subjective analysis. We sought strengthened confidence
in content validity, i.e., that our questionnaire items were consistent with the nature of
LCDPs, and whether the wording was understandable in a practical setting. To this end, we
contacted prospective experts through our industry collaboration networks and a purposive
search on LinkedIn. Lynn [40] suggested using at least three and at most ten panellists for
evaluating content validity. We selected and invited six experts with technical and research
backgrounds to comment on the questionnaire. All participants were interested in DX and
had work responsibilities related to the topic. Three experts work as UX Designers for an
LCDP company; one is a principal user researcher in global large-scale research programs;

Article number 240105

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

and the remaining two have rich experience with managing developers in industry practice.
The participants are based in the Czech Republic, Finland, France, and the USA.

We held online meetings where we presented the in-progress questionnaire items to
each expert in turn. They were free to make any comments and suggestions on the items,
and we asked them open-ended questions to gain knowledge of how they perceived the
items and why. After each session, we reviewed the opinions collected and refined the
questionnaire. The new questionnaire was presented in the next Delphi session. In the last
two iterations, the experts had no new remarks about the questionnaire that would have
warranted further changes, i.e., we reached a point of saturation.

In the final questionnaire, we added two additional sections to specifically capture
perceptions of the tool and the task separately from the respondent’s overall individual
experience.

The final questionnaire is shown in Table 1. The questionnaire’s main instruction is
to choose the most appropriate description for one’s experience. The word pair items in
the first part each capture an aspect of the respondent’s experience. The questionnaire
does not attempt to assess, for example, the details of the LCDP or the product being
developed using it. Parts 2 and 3 are included to provide a way to separately assess aspects
of the tool and task. They do not have to be used if this information is not needed. In this
paper, they are used for the preliminary validation of the questionnaire.

Table 1. Final questionnaire used in the experiment of measuring end-user developers’
episodic experience of LCDPs. Parts 2 and 3 are control items, while part 1 constitutes

the developer experience instrument

Part 1: Episodic Developer Experience Questionnaire for Low-code Development Platforms
(EDEQ-LCDP).

Think about the session you just completed. Please enter what you consider the most appropriate
description for your experience during the session.

1. Smooth © © © © © © © Exhausting
2. Easy © © © © © © © Difficult
3. Frustrating © © © © © © © Enjoyable
4. Satisfying © © © © © © © Dissatisfying
5. Distracted © © © © © © © Concentrated
6. In control © © © © © © © Lack of control
7. Exciting © © © © © © © Boring
8. Slow © © © © © © © Quick
9. Free to explore © © © © © © © Limited

10. Productive © © © © © © © Unproductive

Part 2: How much do you agree with the following statements regarding the tool.

Completely Disagree – Completely Agree
1. The tool was reliable © © © © © © ©
2. The user interface was consistent © © © © © © ©
3. The tool was quick to respond © © © © © © ©

Part 3: How much do you agree with the following statements regarding the task.

Completely Disagree – Completely Agree
1. The task was easy to understand © © © © © © ©
2. The task was easy to complete © © © © © © ©10

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

6. Task-based test

To gain insights into how our instrument works when applied to practical settings, we
performed a task-based experiment with 19 participants. To identify the complexity and
the acceptability of the tasks, we first conducted a pilot study with three participants in
which we tested and refined the tasks iteratively. We analysed the resulting data using
statistical methods to gain an initial picture of its suitability for field use.

6.1. Participants

One of the ambitions of LCDPs is to enable end-user developers to build their own applica-
tions without much effort. The learning cost and effort for professional and non-professional
developers are generally not the same. We therefore created a screening survey to obtain two
groups of participants, one of which had 14 participants with a programming background
and the other consisting of 5 participants without. The entire set of participants included
10 students and 9 company employees. They were all fluent in English and mainly from
Asia, Europe, Africa and the USA. Their fields of work or study included: research (6),
software development (3), engineering (4), design (3), teaching (1), materials (1), and
new media (1). The participants participated on the condition of anonymity and were
compensated with a gift card worth 20 €.

6.2. Procedure

The test sessions were performed online, using SAP AppGyver1, which is marketed as
a no-code development platform for building mobile apps for both Android and iOS. As
mentioned before, we consider no-code platforms to be a subset of low-code platforms. The
LCDP’s positioning of itself in the marketplace does not make a clear distinction between
low- and no-code. For example, in AppGyver’s case, some formula functions require a basic
knowledge of programming to read and write, such as data variables and IF-statements.
AppGyver provides clear documentation, but we found in our testing that some participants
still found it difficult.

Participants shared their screens to allow us to observe their use of the tool. Each
session lasted one hour and consisted of three parts:
– Introduction and guided tour (20 minutes): We explained the study procedure,

what data would be collected and how it would be used and retained, and obtained
informed consent following our university research ethics guidelines.

– Warm-up task (5 minutes): Since most of the participants had never used LCDPs,
they might feel confused or nervous about using a new tool for the first time. We
therefore used a warm-up task to help them get familiar with the tool. In this task,
participants were instructed to create the user interface of a simple to-do list application
that displayed a list of tasks, an input field and a button with the text “Add task”.

– Two independent tasks (35 minutes): Then, in the main study tasks, participants
added simple functions to the user interface of the to-do application created earlier to
make it interactive, including the functionalities “Delete task from to-do list” (study
task 1) and “Add new task to to-do list” (study task 2). After each of these two tasks,
participants filled in our DX questionnaire using an online form.

1https://www.appgyver.com/

Article number 240105

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/
https://www.appgyver.com/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

6.3. Analysis

We first identified differences in how participants felt across tasks and then used the
Mann–Whitney U Test and Kendall’s Tau to analyse the correlations between individual
experience items and various perspectives of tasks and the tool. After that, we used the
Intraclass Correlation Coefficient (ICC) to test the consistency among participants in the
same group.

6.3.1. Task difficulty vs. developer experience

By comparing the scoring details of the two tasks, we made a simple assessment of the
validity of the scoring. Concerning task completion, 12/19 people completed task 1, with 5
of them following the prompts. 5/19 succeeded in task 2, but only 2 of them completed
it independently. Table 2 presents the average scores of tool quality and task easiness.
Responses to The task was easy to complete indicate that task 1 was easier to complete than
task 2. This finding is consistent with our intended task design. In contrast, participants
considered task 2 to be easier to understand. This can be explained by the learning effect:
when doing the first task, participants needed time to understand the task, but due to the
continuity and similarity of the tasks, they could be more confident about the second task.
In terms of individual experience factors, all experience factors got higher scores in task
1 except for Satisfying – Dissatisfying. Participants might be more satisfied about their
performance during the process if they solved a complex problem.

Table 2. Average score of tool quality and task easiness in tasks 1 and 2. N = 19

Item Task 1 Task 2

The task was easy to understand. 4.842 5
The task was easy to complete. 4.158 3.211
The tool was reliable. 5.053 5.105
The user interface was consistent. 5.158 4.842
The tool was quick to respond. 5 5.368

6.3.2. Individual experience items vs. the evaluation of the tool and tasks

We ran a Mann–Whitney U Test to compare whether participants who evaluated the
platform or the task highly and those who evaluated them low had significantly different
experiences. We compared the responses of those developers who assessed these factors
on a seven-point scale of 5 or higher and those who assessed them as 3 or lower. Notably,
we tested tasks 1 and 2 separately to avoid bias since they were different. However, for
the platform, there were no statistically significant differences between those evaluation
perspectives (tool reliability, user interface consistency and tool response) in either task.
Even if there may be significant differences in one of the tasks, they do not apply to the
other. For example, in task 2, those respondents with high experience satisfaction perceived
the platform to be highly reliable more often than those with low experience satisfaction,
whereas this was not evident in task 1. This indicated the difficulty of the tasks played an
essential role in measuring episodic experience.

The same applies to the evaluation of the understanding of the task. None of the
experience items were able to distinguish between users who found it easy or difficult to12

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

Table 3. Statistically significant Mann–Whitney U test results between respondent groups Task
Completiongood and Task Completionbad for all items. n.s. = not significant. N = 19

Task 1 Task 2
Item U p U p

Easy – Difficult 8 <0.01 9.5 <0.05
Free to explore – Limited 15.5 <0.05 14 n.s.
In control – Lack of control 15.5 <0.05 8 <0.05
Exciting – Boring 10.5 <0.05 10.5 <0.05
Satisfying – Dissatisfying 32.5 n.s. 5.5 <0.01
Quick – Slow 16.5 <0.05 16 n.s.
Concentrated – Distracted 22.5 n.s. 5.5 <0.01
Enjoyable – Frustrating 22.5 n.s. 0.5 <0.001

understand either task, although four experience items could differentiate users in task 1. As
for participants who found the task easy to complete and those who found it difficult, 3 out
of 10 word pairs (easy, in control or excited; see Table 3) supported the separation between
them. This indicates that when participants rated these items high after performing a task
using the LCDP, they were also more likely to find the task easy to complete.

We used Kendall’s Tau Correlation analysis to discover which items in each scale were
significantly correlated with each perspective.

From the results, few items had strong correlations with user interface consistency and
tool response. Since the LCDP used in this test had already been subjected to user testing
and was already a mature product, it was not surprising that these two items were not
strongly correlated with differences in individual experience; they may have captured more
objective traits of the tool. However, two other items, tool reliability and task completion,
reflected strong correlations with a majority of individual experience items:

Tool reliability. Correlations between tool reliability and individual experience items
are presented in Table 4. 7/10 (70%) of word pairs correlated with tool reliability in task 1
while 6/10 (60%) had significant correlations with tool reliability in task 2. What is notable
is that 4/10 (40%) of all experience items had significant correlations with tool reliability
both in tasks 1 and 2. All experience items could predict tool reliability either in tasks 1 or 2
except for Smooth – Exhausting which only showed a strong correlation with the ease
of task completion in task 2. In addition to the possibility that it had little to do with
the platform and the task, we also speculate that it was the result of a more diverse user
understanding of this experience factor.

Table 4. Results of Kendall’s Tau correlation analysis between the tool was reliable assessment
and individual developer experience items. n.s. = not significant. N = 19

Task 1 Task 2
Item τ p τ p

Easy – Difficult 0.434 <0.05 0.301 n.s.
Free to explore – Limited 0.331 n.s. 0.369 <0.05
Satisfying – Dissatisfying 0.331 n.s. 0.369 <0.05
Productive – Unproductive 0.507 <0.01 0.227 n.s.
In control – Lack of control 0.49 <0.01 0.479 <0.01
Exciting – Boring 0.545 <0.01 0.505 <0.01
Enjoyable – Frustrating 0.514 <0.01 0.597 <0.01
Concentrated – Distracted 0.407 <0.05 0.509 <0.01
Quick – Slow 0.418 <0.05 0.318 n.s.

Article number 240105

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

Table 5. Results of Kendall’s Tau correlation analysis between the task was easy to complete
and individual developer experience items. n.s. = not significant. N = 19

Task 1 Task 2
Item τ p τ p

Smooth – Exhausting 0.298 n.s. 0.399 <0.05
Easy – Difficult 0.583 <0.01 0.363 n.s.
Free to explore – Limited 0.389 <0.05 0.37 <0.05
Satisfying – Dissatisfying 0.312 n.s. 0.644 <0.01
Productive – Unproductive 0.465 <0.05 0.372 <0.05
In control – Lack of control 0.495 <0.01 0.372 <0.05
Exciting – Boring 0.576 <0.01 0.519 <0.01
Enjoyable – Frustrating 0.389 <0.05 0.725 <0.01
Concentrated – Distracted 0.265 n.s. 0.412 <0.05
Quick – Slow 0.475 <0.05 0.478 <0.05

Task completion. 7/10 (70%) and 9/10 (90%) of items significantly correlated with
task completion in tasks 1 and 2. All items had significant correlations with task completion
in both tasks 1 and 2 (Table 5). It is worth noting that compared to other items, Satisfying
– Dissatisfying and Enjoyable – Frustrating had a stronger relationship (τ = 0.644 and
τ = 0.725, respectively) with task completion in task 2. The more participants felt confident
completing the task, the more satisfied and enjoyable they felt especially when the task
was hard.

With the Mann–Whitney U test and Kendall’s Tau correlation analysis, we realized
some experience items were changeable across the two tasks. The difficulty of tasks seems
to play a great role in measuring developer experience. In further research or validation,
a comparison of more tasks of different difficulties together would be advisable.

6.3.3. Programming backgrounds vs. developer experience

Intraclass Correlation Coefficient (ICC) was used to find out if there was consistency
in the results of participants with a similar programming background. Table 6 shows
the level of consistency in the performance of different groups. According to statistical
guidelines [41, 42], ICC values higher than 0.50 are acceptable. Therefore, the experience of
participants without programming experience showed consistency in both tasks. Conversely,
the participants who had programming experience exhibited inconsistent performance
across the two tasks.

Thus, programming experience does make a difference to the episodic experience of
the LCDP, but this effect is varied. Our participants’ programming expertise, such as
programming language and skills, was diverse, indicating that the quantitative findings

Table 6. Results of Intraclass Correlation Coefficient for each two groups measuring the experience.
n.s. = not significant

Task 1 Task 2
Group ICC p ICC p

A: No programming experience 0.582 <0.001 0.626 <0.001
B: <3 years of programming experience 0.093 <0.001 0.185 <0.001
C: ≥3 years of programming experience 0.253 n.s. −0.160 n.s.
B and C 0.076 <0.01 0.150 <0.00114

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

make intuitive sense. For example, one participant was mainly responsible for data analysis
using existing libraries while another focused on algorithmic programming. Developers
writing operational logic and visual user interfaces also had diverse understandings of
workflow. Most of them thought their prior programming expertise did not contribute to
their usage of the LCDP. But one participant – a front-end developer – found it easy to do
the task because the logic was almost the same. More experiments are needed to discover
the relationship between different programming expertise and the experience of using an
LCDP.

7. Discussion

In the previous sections, we have described how we created a preliminary questionnaire
instrument for measuring episodic developer experience during LCDP use based on analysis
of prior literature, how we refined this questionnaire using a Delphi study with experts
to obtain a final questionnaire (EDEQ-LCDP), and how this questionnaire was used in
a task-based test.

Our research question asks how to measure the end-user developers’ episodic experience
of a low-code development platform. We designed a questionnaire with 10 items (Part 1
in Table 1) to answer it. Each question item measures a specific aspect of the episodic
experience. The items in parts 2 and 3 are used to provide a way to separate personal
experience from the assessment of the LCDP and the tasks, and they do not have to be
used in practice. In the process of developing the questionnaire instrument, we suggested
separating experience from task difficulty and tool usability because experience is quite
complicated and affected by various aspects, such as tool, task or even the working
environments. The experience may consist of positive and negative assessments independent
of tool usability and task difficulty. We tried to free respondents from identifying their
precise feelings. Furthermore, we compared our work with related work and discussed the
differences between episodic experience and cumulative experience.

7.1. Experience should be set apart from task difficulty and tool usability

The questionnaire we designed covers 10 items to measure developer experience after an
episode of completing tasks in an LCDP. All of them are related to developers’ thoughts
and feelings. We tried to separate the personal experience of an application development
process from the task and the tool. During the study, some experts and participants asked
us what an item referred to, such as whether Satisfying – Dissatisfying meant that the tool
was satisfying or that developers felt satisfied with their performance during the process.

We aimed to focus on participants’ overall feelings when they were performing the task.
Some people might find a tool novel and helpful, but feel dissatisfied with their performance,
perhaps because they were unfamiliar with this type of platform or were doubting their
ability to perform the task. As a result, their experience of the process was unsatisfactory.
We were more interested in their overall personal experience than asking them directly
about their attitude to the platform or the task.

Each personal experience factor might be affected by multiple factors. For example, in
this study, Easy – Difficult did not show a significant correlation with The task was easy to
complete. One participant gave task difficulty the lowest score but scored their experience
highly difficult. This participant explained that although they personally felt it was difficult

Article number 240105

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

to perform the task, they still considered the task to be simple in general and that their
lack of expertise was the main reason for feeling it was difficult. If they would have a second
chance to do the task, they thought they would perform better. Another participant also
found the task easy, but felt nervous about being asked to complete it within a specific
time. They stated that given free time, they would look up the documentation carefully.

These examples illustrate the importance of capturing the overall personal experience of
development episodes, and keeping this separate from usability assessments of tools. Tool
providers usually aim to create a better experience for tool users – in this case, developers
using an LCDP. It is not enough to obtain assessments of the product’s appearance,
functionality, help manuals, etc.; only if developers obtain positive experiences, which may
depend on a multitude of personal reasons, and if they feel happy, satisfied, and have
achieved their goals using the product, they can become inclined to continue using it and
recommend it to their peers.

7.2. Comparing to related work

Our DX instrument was based on prior literature and it bears resemblance to many UX
measurement instruments. However, most UX instruments that we are aware of focus
on the respondent’s assessment of the product rather than of their personal experience.
There are also some existing instruments specifically for measuring DX, but they are not
specifically designed for episodic experience. We discuss these issues using a few examples
of existing questionnaires below.

The User Experience Questionnaire (UEQ) [43] contains 26 items including six dimensions:
Attractiveness, Perspicuity, Efficiency, Dependability, Stimulation, and Novelty. It aims
to be quick and easy to apply and is suggested to complement the use of other evaluation
methods with subjective quality ratings. In contrast to our questionnaire, it is focused
more on an assessment of the product than the experience. For instance, the UEQ item
Usual – Leading edge describes the technology used in the product. Conventional – Inventive
stresses the novelty of the product. The items thus represent the respondent’s personal
assessment of the product but do not necessarily reflect an assessment of their personal
experience with using the product in a concrete task episode.

Similarly, AttrakDiff-2 aims to capture product perceptions and evaluations [36]. It
consists of items to capture pragmatic and hedonic quality as well as general quality.
With items such as confusing – structured (pragmatic), dull – captivating (hedonic), and
good – bad (general), it appears to be asking for assessments of different aspects of product
quality. The respondent’s experiences with the product can be assumed to affect these
assessments, but as with the UEQ, what is asked for is an opinion regarding the product,
not an account of the respondent’s personal experience with using it.

Many other UX measurement instruments follow the same approach. Our instrument
takes steps to focus the respondent’s attention on their personal experience by instructing
them to think about the development episode they just performed and to provide “a de-
scription for your experience”. While they may factor in aspects of the usability of the tool
or the difficulty of the task, this is by intention: the experience of the previous development
episode is based on a multitude of factors but what we wish to gain insight into are the
contents of the participant’s near-term episodic memory of that episode.

Another aspect of the present study is that it focuses on the context of development,
where participants are creating new software using a development tool. While DX can be
considered a sub-field of UX, the experience of developers has its own specifics that should be16

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

taken into account and that are relevant also to inform the management and organisation of
software development in organisations. For example, developers often have particular wishes
when it comes to tool choice, such as the extent to which they are customisable according to
the developer’s wishes, often with scripts or plug-ins that can extend or alter its functionality.
They may also have preferences regarding the way a tool allows them to express their ideas,
and they may want to know what “goes on under the hood”, i.e., they may be concerned
about their ability to control the final product when using a high-level tool that hides
implementation details. Such concerns are less typical for end-users who are not producing
new software but rather work with data such as text or images where the result is what
they see on their screen. For these reasons, we have taken the characteristics of development
tools and their use in both an organisational and individual setting in our questionnaire.

To our knowledge, instruments for specifically measuring DX are rare. However, some do
exist. The DEXI scale is meant specifically for software development as a general questionnaire
for measuring DX of a GUI designer tool [18]. DEXI was formed based on frequently used
UX questionnaires by selecting items from them that are appropriate for describing aspects
of DX. Its Limited – Extensive is an example of capturing the customizability aspect of
the developer’s tools to give them as much freedom as possible. We used Limited – Free
to explore to characterize this kind of experience; the wording was informed by our expert
feedback. DEXI is similar to the UX questionnaires discussed above in that it focuses
on the participant’s assessment of the product – in the case of DEXI, an IDE. It thus
does not address the participant’s personal experience directly, but rather incorporates
it into the respondent’s assessment of the tool. In our view, this has at least practical
implications for the use of the questionnaires to inform DX improvements. Whereas DEXI
directs the focus towards the tool itself, our questionnaire invites a discussion about the
participant’s experience in general, which may reveal issues regarding the tool, but could
also lead to discovering issues related to the task, the participant’s perception of themselves
as a developer, or relationships between individual, task, and tool. While it is not guaranteed
that a participant will discuss issues beyond the tool, our instrument does avoid directing
attention primarily towards the tool. Depending on the purpose, this may or may not be
beneficial.

In other work, Lee and Pan [13] constructed a set of items to measure DX of deep-learning
platforms based on both the conceptual model of DX [1] and related research on customer
experience in fields such as marketing. Their questionnaire uses a different format with
statements such as “The interaction between the platform and the developer does not require
much mental effort” (cognitive), “The platform is attractive” (affective) and “Developers
intend to use the platform” (conative). Respondents indicate agreement on a seven-point
scale. Beyond the obvious difference of using a statement format, this questionnaire is much
more general than ours and tries to map each item specifically to one dimension of the
DX framework. It also appears to mix different levels of experience, with items regarding
mainly cumulative and anticipated experience; the conative item here is an example of the
latter. Our instrument is more focused specifically on LCDPs.

7.3. Episodic experience vs. cumulative experience

As noted above, previous DX questionnaires are not specific to episodic experience. Instead,
the majority of research into DX instruments has focused to a large extent on cumulative
experience, with some introduction of anticipated experience.

Article number 240105

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

Studying cumulative experience makes sense when there is reason to believe that enough
time has passed for such experiences to form, such as when people have used a product or
tool for a long time. The main points of concern with regard to cumulative experience are
different from the concerns of the first few times people use a product to solve a problem or
accomplish a task. Taking the view that cumulative experience is a function of experiences
over several episodes, one can assume that there is an overlap between cumulative and
episodic experiences. However, previous research constructing DX instruments hardly
distinguishes the two specifically.

Factors such as cost, backward and forward compatibility, version migration paths, and
the surrounding developer community are important for the cumulative experience related
to development tools, while such factors play a smaller role in the episodic experience.
Motivation is another rather different aspect between the two levels of experience. During
a development episode, developers seek a solution to a small set of specific problems while
they may hope to achieve a bigger goal during long-term usage of the platform, including
goals that span beyond an individual piece of software they are developing. For example,
people’s intention to use an LCDP is to build an application, which is a long-term goal.
The goal will be achieved by several episodic goals which are to implement various features
of the application. Beyond these, they may have long-term motivations such as advancing
in their career. We thus argue that DX questionnaires should be designed with the different
levels of experience in mind: general DX questionnaires focusing on cumulative experience
have to consider factors beyond the tool, while instruments focusing on episodic experience
can take a more narrow set of factors into account.

We believe that motivation also influenced the result of the test in our study. Participants
did not have expectations towards this platform since it was their first time using it. They
were unlikely to have an emotional attachment to the platform at the outset and were just
required to perform the task whether or not it was inherently interesting to them. We
therefore did not include general factors such as Cheap – Premium (from AttrakDiff-2)
or “Even if the platform price is high compared to other platforms, I think that developers
should use the current platform” (from Lee and Pan). We believe that such general and
circumstantial factors are not of primary relevance to episodic experience, but they may
work as part of assessments of anticipated or cumulative experience. However, developers,
even end-user developers using LCDPs, may not be involved in tool purchase decisions so
the cost of acquiring such tools may not be relevant to them.

Concentrated – Distracted is the only item that was strongly correlated with nearly all
aspects of the platform in both tasks 1 and 2. Users’ attention during an event influences the
time, efficiency and completion of the task, therefore influencing their feelings. Concentration
on task has been associated with flow experiences in prior literature (e.g., [34]), but it
was not significantly correlated with developers’ overall experience in assessing DX of
a GUI designer tool [18]. Thus, the role of attention in episodic and cumulative developer
experiences should be further investigated.

7.4. Insights for further research

This study provides a starting point for further research. Our statistical analysis of the
questionnaire responses in our study gives preliminary indications that should be investi-
gated further. The results of the Mann–Whitney U Test indicated that Easy – Difficult,
In control – Lack of control and Exciting – Boring can differentiate between participant
groups with low and high Task Completion Difficulty assessment. Of these three items, the18

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

latter two were also significantly correlated with the ease of task completion (Kendall’s
Tau Correlation Analysis). In addition, the correlation analysis revealed an additional four
items that had similar correlation: Free to explore – Limited, Productive – Unproductive,
Concentrated – Distracted and Quick – Slow. Task Understanding was strongly correlated
with Productive – Unproductive and Quick – Slow.

A number of items were correlated with the reliability of the platform although we could
not successfully differentiate between participant groups based on these items. For example,
In control – Lack of control, Exciting – Boring, Enjoyable – Frustrating and Concentrated
– Distracted are associated with tool reliability. In other words, we might compare the
reliability of different LCDPs, and the LCDPs that get higher feedback in these items might
be more reliable. User interface consistency and tool response did not show correlations with
any experience item. In this study, they could not be predicted by participants’ feelings.

Despite the above findings, many open questions remain and there is a need for more
research to further test the validity of the questionnaire items. For instance, why do some
items perform differently across tasks, and is it related to the difficulty of the task? Why
did Productive – Unproductive show a significant correlation with the ease of understanding
the task? One possibility is that participants could not distinguish between their ability to
understand the task and the outcomes they produced. This could have interesting implications
for studying DX in general: the memory of a development episode may be distorted by the
outcomes, meaning in this case that developers determine their understanding of a task based
on whether they were able to produce something tangible, regardless of whether the outcome
conformed to what was intended from the outset or not. This would be consistent with prior
research showing that, along with the most intense part, the final part of an experience
episode has a strong influence on the assessment of the whole episode [44]. Investigating
whether interventions in the final part of an episode have an impact on DX, as measured
here, could be an interesting avenue for further research.

Finally, the approach taken here has aimed to examine the instrument to inform the
future development of DX questionnaire instruments. To obtain instruments with better
validated psychometric properties, the results and insights developed in this paper should
be combined with a rigorous instrument development approach. Using factor analysis
and correlating candidate instruments with existing DX and UX instruments as well as
other ways of obtaining experiential information are possible ways to obtain more strongly
validated DX measurement instruments.

7.5. Limitations

The main aim of our study was to develop a questionnaire with a grounding in present
DX literature and expert knowledge. The primary concern was how to operationalise
the DX concept in the context of LCDPs to capture important experiential factors in
development episodes. Thus, we consider construct validity and content validity to be the
most important criteria for the study, i.e., to what extent the questionnaire reflects the
concepts it should reflect. Content and face validity have been identified as important
for instrument development related to experiential characteristics in other fields [45] and
we consider the perspective of experts and practitioners to be crucial for studies on DX
measurement as well. Correlational analyses are commonly used to assess construct validity
along with incorporating qualitative information from experts and practitioners, as we
have done in this paper.

Article number 240105

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

The combination of using prior literature about DX and the Delphi study with experts
serves to increase the confidence that the questionnaire reflects prevailing understandings
of episodic DX of LCDPs. As we have noted above, prior literature does not, to the best of
our knowledge, provide a measurement instrument specifically aimed to measure episodic
DX. The literature therefore served to inform the study about potential questionnaire items
relevant to DX in general, while our analysis of those items against the DX conceptual
framework [1], our knowledge of DX and LCDPs, and the comments from experts in the
Delphi study served to refine the questionnaire to capture the desired aspects of episodic DX
as well as possible. Our analysis of the task-based test results shows that the questionnaire
is understandable by practitioners and can be used to distinguish between different kinds
of experiences by developers with different backgrounds. While a single study is not enough
to provide construct validity, we nevertheless consider the primary concern of our study
to have been adequately addressed. We acknowledge that further work is needed to gain
more confidence in the content and criterion validity of the instrument. However, if the
questionnaire omits some aspect of the experience that would be relevant for development
episodes using LCDPs, adding elements must be balanced against the practical effort
required for participants to fill in the questionnaire.

Internal validity is concerned with the extent to which cause-effect relationships are
trustworthy within the context of a study. In our case, selection bias and confounding could
have influenced the differences in participants’ responses.

Prior knowledge is a significant influencing factor when studying episodic developer
experience of LCDPs. One of the goals of this study was to discover the impact of prior
knowledge on using the LCDP to perform tasks. We attempted to understand whether
programming expertise, LCDP expertise, and design expertise have impacts on episodic
experience when participants are using LCDPs to perform tasks.

ICC analysis indicates that programming expertise does make a difference to the episodic
experience of the LCDP: participants with no knowledge of programming rated the experience
items consistently, while those with programming knowledge rated them differently. We
observe that our measure of programming knowledge was not detailed enough to discern
meaningful patterns among the latter group. Based on the participants’ LCDP and design tool
expertise, no consistencies were found between participants, regardless of which group they
were involved. Due to the lack of a clear definition and control of participants’ backgrounds,
the correlation between background and experience is not significant. However, by explicitly
controlling for and analysing expertise on different levels, we attempted to guard against
selection bias and confounders; in other words, prior differences in expertise were accounted
for in the study design. Further validation is needed to discover other potential confounders.

A further threat to internal validity is researcher bias: we could have accidentally
influenced participants in the study. We took steps to guard against this. In the Delphi
study, we presented experts with our in-progress questionnaire and asked them to comment
without stating our own opinions. Only after they had provided their feedback did we engage
in a discussion where we explained our rationale behind items. In the task sessions, the
training task provided participants with an introduction to the most important functions
of the LCDP, and they then had to carry out the two other tasks on their own. In cases
where they asked for help, we did not immediately solve the problem for them but instead
encouraged them to keep exploring until they ran out of time. Only after filling in the
questionnaire did we help them complete the task if they still wished to.

Another apparent threat undoubtedly arises from the small sample, the use of only
two tasks, and the use of only one LCDP, which raises concerns about external validity.20

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

The study groups had one to three participants and the total number of participants (19)
is not representative of any larger population of developers. However, we did not aim to
validate the questionnaire in a well-defined population. Rather, we focus here on obtaining
a questionnaire with good enough construct validity to warrant use in practical settings
together with other means of assessment and for further research. The number and nature of
tasks also prevent us from drawing far-reaching conclusions about the relationship between
task traits and questionnaire items. Both diversified and repeated tasks are necessary to
strengthen the validity of the questionnaire for the study of episodic experience.

Finally, the test only covers one LCDP and thus it can be questioned to what extent
the results are generalisable to other LCDPs or development tools in general. However, we
argue that this aspect is not relevant to the present study. The study design did not rely
on any particular aspect of the LCDP used, and the questionnaire does not contain any
items that would rely on the characteristics of any particular LCDP. The questionnaire
specifically directs participants to report on their personal experience of the session they
conducted (i.e., the development episode), not to assess the tool. Thus this should not
be a primary validity concern, and we note that many widely used usability and UX
instruments have only been validated through years of use and study after their initial
introduction. Still, further studies could assess external validity further by varying the
LCDP used.

8. Conclusions

In this study, we set out to obtain an understanding of end-user developers’ episodic
experience when building an application on an LCDP to guide how such experiences can be
measured. To this end, we designed a questionnaire with ten experience items to measure
the episodic experience of developers using LCDPs after they had completed a specific
bounded task. All items were based on prior literature on the characteristics of LCDPs and
developer experience. The items were refined based on expert feedback in a Delphi study.
We then used a task-based test to obtain data from the actual use of the questionnaire
in conjunction with an LCDP. Participants also provided background information on
their prior expertise and received a short training session using the LCDP. We analysed
correlations between the experience items in our questionnaire and participant assessments
of tool reliability, user interface consistency, tool response, task understanding, and task
completion, as well as their assessment of prior expertise.

The results show that all experience items in the questionnaire were related to the
characteristics of the tool and the difficulty of the task. Perceived task difficulty, tool
reliability, and task completion appear to play a role in episodic experience. We emphasise
the importance and necessity of separating personal experience from the assessment of
tasks and tools. In terms of the impact of developers’ background, prior programming
experience played an important role in measuring the episodic experience of LCDPs, but
a more detailed definition and control of background is needed to verify this conclusion.

The findings in this study can be used to provide insights for further research into
developer experience measurement. In particular, we advise instrument developers to
develop a detailed understanding of the context of development and to carefully design
their instruments for the desired time scale of experience, e.g., anticipatory, momentary,
episodic, or cumulative. The questionnaire can be used, taking its limitations into account,
for assessing the episodic developer experience of developers using LCDPs. We recommend

Article number 240105

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

that it be used alongside other assessment methods such as think-aloud protocols or
post-task interviews. We believe it could prove useful to assess development episodes
involving other kinds of development tools besides LCDPs, but further research is required
to validate its use for such purposes.

Acknowledgements

We would like to express our sincere thanks to the experts and study participants for their
involvement in the research.

References

[1] F. Fagerholm and J. Münch, “Developer experience: Concept and definition,” in International
Conference on Software and System Process (ICSSP). IEEE, 2012, pp. 73–77.

[2] F. Fagerholm, Software developer experience: Case studies in lean-agile and open source
environments, Ph.D. dissertation, University of Helsinki, Faculty of Science, Department of
Computer Science, Helsinki, Finland, 2015.

[3] D. Graziotin, X. Wang, and P. Abrahamsson, “Are happy developers more productive?” in
International Conference on Product Focused Software Process Improvement. Springer, 2013,
pp. 50–64.

[4] M.A. Storey, T. Zimmermann, C. Bird, J. Czerwonka, B. Murphy et al., “Towards a theory
of software developer job satisfaction and perceived productivity,” IEEE Transactions on
Software Engineering, Vol. 47, No. 10, 2019, pp. 2125–2142.

[5] N. Baddoo, T. Hall, and D. Jagielska, “Software developer motivation in a high maturity
company: a case study,” Software process: improvement and practice, Vol. 11, No. 3, 2006,
pp. 219–228.

[6] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “What happens when software
developers are (un)happy,” Journal of Systems and Software, Vol. 140, 2018, pp. 32–47.

[7] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, “End-user development: An emerging
paradigm,” in End user development. Springer, 2006, pp. 1–8.

[8] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and challenges of
low-code development: The practitioners’ perspective,” in Proceedings of the 15th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM). ACM,
2021, pp. 1–11.

[9] M. Tisi, J.M. Mottu, D.S. Kolovos, J. De Lara, E.M. Guerra et al., “Lowcomote: Training the
next generation of experts in scalable low-code engineering platforms,” in STAF 2019 Co-Located
Events Joint Proceedings: 1st Junior Researcher Community Event, 2nd International Workshop
on Model-Driven Engineering for Design-Runtime Interaction in Complex Systems, and 1st
Research Project Showcase Workshop co-located with Software Technologies: Applications and
Foundations (STAF 2019), 2019.

[10] J. Cabot, “Positioning of the low-code movement within the field of model-driven engineering,”
in Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS ’20. ACM, 2020, pp. 1–3.

[11] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the understanding
and comparison of low-code development platforms,” in 2020 46th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 2020, pp. 171–178.

[12] F. Khorram, J.M. Mottu, and G. Sunyé, “Challenges and opportunities in low-code testing,”
in Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS ’20. ACM, 2020, pp. 1–10.22

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

[13] H. Lee and Y. Pan, “Evaluation of the nomological validity of cognitive, emotional, and
behavioral factors for the measurement of developer experience,” Applied Sciences, Vol. 11,
No. 17, 2021, p. 7805.

[14] E. Karapanos, J. Zimmerman, J. Forlizzi, and J.B. Martens, “User experience over time: an
initial framework,” in Proceedings of the SIGCHI conference on human factors in computing
systems, 2009, pp. 729–738.

[15] B. Callary, P. Werthner, and P. Trudel, “How meaningful episodic experiences influence the
process of becoming an experienced coach,” Qualitative research in sport, exercise and health,
Vol. 4, No. 3, 2012, pp. 420–438.

[16] P. Marti and I. Iacono, “Anticipated, momentary, episodic, remembered: The many facets
of user experience,” in Federated Conference on Computer Science and Information Systems
(FEDCSIS). IEEE, 2016, pp. 1647–1655.

[17] M. Greiler, M.A. Storey, and A. Noda, “An actionable framework for understanding and
improving developer experience,” IEEE Transactions on Software Engineering, 2022.

[18] K. Kuusinen, “Are software developers just users of development tools? assessing developer
experience of a graphical user interface designer,” in Human-Centered and Error-Resilient
Systems Development. Springer, 2016, pp. 215–233.

[19] K. Kuusinen, “Software developers as users: Developer experience of a cross-platform integrated
development environment,” in International Conference on Product-Focused Software Process
Improvement. Springer, 2015, pp. 546–552.

[20] T. Kaltio and A. Kinnula, “Deploying the defined SW process,” Software Process: Improvement
and Practice, Vol. 5, No. 1, 2000, pp. 65–83.

[21] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “On the unhappiness of software
developers,” in Proceedings of the 21st international conference on evaluation and assessment
in software engineering, 2017, pp. 324–333.

[22] K.R. Linberg, “Software developer perceptions about software project failure: A case study,”
Journal of Systems and Software, Vol. 49, No. 2–3, 1999, pp. 177–192.

[23] A. Bobkowska, “On explaining intuitiveness of software engineering techniques with user
experience concepts,” in Proceedings of the International Conference on Multimedia, Interaction,
Design and Innovation, 2013, pp. 1–8.

[24] F. Fagerholm, M. Felderer, D. Fucci, M. Unterkalmsteiner, B. Marculescu et al., “Cognition in
software engineering: A taxonomy and survey of a half-century of research,” ACM Comput.
Surv., Vol. 54, No. 11s, 2022.

[25] M. Sánchez-Gordón and R. Colomo-Palacios, “Taking the emotional pulse of software en-
gineering – A systematic literature review of empirical studies,” Information and Software
Technology, Vol. 115, 2019, pp. 23–43.

[26] G. Fischer, D. Fogli, and A. Piccinno, “Revisiting and broadening the meta-design framework
for end-user development,” in New perspectives in end-user development. Springer, 2017,
pp. 61–97.

[27] B.R. Barricelli, F. Cassano, D. Fogli, and A. Piccinno, “End-user development, end-user
programming and end-user software engineering: A systematic mapping study,” Journal of
Systems and Software, Vol. 149, 2019, pp. 101–137.

[28] W.W. Cotterman and K. Kumar, “User cube: A taxonomy of end users,” Communications of
the ACM, Vol. 32, No. 11, 1989, pp. 1313–1320.

[29] M. Hirzel, “Low-code programming models,” Communications of the ACM, Vol. 66, No. 10,
2023, pp. 76–85.

[30] C. Richardson, J.R. Rymer, C. Mines, A. Cullen, and D. Whittaker, “New development platforms
emerge for customer-facing applications,” Forrester, Cambridge MA USA 15, Tech. Rep. 16,
Jun 2014.

[31] R. Waszkowski, “Low-code platform for automating business processes in manufacturing,”
IFAC-PapersOnLine, Vol. 52, No. 10, 2019, pp. 376–381.

[32] N. Dalkey and O. Helmer, “An experimental application of the Delphi method to the use of
experts,” Management Science, Vol. 9, No. 3, 1963, pp. 458–467.

Article number 240105

23

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/

Dongmei Gao, Fabian Fagerholm e-Informatica Software Engineering Journal, 18 (2024), 240105

[33] A. Nylund, “A multivocal literature review on developer experience,” Master’s thesis, Aalto
University School of Science, 2020. [Online]. https://aaltodoc.aalto.fi/items/d822c160-0cc6-
41d1-9c29-72470ec2ad13

[34] S.A. Jackson, A.J. Martin, and R.C. Eklund, “Long and short measures of flow: The construct
validity of the FSS-2, DFS-2, and new brief counterparts,” Journal of Sport and Exercise
Psychology, Vol. 30, No. 5, 2008, pp. 561–587.

[35] R.M. Ryan, “Control and information in the intrapersonal sphere: An extension of cognitive
evaluation theory.” Journal of Personality and Social Psychology, Vol. 43, No. 3, 1982, p. 450.

[36] M. Hassenzahl, S. Diefenbach, and A. Göritz, “Needs, affect, and interactive products–facets
of user experience,” Interacting with Computers, Vol. 22, No. 5, 2010, pp. 353–362.

[37] D. Alwin, “Feeling thermometers versus 7-point scales: Which are better?” Sociological Methods
and Research, Vol. 25, No. 3, 1997, pp. 318–340.

[38] H. Taherdoost, “What is the best response scale for survey and questionnaire design; Review of
different lengths of rating scale/attitude scale/likert scale,” International Journal of Academic
Research in Management, Vol. 8, No. 1, 2019, pp. 1–10.

[39] D. Gao and F. Fagerholm, “Supplementary materials for the paper ‘Measuring end-user
developers’ episodic experience of a low-code development platform – A preliminary study’,”
2023. [Online]. https://doi.org/10.5281/zenodo.7515833

[40] M. Lynn, “Determination and quantification of content validity,” Nursing Research, Vol. 35,
1986, pp. 382–386.

[41] D.V. Cicchetti, “Guidelines, criteria, and rules of thumb for evaluating normed and standardized
assessment instruments in psychology.” Psychological Assessment, Vol. 6, No. 4, 1994, p. 284.

[42] T.K. Koo and M.Y. Li, “A guideline of selecting and reporting intraclass correlation coefficients
for reliability research,” Journal of Chiropractic Medicine, Vol. 15, No. 2, 2016, pp. 155–163.

[43] B. Laugwitz, T. Held, and M. Schrepp, “Construction and evaluation of a user experience
questionnaire,” in Symposium of the Austrian HCI and usability engineering group. Springer,
2008, pp. 63–76.

[44] D.A. Redelmeier and D. Kahneman, “Patients’ memories of painful medical treatments:
real-time and retrospective evaluations of two minimally invasive procedures,” Pain, Vol. 66,
No. 1, 1996, pp. 3–8.

[45] J. Connell, J. Carlton, A. Grundy, E. Taylor Buck, A.D. Keetharuth et al., “The importance
of content and face validity in instrument development: Lessons learnt from service users when
developing the recovering quality of life measure (ReQoL),” Quality of Life Research, Vol. 27,
2018, pp. 1893–1902.

24

Article number 240105

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-5/
https://aaltodoc.aalto.fi/items/d822c160-0cc6-41d1-9c29-72470ec2ad13
https://aaltodoc.aalto.fi/items/d822c160-0cc6-41d1-9c29-72470ec2ad13
https://doi.org/10.5281/zenodo.7515833

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240106, DOI: 10.37190/e-Inf240106

Activity-Based Detection of (Anti-)Patterns:
An Embedded Case Study of the Fire Drill

Sebastian Hönel∗ , Petr Picha∗∗ , Morgan Ericsson∗∗∗ , Premek Brada∗∗∗∗ ,
Welf Löwe∗∗∗∗∗ , Anna Wingkvist∗∗∗∗∗

∗Faculty of Technology, Department of Computer Science and Media Technology,
Linnaeus University, Sweden

∗∗Faculty of Applied Sciences, Department of Computer Science and Engineering,
University of Western Bohemia, Czechia

∗∗∗Faculty of Technology, Department of Computer Science and Media Technology,
Linnaeus University, Sweden

∗∗∗∗Faculty of Applied Sciences, Department of Computer Science and Engineering,
University of Western Bohemia, Czechia

∗∗∗∗∗Faculty of Technology, Department of Computer Science and Media Technology,
Linnaeus University, Sweden

sebastian.honel@lnu.se, ppicha@ntis.zcu.cz, morgan.ericsson@lnu.se,
brada@kiv.zcu.cz, welf.lowe@lnu.se, anna.wingkvist@lnu.se

“While it is certainly useful to study the successful ways people solve problems, the old adage
that we learn from our mistakes suggests that studying failures might be even more fruitful.

– Neill et al.

Abstract

Background: Nowadays, expensive, error-prone, expert-based evaluations are needed to
identify and assess software process anti-patterns. Process artifacts cannot be automatically
used to quantitatively analyze and train prediction models without exact ground truth.
Aim: Develop a replicable methodology for organizational learning from process (anti-)pat-
terns, demonstrating the mining of reliable ground truth and exploitation of process
artifacts.
Method: We conduct an embedded case study to find manifestations of the Fire Drill
anti-pattern in n = 15 projects. To ensure quality, three human experts agree. Their
evaluation and the process’ artifacts are utilized to establish a quantitative understanding
and train a prediction model.
Results: Qualitative review shows many project issues. (i) Expert assessments consistently
provide credible ground truth. (ii) Fire Drill phenomenological descriptions match project
activity time (for example, development). (iii) Regression models trained on ≈ 12–25
examples are sufficiently stable.
Conclusion: The approach is data source-independent (source code or issue-tracking). It
allows leveraging process artifacts for establishing additional phenomenon knowledge and
training robust predictive models. The results indicate the aptness of the methodology
for the identification of the Fire Drill and similar anti-pattern instances modeled using
activities. Such identification could be used in post mortem process analysis supporting
organizational learning for improving processes.

Keywords: Anti-Patterns, Fire-Drill, Case-study

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 3 Mar. 2023; Revised: 4 Jan. 2024; Accepted: 26 Feb. 2024; Available online: 1 Mar. 2024

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7937-1645
https://orcid.org/0000-0002-2409-6030
https://orcid.org/0000-0003-1173-5187
https://orcid.org/0000-0001-5617-6396
https://orcid.org/0000-0002-7565-3714
https://orcid.org/0000-0002-0835-823X

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

1. Introduction

A pattern describes a reoccurring problem and its prototypical solution [2]. If the solution exac-
erbates – rather than ameliorates – a problem, a pattern becomes an anti-pattern [3, 4]. There
exist anti-patterns related to, e.g., software architecture, that have a palpable effect on product
quality. Other types of anti-patterns that have negative repercussions on the process and the
resulting product could be attributed to management malpractices [5, 6]. Nelson summarizes
a number of infamous project failure examples, most of which are the result of ineffective
project management practices. The overall project failure categories are people, technology,
product, and process [7], of which we focus on the latter. The software process is characterized
by certain activities, such as development (e.g., implementation of features and fixing of bugs)
or requirements engineering. The quality of this process depends, among other factors, on an
adequate allocation of time for carrying out each activity. The quality of a software product
was demonstrated to be tied closely to the quality of the software process [8]. Halvorsen
and Conradi [9] even suggest the causal relation Quality(Process) ⇒ Quality(Product).
Therefore, it is worth studying phenomena related to process quality, in order to understand
and improve product quality. Project failure is a frequently embraced opportunity for post
mortem organizational learning [10]. Failure can often be attributed to process anti-patterns,
of which the so-called “Fire Drill” is a prominent example, due to its clearly discernible
symptoms [11, 12]. It is often characterized by “months of monotony [...]” (unsatisfactory early
project progress) that is “[...] followed by a crisis” [4], due to forcing immediate delivery [13].

The Fire Drill is one of many existing management anti-patterns known to exacerbate
software processes fraught with problems [14]. Usage of such anti-patterns for organizational
learning is inhibited by a variety of factors today. The most pronounced problem is perhaps
the lack of a quantitative description: anti-patterns are only described qualitatively using,
e.g., structured templates with elements such as causes, symptoms, or consequences [5]. This
effectively constrains the available methods of analysis to qualitative assessments. The manual
evaluation depends on experts knowledgeable and available in the problem domain [15]. The
problem is further aggravated by the fact that qualitative assessment is labor-intensive and
error-prone because experts are likely to introduce their own subjective bias [16]. Although
software development processes produce a multitude of diverse digital artifacts either as
a by-product (e.g., source code) or based on the use of project or application lifecycle manage-
ment (ALM) tools, most of these data cannot facilitate anti-pattern instance detection [17].
Even though there exist approaches that take advantage of such artifacts by using more formal
and technical models, or thresholds and rules, the scope of their utility is severely limited
to single process aspects, such as progress, variable dependencies, or estimating uncertainty,
e.g., [18–22]. Lastly, scarcely available historical data, that is, data on past projects, impede or
prohibit comprehensive and generalizable learning that results in organizational knowledge.

Many of the existing approaches have software process improvement as the ultimate
goal. They first establish some white-box model and then analyze the effect of the measures
implemented within the model boundaries [23, 24]. In contrast, we first conduct a longitu-
dinal embedded case study [25, 26], which qualitatively evaluates the presence and severity
(i.e., how strongly the phenomenon manifests) of a Fire Drill in n = 15 student projects
collected over a period of three years, to find an accurate ground truth1. Through observer
and data triangulation [29], as well as inter-rater reliability assessment [30], we ensure

1The feasibility of studies under similar constraints of scarce data have previously been successfully
conducted in, e.g., biomedical engineering [27] and material sciences [28].2

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

a minimum quality of the observed evidence that makes the foundation for the ground
truth as is required for further analyses [31]. The ground truth is then used to leverage
previously unusable artifacts to establish quantitative measures and to derive knowledge.
An adaptive training of a gray-/black-box model allows predicting the (severity of the)
anti-pattern instances using the implemented measures [32]. Finally, the new insights are
propagated back to the studied case. From the digital project artifacts, we can confidently
derive the carried-out activities, such as adding features or engineering of requirements2.
Then, the Fire Drill is modeled in terms of time spent on (temporal accumulations of) these
activities. We learn that the phenomenon is sensitive to a certain balance of these activities,
that is, how much time on each activity is spent in relation to any other activity, at any
point in time. We argue that this is also the case for many related or similar phenomena.
Therefore, next to the immediate contributions, the intended main contribution is the
methodology that will allow full or partial replication of this study (using, e.g., different
phenomena or modified contexts).

1.1. Data used in the study

Embedded case studies, such as the present one, are characterized by and rely on qualitative
and quantitative data [35]. The study design is split to appropriately study either type
of data. For the remainder of this work, we refer to these as type-I data and type-II data,
respectively. Most data are produced in the development process and related to project plan-
ning, application lifecycle management, version control, and documentation. As either type
contains both qualitative and quantitative artifacts, we define the types of data as follows.
Type-I Data. In addition to archival records, this case study uses direct observations,
memory logs, meeting minutes (e.g., from stand-ups, retrospectives, customer meetings, or
iteration planning), participant observation, team experience reports, customer comments,
mentors’ assessment notes, and wikis (or other types of note collections) maintained by
each team as primary data sources for the qualitative portion. These data are largely
unstructured and were recorded mostly subjectively. The type-I archival data is treated
as a set of distinct data sources; the production and extraction of information related to
these sources are outside the scope of the research method in this study [29].
Type-II Data. For the quantitative part, this study mainly uses out-of-sample testing for
performing model validation and generalization error estimation. The data is structured
and comes from the archives of the ALM tools. It includes version control systems that
hold the source code (and its commits) and raw data from the underlying issue-tracking
tools. The latter are mostly tickets that have been assigned a category and time estimates.
Although there is some uncertainty in these tickets, all other data used in the quantitative
analysis were objectively recorded.

1.2. Objective

Clearly defined objectives are a common element of the research design for case studies [29].
We pursue a single, principal objective refined into research questions to which we offer
some answers. For this case study, the principal objective is defined as follows. Automate
the post mortem Fire Drill severity assessment, by utilizing the qualitatively won ground

2There is a partial semantic overlap between our activities and the so-called disciplines as used in the
(Rational) Unified Process [33, 34].

Article number 240106

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

truth and selected suitable quantitative, objective type-II artifacts. Pursuing this goal will
necessarily result in the extraction and generation of knowledge from the type-II artifacts.
The point of departure for the principal objective is one in which, before conducting the
case study, we are relatively certain that the Fire Drill, given its existing phenomenological
descriptions, is detectable and that some projects will exhibit one. Although this was
the result of our pilot study (see Subsection 3.2), we are yet uncertain of the quality of
the qualitative evaluation (whether severity can be determined sufficiently accurately).
Although all data were available at the beginning of the study, that is, type-I and type-II
data, we did not know if and how many of the type-II artifacts would be suitable for
automated detection, implemented as a regression model. Also, manual facilitation of the
type-II data is difficult, as the Fire Drill was not previously described from a quantitative
perspective. Manual analysis of quantitative data is further inhibited by the data size (data
points and dimensionality) and possibly non-linear correlations.

1.3. Propositions, hypotheses, research questions

In this section, we will guide the reader through the main aspects of the case by presenting
three sets of propositions, hypotheses, and research questions in a consecutive manner.
For case study research, it is suggested to align the methodology close to these elements
(however, not necessarily in this order, e.g., [29, 36]). The If-Then-styled propositions first
give potential implications, while the generated hypotheses provide structure and detail to
the formulated research questions.

1.3.1. Understand the Fire Drill manifestation

The first set of propositions, hypotheses, and research questions concerns the manifestation
of the Fire Drill in our context directly.
Pr. 1.1: If the Fire Drill phenomenon is described well enough and present in the projects,

then manifestations of it can be found using type-I data only.
Pr. 1.2: If there is agreement between independent raters, then the existing phenomenolog-

ical descriptions of the Fire Drill are sufficient for a qualitative post mortem evaluation.
Pr. 1.3: If there is agreement on the absence of the Fire Drill in a project, then the

evidence that is counter-indicative of the phenomenon (true negatives) can be gathered.
Hyp. 1.1: The type and quality of the type-I data allow for accurate assessment of the

severity of the Fire Drill using qualitative evaluation.
Hyp. 1.2: Projects not affected by the Fire Drill can be used to derive common symptoms

whose presence can indicate its absence.
RQ 1.1: Can the severity of the Fire Drill be accurately determined?
RQ 1.2: What is the nature of the Fire Drill manifestation in each of the student projects?
RQ 1.3: What evidence can be gathered indicating the absence of a Fire Drill?

1.3.2. Establish an understanding using qualitative data

The won ground truth now allows us to access, reason about, and leverage available
quantitative data in an unprecedented way. The second set of propositions, hypotheses,
and research questions was designed to establish a new quantitative understanding. Our
approach here is characterized by instrumental motivation and nomothetic evaluation.
Sets two and three facilitate quantitative project data of the same structure across all4

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

projects. While the focus is on the sub-unit of analysis, the projects are examined together
(nomothetically), instead of individually.

In the following, importance refers to the concept (and technique) of (determining)
variable importance for the prediction of a dependent variable (here: severity) [37]. When
the timeline of a project is subdivided into phases, then each feature (variable) is exclusively
assigned to a single phase. Therefore, variable importance allows us to determine and
compare the relative importance of each project phase by aggregating the importance of
each feature.
Pr. 2.1: If a ground truth can be determined accurately enough, then it can be exploited

for the analysis, interpretation, understanding, and comprehension of the quantitative
data.

Hyp. 2.1: Activities closely related to those described by the Fire Drill will display
characteristic behavior that is in accordance with the Fire Drill’s phenomenological
descriptions.

Hyp. 2.2: All project phases will exhibit non-zero importance, with the later phases being
of greater importance (the Fire Drill, supposedly, is more critical towards the project
end).

RQ 2.1: What are typical accumulations of (maintenance) activities characteristic of a Fire
Drill?

RQ 2.2: What phases and activities are most important for predicting the presence or
severity?

1.3.3. Obtain a robust predictive model

The last set of propositions, hypotheses, and research questions was designed primarily
to achieve the main objective (see Subsection 1.2), namely to automate the post mortem
severity assessment. As a by-product, we will also improve our quantitative understanding,
as continued from the previous set. In the following, stability refers to two criteria simulta-
neously, the first of which is the expected generalization error and the second of which is
the confidence interval regarding the generalization error of a predictive model.
Pr. 3.1: If any type-II data (artifacts) are suitable, training should converge toward

stability with increasing amounts of training data.
Pr. 3.2: If a stable model with acceptable generalization error can be obtained, then

assessing the severity of the phenomenon with it could be instantaneous.
Hyp. 3.1: Type-I ground truth and type-II data from a few projects are apt for training

a regression model with acceptable stability.
Hyp. 3.2: Using either source code or issue-tracking data should yield predictive models of

similar stability, as the former is more objective, while the latter is more closely aligned
with the Fire Drill’s described activities.

RQ 3.1 What source of data, issue-tracking or source code, yields better models?
RQ 3.2: How many data points are required for obtaining a stable predictive model?

1.4. Notions and abbreviations

Activities use an all-caps sans serif font and are abbreviated by a few letters. For example,
the activity development is denoted by DEV. It is also used as a subscript for functions
over time, that is, fDEV. Similarly, empirical observations, symptoms, and consequences

Article number 240106

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

use few letters and a number, in typewriter font. For example, ESC01 is the first empirical
observation of a symptom/consequence.

1.5. Structure of this article

The remainder of this article is structured as follows. The next Section, 2, introduces related
and relevant work. Section 3 provides background information on phenomena described
using a pattern language, with a dedicated focus on anti-patterns and the Fire Drill, as well
as details about the preceding pilot study. The entire design of this study and the underlying
methodology is presented in Section 4. It is followed by Section 5, which is dedicated to
the presentation of the results of the analyses. The validity of our study, the limitations
of its results, their replicability and generalizability, as well as a summary of the results
obtained and how they relate to the established propositions and hypotheses, are discussed
in Section 6. The conclusion and synthesis of all results related to the case studied, as well as
prospects for future work, are given in Subsection 7.1. At the end of the article, the additional
appendices A through E, providing supplementary details and insights, can be found.

2. Related work

Pattern-like phenomena related to management are not models because they only describe
a well-known solution to some recurring problem [3], but effectively lack efficient operational-
izability (in terms of, e.g., a predictive model for presence and/or severity). Simeckova et
al. [5] have identified a wide semantic gap between the qualitative (textual, unstructured, and
often ambiguous) and quantitative description of pattern-like phenomena, where the latter
is practically impossible to specify. This is because patterns are deliberately left abstract
(or even ”vague“, as Alexander et al. [2] put it). Therefore, a quantitative description would
require, for example, context-specific thresholds or rules according to Simeckova et al.

Currently, no software process improvement model that could adequately represent or
evaluate the presence of a Fire Drill based on quantitative data exists. Brown et al. [11]
started to characterize the Fire Drill anecdotally, describing the problem it portrays,
together with a refactored solution called sheltering (see Subsection 3.1). They did not
attempt to abstract from this, i.e., there is no list of symptoms, for example. The only
possible form of operationalization would be a manual evaluation of whether and to what
degree the own project matches their description. Although they do not use the example
of a Fire Drill, Laplante and Neill [4] were the first to collect various managerial and
cultural anti-patterns and to represent each in a common, structured template. It included,
for example, the anti-pattern’s central concept, its dysfunction, a short vignette, a plain
explanation of the anti-pattern, clues to alleviate the fallout, and – most importantly
– a yes/no checklist with symptoms for identifying the anti-pattern’s presence. More
recently, Picha and Brada [18] started to collect and consolidate anti-patterns in a common
template. They extract and gather various characteristics from each anti-pattern and
translate some of their peculiarities into actionable symptoms, consequences, and solutions.

Attempts exist to operationalize various (anti-)patterns for software process quality. For
example, next to the informal descriptions, there are more formal models, such as Bayesian
(Belief) networks, ontologies, social networks, and Design structure matrices [6, 19–21]. Of
these, only Bayesian networks are actionable to a limited extent, as they allow for modeling
conditional probability distributions and visualization of dependencies between variables.6

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

The other methods are rather concerned with encoding project management knowledge
into machine-readable form. The actionability in Bayesian networks is limited to assessing
uncertainty; that is, it is not suitable for detecting the presence of anti-patterns but rather
a tool for exploring relations [22]. However, they may be used to measure certain aspects
of the process, such as its progress or quality.

There is plenty of other research on quantifying software quality using ALM artifacts. For
example, Draheim and Pekacki [38] focuses on developers’ activity throughout the project
using collaboration, productivity, and evolution metrics. Ramsauer et al. [39] deal with
estimating the maintenance costs in software development, and Tamburri et al. [40] study
the organizational aspects of software projects and communities. Talpová and Čtvrt-
níková [41] use ALM data to investigate Scrum anti-patterns in a case study, though
only as a secondary source of information combined with surveys and interviews. Ha-
chemi [42] explores the reuse of patterns (in a more colloquial sense) in the modeling of
software development processes. Although other researchers also focus on (anti-)patterns,
they do not use ALM data. Frtala and Vranic [43] research organizational patterns and
their adoption in individual organizations and projects using gamified learning techniques.
Settas and Stamelos [20], as well as Stamelos [6] aim specifically at project management
anti-patterns, their knowledge base, and effective communication using heterogeneity
of personalities and character traits of developers. A major part of the research efforts
also deals with the modeling of (anti-)patterns and detection through languages and
ontologies [44], or models like the software process engineering meta-model [5] and the
business process model and notation [45].

To the best of our knowledge, no one has previously attempted to operationalize an
anti-pattern using the approach presented in this study. It was previously shown that
performing post mortems is a viable path to organizational learning [10] and that learning
from anti-patterns is deemed a way to eventually master management knowledge [6]. Also,
it appears that examining and learning from eventuated anti-patterns is not limited to
the context of software development. For example, Awad et al. [46] use them to detect
compliance violations of business processes. Lastly, the Fire Drill is a phenomenon that
can lead to anything between ever-so-slight and severe, negative repercussions, such as
total project failure. Studying project failure typically results in the discovery of many
interrelated symptoms and consequences [47]. Although, compared to the application of
common software process improvement models, we address only a single quality goal, we
observe numerous different symptoms and consequences. It appears that the statement
of Neill et al. [1] about the fruitfulness of studying project failure has become true.

3. Background

This section provides some background information about phenomena described using
a pattern language, with a focus on the Fire Drill anti-pattern. It also gives an overview of
previous work, that served as a pilot study.

3.1. Phenomena described using a pattern language

Generally, patterns are reoccurring and identifiable phenomena [2], that are especially preva-
lent in phases of design, project management, and in software development processes [48].
A pattern provides a general and proven solution to a common problem.

Article number 240106

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

“Each pattern describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice.” – Alexander et al.

However, as the definition by Alexander et al. [2] implies, the descriptions are deliberately
left vague in order to leave room for case-specific applications of the solution the pattern
represents. The definition also highlights the challenge of patterns to date, which lies in
objectively definable and quantifiable problems, and the lack of technical and automated
solutions to these. While efforts for a more technical way of describing patterns have been
undertaken (e.g., [1, 11, 18]), they are predominantly described using a pattern language,
structured text, or a template [6]. Therefore, patterns are most often not described
quantitatively and lack clear connections to quantifiable properties, such as software
metrics.

Anti-Pattern

Pattern

Causes Unbalanced
Forces

Symptoms &
ConsequencesSolution

Context
Situation

Refactored
Solution

<exacerbates>

<ameliorates>

Figure 1. Some common elements of patterns and anti-patterns. The context element
refers to the context (and its problematic situation) of the case study itself (see Subsection 4.1)

An anti-pattern can be conveyed as a larger concept than a pattern, in a way that it
encompasses the elements of a pattern, but also adds an additional, so-called refactored
solution [4]. The refactored solution is, for example, a restructured, improved, or otherwise
optimized version of the original (regular) solution. The regular solution that comes from
the enclosed pattern is what creates the anti-pattern in the first place because its application
constitutes malpractice that exacerbates the problem, rather than ameliorating it (see
Figure 1). Therefore, the actual mending solution is the refactored solution, rather than the
regular solution. The refactored solution is an element that is known for some anti-patterns,
but not for all. If present, it is commonly included in the pattern language or structured
template (e.g., [14]). As a result, anti-pattern project management phenomena pose threats
to project quality and delivery and are the outcome of human error. The ramifications
include but are not limited to, developer churn, interpersonal and organizational tensions,
a product of poor quality, delayed delivery, or even total project failure. The notion of an
anti-pattern is, therefore, closely related to that of project risk [6].

3.1.1. The Fire Drill

The presence of a Fire Drill is a kind of problematic software project situation. Most recently,
the Fire Drill was described following a common, structured template (see Appendix A).
Rudimentarily speaking, it is construed as a short, desperate, and highly active phase
towards the end of a software development project. It is preceded by a considerably longer,8

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

much less productive phase. Often, a disproportionately large amount of the project’s
resources is spent in the first phase, without advancing the project at the required pace.
When management acknowledges the urgency of the imminent due date, the start of the
typical Fire Drill is heralded [3, 11, 12].

While the Fire Drill is a phenomenon that unfolds as the result of poor management
during the development phase of a project, some projects are predestined to exhibit
one due to poor time allocation for the preceding approval and budgeting processes.
This phenomenon is known as the “fuzzy front end” and often results in an aggressive
development schedule from the beginning [49].

3.1.2. Patterns related and similar to the Fire Drill

The Fire Drill is related to other phenomena, some of which it is partially indistinguishable
from. This happens because a certain set of indicators and symptoms and consequences
are similarly indicative of other phenomena. Some related anti-patterns are, for example,
“Analysis Paralysis”3 (a potential cause) or “Collective Procrastination” [18] (a more
generic case). Other anti-patterns, such as “Half Done is Enough”4, or “Brook’s Law” [50]
may constitute typical symptoms associated with an early-/late-stage Fire Drill. The
anti-pattern “Cart Before the Horse” emerged as part of a Fire Drill in some of the affected
projects. While it is a pattern of its own, it is a typical, severe, and frequently occurring
symptom of a Fire Drill (see ESC2 and E20 in Appendix C), that may have high project
risk as one of its consequences. What is furthermore similar, is that these phenomena, in
theory, can also be identified based on the ALM data or ongoing activities.

3.2. Previous work

In an earlier paper that served as a pilot study [51] for this work, we primarily investigated
the type-II data. Next to exploring and visualizing the work carried out in the projects,
the goal was to assess whether a model or a plain decision rule for presence detection
can be derived from the data and applied to future projects. That study did not include
a qualitative evaluation of the Fire Drill in each of the projects. Furthermore, the absence
of more than two raters prohibited a proper assessment of the inter-rater agreement and the
quality of their findings. From the pilot study, we conclude that the usage of naive models,
whether expert-designed or purely data-driven, is not beneficial, as a model requires a more
adequate representation of its features. We attempt to represent the time spent on activities
in two different ways. After exploring the data, we explicitly define three activities for
issue-tracking that are related to requirements engineering, development, and descoping (see
Subsection 4.5.1). For source code data, we predict the so-called maintenance activity [52]
that is associated with each commit [53] (see Subsection 4.5.2). These activities are related
to adding features, correcting faults, and perfective changes (e.g., maintenance). For each
instance of an activity, it is always recorded when it happened. This allows us to detect
temporal accumulations of comparatively lower and higher density. In issue-tracking, we
additionally have access to the duration (i.e., how much time was spent) of each recorded
activity. The duration for commits, however, remains unknown. For issue-tracking data,
we chose a cumulative and normalized representation, since this data tends to be more

3Analysis Paralysis. 2017. http://wiki.c2.com/?AnalysisParalysis
4Half Done Is Enough. 2023. http://wiki.c2.com/?HalfDoneIsEnough

Article number 240106

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20171009192034/http://wiki.c2.com/?AnalysisParalysis
https://web.archive.org/web/20230223162916/http://wiki.c2.com/?HalfDoneIsEnough

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

scarce (for example, bug tickets are only opened rarely). For source code data, we choose
to represent the time spent as continuous-time random variables. We conclude that the
latter representation is the most suitable for either type of data. Furthermore, we suggest
using weighted density estimation for issue-tracking data, additionally considering the
time spent as a weight for the temporal accumulations of these activities. We recommend
using continuous probability densities also for another reason:It is straightforward to derive
two kinds of features from them. First, a density can be integrated along an interval for
estimating the relative amount that was carried out for an activity. Second, calculating
a divergence between two densities is well understood and can be exploited for identifying
disparities between activities. It is likely that common regression models (mind they require
an accurate ground truth) will outperform the pilot study’s approach using our findings.
While a binary decision rule for presence detection can achieve a respectable accuracy, it
is of obviously limited use as a severity assessment device and prone to producing false
positives or negatives. Attempts to create a more fine-nuanced rule failed.

4. Case study design

We perform a single-case embedded case study based on intrinsic and instrumental mo-
tivation. We use qualitative and quantitative data and present the results in a mostly
structured format [26]. From Sjøberg [54, 55] we may understand “a case [...] as a single,
empirical configuration of actors, activities, technologies, and artifacts, all within a context.”
However, while all projects do share the same case, their empirical configuration varies.
This circumstance necessitates the application of an embedded design. For example, in
each project, a different product is developed, by a different group of students, applying
individual practices (to some degree) to achieve their goals (see Appendix B for the full
project setup). Therefore, the multiplicity rather lies in the analysis units (the projects
themselves) and not in the cases, requiring an embedded design. A non-embedded design,
if not studying multiple cases, would be concerned with a single unit of analysis and,
therefore, not be a suitable choice for this work. Embedded case studies propagate the
findings from the analyzed units back to the single case studied. Yin [25] notes that the
project-level data may be highly quantitative, and the original evaluation would become
a project study, i.e., a multiple case study of different projects if there is no investigation at
the level of the original case. Scholz and Tietje [26] note that the multiplicity of evidence
in an embedded case study is investigated partly in the projects, each focusing on different
and salient aspects of the original case. In a multiple case study, each case should serve
a specific purpose within the general scope of the investigation, which does not apply here.
Furthermore, all propositions, hypotheses, and research questions are the same across all
embedded units. Therefore, we only have a single case of study [25].

Multiple case studies follow a replication logic that starts with uncovering a significant
finding that is subsequently replicated using additional case studies. However, our study
is a single evaluation (concerning a single case) across multiple projects. The logical
sub-units (or embedded units) are the selected n = 15 projects, which makes a holistic
design inapplicable and warrants an embedded design instead. It is common for embedded
case studies to facilitate (sampling of) quantitative data and the application of statistical
analyses [35]. The case (subject, or main unit of analysis) is the Fire Drill within a software
engineering course (see Figure 2). The course is the Advanced Software Engineering course10

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

at master level5 conducted during the second out of a four-semester study at the University
of West Bohemia in Pilsen. Given the setup of the projects (e.g., agile, iterative, milestones,
etc.), they are naturally subject to the Fire Drill phenomenon. The full context of our
study is given in Subsection 4.1.

CONTEXT

Case: The Fire Drill within a software engineering course

Embedded Unit: An individual, qualitative, and idiographic analysis of each of the
15 projects, as well as a quantitative, nomothetic analysis across all projects.

Figure 2. Case study design

Since we perform an embedded case study in the realm of software engineering, our
method is closely aligned with guidelines from Runeson et al. [29] and Wohlin et al. [56].
The research strategy chosen here is exploratory, explanatory, and of an improving nature.
It is not descriptive, as we are not trying to portray the current state of the Fire Drill
phenomenon [29] (for that, the interested reader is referred to Subsection 3.1.1, Appendix A,
and [3, 11]). It is, however, exploratory and explanatory since we seek new insights into the
phenomenon’s manifestation within the chosen context. The case is studied to interpret
and explain symptoms, causes, and consequences and establish a connection to quantitative
data that cannot be fully utilized. This is closely connected with the improving nature of
this study as we attempt to add to the current qualitative understanding and establish
a new quantitative awareness.

Wohlin and Rainer [55] provide a case study checklist. The first requirement is an
identifiable case, which we have presented here. The second requirement is that of a real-life
context. It is satisfied since we do not attempt to generalize beyond the chosen context
(e.g., industrial). The third requirement is that of using multiple data collection methods.
The variety of methods and sources used is described in Subsection 1.1. The fourth
requirement is the study of a contemporary phenomenon. It is satisfied by us studying
the projects as they occur. The last requirement is that the researchers do not act as
change agents in the projects as they unfold. Although one of the raters was a mentor
in most of the projects, that role was purely passive with respect to at least the Fire
Drill phenomenon (see Subsection 4.1.3). This is evident because some projects showed
strong manifestations of the phenomenon (or other anti-patterns) regardless. Furthermore,
in software engineering, case studies are expected to establish long-term objective(s) (as
opposed to action research that favors short-term change), which we did (see Subsection 1.3).
We came to the characterization of our study as a single-case embedded case study, together
with these properties, after discussing its nature and virtues in detail [57]. Although our
analysis for the first part happened post mortem, we do not necessarily apply the full
spectrum of software project post mortems. Therefore, we must separate ourselves from
post mortems and processes as defined in, e.g., [58, 59]. Although our analysis partially
resembles what Tiedeman describes as postmortem planning and design/verification, their
conceptual framework is not applicable here for the above reasons.

5Course homepage. 2023. https://courseware.zcu.cz/portal/studium/courseware/kiv/aswi/?pc_lang=en

Article number 240106

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20230124210437/https://courseware.zcu.cz/portal/studium/courseware/kiv/aswi/?pc_lang=en

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Case studies are “[…] studies of something general, and of something particular […]” [60].
These two different moments are characterized by an idiographic and a nomothetic part.
Therefore, this study is divided into two consecutive parts (see Subsections 4.4 and 4.5).
The first qualitative part seeks to gain an understanding of the Fire Drill’s manifestation
in student projects. Here, we make an individual, idiographic effort to understand the
phenomenon in its context. This is also where we assign a severity to each project (the
ground truth). The first part is closely aligned with the first set of propositions, hypotheses,
and research questions as presented in Subsection 1.3. The motivation here is mainly of
what Scholz and Tietje [26] call intrinsic character, meaning that we have a somewhat
personal incentive to understand this case, as one of the authors has previously been
involved in the conduct of these projects and will continue to be in the future.

4.1. Context

We report the context of this study aligned with the applicable points of the framework,
as suggested by Petersen and Wohlin [61] and Runeson et al. [29]. Specifically, we report
details on the products (what was manufactured in each project), processes (activities,
artifacts), practices (tools and techniques), people (students and researchers), organizations
(the university), and the (hypothetical) market (the customer). Appendix B lists, for each
project, what kind of application was produced, its size, the used programming language(s),
the number of team members, project duration in days, number of iterations and issues,
time logged on issue-tracking activities, and number of commits per maintenance activity.

4.1.1. Product

Each team developed a single product over the course period, commissioned by the customer.
Typically, an individual customer was assigned to each project. It is up to the customer’s
discretion to select an appropriate balance between product maturity and quality and the
number of features. Typically, two-week iterations were used to ensure a certain minimum
level of product completeness, quality, and installability.

4.1.2. Processes and practices

The goal of the projects is to approximate a real-world setting as closely as possible.
The projects typically run for approximately three months, with a typical workload
of ≈ 65–80 hours per student. Each project follows the Unified Software Development
Process [33]. The methodology is influenced by agile practices, with two-week iterations
(“Sprints”) and a final fixed deadline for product delivery. The students manage the projects
autonomously, with a staff member assigned to each project for oversight. For issue tracking
and version control, teams must use common ALM tools, such as Redmine or GitHub. Most
teams use additional tools, such as Wikis, automated testing and deployment (continuous
integration/delivery), or shared documents for, e.g., the requirements specification, imple-
mented architecture, meeting minutes, or customer communication. We classify the rich
set of artifacts captured during the process into type-I and -II data (see Subsection 1.1).12

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

4.1.3. Students, researchers, customers, and the organization

All students involved studied at the second cycle (master’s level). The number of students
in each project is shown in Appendix B. The customer for each project came either from
the university (the same or another faculty) or an external company. Since the projects
were conducted in an academic context, the organization was the University of Western
Bohemia in Pilsen. Instead of monetary interests, however, the university’s interests are
ensuring high educational standards (especially by studying the outcomes), as well as
preparing the students for a potential future work environment.

Rater 1. The first rater is currently a doctoral student. Their main interest in the
study is the detection of project management anti-patterns through the usage of ALM data.
The first rater has about five years of industry experience working at DHL, predominantly
with help and advice on using ALM tools (e.g., IBM Engineering Lifecycle Management)
and consulting on software processes. They were previously involved in three process audits
for industry, mining ground truth (quality of their processes or compliance to norms; using
similar data plus interviews). These audits lasted for a few months, approximately one year,
and one for approximately four years. The first rater worked as a mentor in the advanced
software engineering course for nine consecutive years. On average, they were in charge of
approximately five projects (with a range of three to eight). It is important to note that
their mentor role is purely passive. They never actively attempted to avoid (or alleviate) the
Fire Drill anti-pattern (or any other malpractice, for that matter). This becomes evident
because some projects showed strong manifestations of the Fire Drill phenomenon (or
other anti-patterns). The students could (and did) choose to ignore mentors’ advice. Some
students have previously failed the course.

Rater 2. The second rater holds a master’s in software engineering and did not
previously participate in the course as a mentor. The second rater is a former doctoral
student with a main focus on project data analysis. They have over three years of industry
experience working at Unicorn6 as a project manager. Rater Two never had any active role
in conducting the software engineering course.

Rater 3. The third rater also holds a master’s degree in software engineering. They
were previously enrolled in a doctoral program for about four years. The main focus of
their third-cycle studies was the compatibility of architecture components. With more
than four years of industry experience, rater three works at the Finnish software company
Yoso7, where the main customer is the Finnish state. Their role is that of an architect
and a lead developer, as well as project analytics and -management (e.q., requirements
analysis). They are also the head of the company’s local branch in Pilsen. Rater Three
never had any active role in conducting the software engineering course.

Assessor. The assessor’s role was to analyze, interpret, and aggregate the raters’ findings
independently. They are currently enrolled in a doctoral program and hold a licentiate
degree. Their main focus of study is software and information quality, with a strong focus
on statistical learning and mathematical optimization. The assessor has approximately four
years of prior, predominantly agile industry experience, working as a systems developer
(at SAP Research8), lead architect, project manager, and product owner (at Softwerk9).
As such, they have first-hand experience with agile product development. The assessor

6Unicorn: About Company. 2023. https://unicorn.com/en/company-profile
7Yoso: Company Homepage. 2023. https://www.yoso.fi/
8SAP: About Innovation and Research. 2023. https://www.sap.com/about/company/innovation.html
9Softwerk: About Company. 2023. https://softwerk.se/en/about-us

Article number 240106

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20230415151814/https://unicorn.com/en/company-profile
https://web.archive.org/web/20230304135239/https://www.yoso.fi/
https://web.archive.org/web/20230527220021/https://www.sap.com/about/company/innovation.html
https://web.archive.org/web/20230326161647/https://softwerk.se/en/about-us

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

also took similar roles as a teaching assistant in two unrelated first- and second-cycle agile
software development courses over the course of three years (assuming a role in between
two and eight projects simultaneously in each course). The assessor never had any active
role in conducting the software engineering course.

4.2. Embedded unit selection

The natural choice for the (sub-)unit of study is student projects. We initially also considered
studying the Fire Drill in open source or industrial projects, but this would probably have
been a purely archival study due to the lack of a real-life context [54, 57]. Furthermore,
the social context of open source projects is hardly observable, and the ALM data are
notoriously incomplete or often absent entirely due to the absence of (proper) project
management. The latter type of project is difficult to obtain, both in quantity and quality.
Since the Fire Drill is a phenomenon that affects a project in its entirety, we regard quantity
as slightly more important (for this reason, we conduct an embedded case study).

The benefit of using the student projects to study our case lies in the accessibility of
the associated ALM data throughout the entire lifecycle of each project. As course runners,
we directly observe and record the day-to-day realities of each project. This additional data
and knowledge are crucial for an accurate assessment of the ground truth. Our data spans
15 projects, four of which were conducted in 2019, five in 2020, and six in 2021, between
March and June each year. We have previously detailed the various data types available
for each project (see Subsection 1.1). We only included projects that provided full access
to the ALM data. Therefore, a few projects had to be excluded. The non-availability of
data can be primarily ascribed to the usage of external, proprietary ALM tools, sometimes
demanded by industrial customers’ non-disclosure requirements.

4.3. About the data

All data used in this study were previously made available as an anonymized open-access
dataset [62]. It was used and made available only in digital form and was recorded
exclusively digitally. All data are associated with application lifecycle management, that
is, data related to application governance, development, and operations [63]. Therefore,
most of the data are produced automatically by the required usage of ALM tools. The
dataset includes all original artifacts for each project. To avoid introducing translation
bias, textual artifacts recorded in Czech were kept pristine. The dataset also includes data
collected by observation, such as mentor notes, meeting minutes, and retrospective records.
The data was then digitized and added to the set.

The immediate purpose of the data collection was evaluation and grading, and the data
are initially kept for no specific reason other than archival records (the university recommends
keeping such course-related data for administrative purposes). The data are also kept and
accessed while the projects are still running because it needs to be accessible during or after it-
eration reviews. Due to the absence of a specific reason, the recorded data are not specific to the
Fire Drill phenomenon, as everything of potential relevance was kept or recorded. Therefore,
the data can be used in a future study using a different case and/or research questions.

Since the data stem from software engineering projects conducted at a Czech university,
the projects’ and their data are subject to Czech legislation. As for ethical considerations,
the legislation states that any student work done as a course assignment can be freely used14

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

by the educational institution for the purposes of its main functions, research obviously
being one of those.

4.4. Qualitative design

Approaching (anti-)patterns like the Fire Drill is first done through the available phe-
nomenological descriptions. The multiplicity of evidence is first investigated qualitatively
on a per-project basis. We draw on methods for data source- and observer-triangulation to
obtain robust ground truth estimates [29, 64].

The primary goal of the qualitative analysis was to understand if, how, and to what
degree the Fire Drill manifests in each of the projects. To achieve this, the type-I data were
subjected to manual and individual inspection by each of the three raters. Before individual
analysis, a common understanding was established based on the available phenomenological
descriptions (see Subsection 3.1) between the raters. The raters would then go ahead and
extract evidence for the presence (and absence) of a Fire Drill (called the raters’ notes in
the dataset [62]). The notes reflect which symptoms and consequences are present, how
severely they manifested, and how often they were observed. They also include findings
that are counter-indicative of a Fire Drill. To date, the detection of (anti-)patterns has
been subject to qualitative evaluation in practice.

After a complete evaluation of a single project, a rater would then indicate an overall
severity using a linear numeric rating scale of 0–10, where 0 indicates the absence of the
phenomenon and 10 the strongest possible manifestation. This assessment would then
serve as ground truth in the subsequent use of type-II data (e.g., variable importance,
regression model, etc.). We chose to assess the severity on a project level, since a Fire Drill,
according to its existing descriptions, concerns a project over its full lifecycle. Furthermore,
the Fire Drill’s descriptions prohibited the use of a proper ordinal rating scale, such as
a descriptive, verbal rating, or Likert scale. This is because the described symptoms and
consequences (see Appendix C) do not come with a severity attached. For example, the
second symptom/consequence, SC2, reads “only analytical or documentational artifacts for
a long time”. Therefore, in the absence of a proper ordinal scale, the raters’ subjective
severity assessment formed only the basis for three subsequent analyzes.

The first analysis is to measure inter-rater agreement. As the ground truth assessment
of the raters is subjective, the only way to objectively measure the proportion to which they
agree is to use some agreed-upon scale or benchmark. To calculate the inter-rater agreement
between more than two raters, Cohen’s Kappa cannot be used. Instead, for example, one of
Conger’s, Fleiss’, or Gwet’s Kappa coefficients is required. We chose to report Gwet’s “AC1”
Kappa coefficient, which outperforms other coefficients in terms of having reasonably small
biases for estimating the true inter-rater reliability [66]. It is especially applicable in the
presence of high agreement (which, as it turns out, is the case) because of its comparatively
low bias. To benchmark the computed Kappa, we apply the widely used scale of Landis
and Koch [67]. However, we should note that the proposed scale by Landis and Koch was
arbitrarily chosen and that each Kappa is a point estimate associated with a probability
distribution and a margin of error [68]. Therefore, it is recommended to properly benchmark
the raw Kappa coefficients. Gwet suggests computing the probability that a Kappa falls into
a certain range by integrating a standard normal distribution (where the Kappa coefficient
is the mean and its associated error is the standard deviation) [30].

The second analysis was a common session between the raters conducted to reach
a consensus on their rating, using the well-established Wideband Delphi method [69, 70]. In

Article number 240106

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

cases of diverging assessments, each rater presented arguments for their estimate, leading
to a discussion, a repeated inspection, and a reconsideration of the information sources,
until a final assessment was mutually agreed upon. Ties, rounding, and dissents were
settled by the second rater since they never had any affiliation with the projects (e.g., as
a mentor) and have the longest industry experience as a project manager to date. The
raters were free to assign a final consensus value below or above their initial rating if there
was sufficient reason to do so after the follow-up investigation of the data. The use of
multiple experts is an effective measure to reduce subjective bias commonly introduced by
expert-judgment software estimates [15]. The first two analyses were, in part, designed to
guarantee a minimum quality of the obtained ground truth, as it is crucial for the analysis
of the type-II data. Without the precautions implemented, robustness, reliability, and
accuracy cannot be ensured otherwise [31].

The third analysis is a systematic approach that uses a well-defined ordinal scale to
identify the prevalence of individual symptoms and consequences. Unlike the previously used
numeric severity rating scale, the ordinal scale used here is of descriptive nature. Although
each consecutive item represents a severity higher than that of the previous item, a linear
increase is not implied. Severity is assigned or upgraded purely by description. The assessor
(see Subsection 4.1.3) is to first classify each of the raters’ notes and comments according to
this scale. Furthermore, the assessor is to assign each observed empirical instance to one of
the Fire Drill symptoms and consequences. This is done to allow us to answer the question
of how the fire drill manifests itself in the projects empirically. Some of the observations,
even though they are clearly related to our understanding of the phenomenon, may warrant
a new superordinate symptom and consequence, especially if they cannot be assigned purely
or only poorly to any of the existing symptoms and consequences.

After the first pass, a second pass is performed. In the second pass, observations
(called empirical instances of a symptom or consequence and abbreviated as ESCxx) are
conditionally aggregated and checked for data and/or observer triangulation, and the
severity is adjusted accordingly. The following scale was used in both passes:
[0] None: Not at all a problem: it applies mostly to false positives (e.g., a typical symptom

that was caused out of the studied context and had no adverse effects).
[1] Miniscule: Only slight indications of typical symptom(s) identified by at least one

rater.
[2] Minor: Multiple indicators and/or measurable/documented symptom(s); seldomly

corroborated by another rater.
[3] Moderate: Clearly identifiable and reoccurring symptoms or direct corroboration.
[4] Significant: Like moderate, but the higher severity is evident through additional data-

or observer-triangulation.
[5] Serious: Agreement on the (recurrent) severe manifestation of a symptom by observer

triangulation (often all raters) and/or data triangulation.

4.5. Quantitative design

The primary goal of the quantitative analysis was to facilitate the rich corpus of quantitative
artifacts that are produced mostly automatically as a byproduct of conducting the projects
and using the ALM tools. The goal is to enable quantitative data to contribute to the
current phenomenological understanding and to automate expert-based post mortem
assessment. The quantitative analyses facilitate the qualitatively won ground truth and
type-II data exclusively. The available type-II data can be split into two main sources:16

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

source code and issue-tracking. This split is maintained throughout all analyses because,
in reality, there might be access to only one of them. The won ground truth enables a wide
range of statistical analyses and supervised learning. Quantitative data in the context of
(anti)patterns are rarely useful. For example, consider the number of bugs over time. For
this information to be useful, we would at least need some thresholds, and those would need
to be universally valid. To address our objectives, hypotheses, and research questions, we
also performed three analyses (Subsections 4.6 through 4.8).

4.5.1. Activities in issue-tracking data

The Fire Drill and many related or similar phenomena are sensitive with regard to a certain
balance of particular activities at any given point in time. For issue-tracking, we model
three activities from the type-II data that, supposedly, are closely related to the activities
described in the Fire Drill. These activities are as follows:
REQ: Activities related to requirements, analysis, and planning.
DEV: Time spent on development (implementation), testing, and bug-fixing activities.
DESC: Descoping; Effort that was planned for DEV, but never spent on it (i.e., the difference

between the scope agreed on and delivered).
For each of the activities, the issue-tracking data provide timestamps (when an instance
of the activity occurred) and duration. The title and description of the tickets were used
to classify the issues into REQ and DEV, which were obvious choices to detect the Fire Drill.
If there was only the slightest doubt, the issues were left uncategorized and not used. DEV
reflects only adaptive engineering (i.e., adding features) because in these projects almost
no maintenance activities are expected. Maintenance is only rarely done because there is
no proper quality assurance and the delivery of agreed-upon requirements is of the greatest
importance. Also, there are usually no or only a few ancillary functional requirements, such as
response time, user-friendliness, or documentation artifacts. Therefore, activities other than
forward engineering and bug-fixing were not considered. We also considered the frequency
of the bugs, but it is unreliable because the reporting is not rigorous, often inconsistent,
and sometimes completely absent. For example, many bugs were change requests in reality
because the requirements were understood wrong. DESC, however, was constructed as it was
deemed to be a valuable indicator for typical Fire Drill symptoms: Student projects have
a hard deadline, so descoping happened frequently. The candidate solutions to a to-be-missed
deadline are descoping, re-negotiation of the time frame, or overstraining people. Of these,
descoping presents the refactored solution, while the others would exacerbate the situation.
Therefore, descoping was the only allowed solution in this case.

4.5.2. Activities in source code data

From the source code, we model three types of activities from the type-II data as well.
Source code is, compared to issue-tracking, a more objective source of information, because
the data is not subject to human error and resulting inconsistencies (e.g., mislabeling of
tickets). The source code repositories and commits thereof do not usually provide any form
of annotations that would allow one to understand what kind of activity some committed
work may relate to. Although it is possible to reference issues in commit messages, this
feature was not used to label commits. Furthermore, we already derive three other activities
from the tickets directly. By analyzing each commit’s source code density [53], we can predict

Article number 240106

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

its associated maintenance activity [52] with great confidence. The three maintenance
activities are as follows:
A: Activities related to adaptive/forward engineering (adding new features).
CP: Activities related to either corrective (fixing faults) or perfective (improve or change

code to accommodate future features) work.
FREQnm: Overall commit frequency, regardless of the associated maintenance activity.
While the used classifier can differentiate between corrective and perfective commits,
the Fire Drill is not described using this distinction. Therefore, we combine these two
activities into a single one. Although the overall commit frequency could be designed
as a weighted mixture of A and CP, we chose not to do that. Instead, the frequency is
designed by disregarding all labels, similar to CP, which does not make a distinction
between corrective and perfective. Therefore, the variable is called FREQnm, where the
suffix “nm” indicates a non-mixture. The association between maintenance activities and
the activities as described by the Fire Drill is likely to be worse than it is for issue-tracking.
However, the increased objectivity of the source code data may give an edge to these data
over issue-tracking data.

4.5.3. Modeling of activities as probability densities

We have previously identified and selected activities to be modeled, for which a proper
representation has to be chosen. As a single consistent representation, we model each activity
as a probability density function (PDF). This is similar to how the work distribution for
certain workflows in certain phases is represented in the rational unified process [34]. The
density reflects the timely accumulation of activities relative to each project’s lifecycle.
Since we do post mortem evaluation, the time between the first and last instance across all
activities can be used to normalize all occurrences’ timestamps into the range [0, 1] after the
project end. The temporal accumulation is estimated using kernel density estimation [71].
For both sources of data, source code and issue-tracking, we know the timestamp for which
an instance of activity occurred. However, for the former, there is no indication as to the
duration of each instance. For the latter, however, the duration of each instance is factored
in as a relative weight when estimating a density, leading to a more accurate representation
of the time spent.

4.5.4. Deriving features from activities

For each project, we have previously defined what activities we model and how. However,
we have not yet derived any features. Generally, a feature is a measurable property with
discriminatory power, which can be used in statistical analyses and machine learning.
Since temporal accumulations of activities are modeled as probability densities (in case of
issue-tracking also considering the duration using weighted estimation, see Subsections 4.5.1
through 4.5.3), we choose two major types of features. The first type of feature is the
amount (cumulative probability) of a certain activity that happens in a segment of a project.
Its value can be determined by integrating the relevant interval of the activity’s probability
density. The second type of feature is the difference between any two activities on a segment
that can be calculated using a (symmetric) divergence of their associated probability
densities (denoted by the operator |0). In addition, we choose to subdivide each project
into ten equally long segments. As the project time is normalized, we end up with a set of
segments {[0.0, 0.1], ..., [0.9, 1.0]}. The original Fire Drill description only vaguely indicates18

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

(the length of) phases. Brown et al. [11] reports an anecdote of a typical project with
improper burndown for about six months, followed by a Fire Drill of four weeks. However,
this is in no way representative. Therefore, we choose said subdivision. We argue that ten
segments will yield sufficient precision beyond Brown et al.’s two-phase model. Furthermore,
the number of segments could be arbitrarily increased to further boost the precision, if
desired.

The amount θ of a certain activity ACT in a segment [a, b] is the integral of its associated
probability density fACT over that interval. The probability densities of the activities are
designed such that

∫ 1
0 fACT(x) dx = 1, i.e., they integrate to one, the cut-off beyond the

actual project time is sharp, and the PDFs of any two activities provide absolute continuity.
Therefore, [

∑
θi] = 1 (where i = 1 ... 10 is the segment index). The amount of a feature

in a segment can be directly interpreted as a percentage (the cumulative probability of
observing the related activity in the segment).

The divergence between any two activities is commutative, that is, A diverges from B
the same as B diverges from A. Therefore, a symmetric divergence is computed. The
rationale behind this is rather practical. For the modeled activities, there is no distinction
between the two mutual divergences. Furthermore, if A |0 B 6= B |0 A, the result would
be twice the number of features. For three activities A, B, C, the resulting set would
have a cardinality of six. However, for a symmetric divergence, only A |0 B, A |0 C, and
B |0 C need to be computed. We choose the Jensen–Shannon divergence [72], which is
a symmetric divergence (1). It is based on the Kullback–Leibler divergence KL (P |0 Q).
For two continuous random variables P, Q with probability densities p, q, the divergence is
computed as follows.

JSD(P |0 Q) = 1
2 KL

(
P

∣∣∣∣0 P + Q

2

)
+ 1

2 KL
(

Q

∣∣∣∣0 P + Q

2

)

=
∫ b

a

p(x)
2 log

(2 p(x)
p(x) + q(x)

)
+ q(x)

2 log
(2 q(x)

p(x) + q(x)

)
dx. (1)

The rationale behind computing segment-wise divergences is our assumption that the
Fire Drill is sensitive with regard to a certain balance of particular activities at any given
point in time. Therefore, we regard the divergences as an effective measurable property for
observing such (im-)balances. Unlike the amount of activity, the divergence between two
activities cannot be interpreted in a straightforward way and requires normalization.

4.6. First analysis: weighted mixtures

The first analysis examines the temporal accumulation of activities as is typical for when
a Fire Drill is present in a project. For that, a weighted mixture for each activity across all
projects is created. A weighted mixture is a convex combination of probability densities.
In such a combination, each weight is greater than or equal to zero and the sum of all
weights is equal to one (2). This is required for probability densities to ensure that no
probability can become negative and the mixture integrates to 1. Recall that the raters’
ground truth assessment was recorded on a numeric linear rating scale of 0–10, with 0
indicating an absence of the phenomenon. The ground truth vector κ can, therefore, be
scaled into a weight vector by normalizing it through the division of its sum (3). A mixture
for some same activity ACT across all projects (4) is then created as a weighted sum (5).

Article number 240106

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

∑
wi = 1 ∧ ∀ wi ≥ 0 . . . properties of a convex combination, (2)

w = κ
[∑

κi

]−1
, the normalized ground truth, (3)

fACT . . . vector of probability densities for activity ACT, (4)

gACT (x) =
∑

wi fi(x), weighted mixture for activity ACT. (5)

The result of this analysis will show us, for each activity, how it typically unfolds over
the lifecycle of a project that is affected by a Fire Drill. The expectation is to observe
a correlation between these activities and those as described, thereby establishing an
additional, symptomatic, and quantitative understanding of the phenomenon. Although we
currently have only n = 15 projects, each project added to the mixture will lead to a more
accurate representation of the activities in the presence of a Fire Drill. With a sufficient
amount of projects added in the future, the weighted mixtures may become their own,
quantitative pattern description of the Fire Drill.

4.7. Second analysis: variable importance

The second analysis estimates the variable importance. The term variable can be in-
terchangeably used with feature. It does not refer to a random variable, however. The
variable importance is often used as the basis for selecting features that shall be part of
the training [37]. Here, we compute it for a different reason, though, that is to enrich the
existing phenomenological descriptions from a quantitative point of view. The results of this
analysis are not used for adaptive training. We should note that the variable importance
is specific and sensitive to the model with which it was computed. For example, a neural
network will estimate it differently than partial least squares. Therefore, we average the
variable importance as obtained from five different models, each repeated 100 times, to
get a more solid understanding. The five models used are a boosted generalized additive
model [73], a neural network [74], (generalized linear) partial least squares [75], and bagged
CART [76].

In Subsection 4.5.4 we have described which and how we model activities, and what
kind of features were engineered. To recall, two types of features, namely the amount of an
activity and the (symmetric) divergence between two activities are used. Furthermore, the
subdivision into ten equally long intervals was applied. In summary, for a single activity
such as REQ or CP, the amount of activity in some segment is a single feature. Therefore,
for either source of data (source code or issue-tracking), we modeled three activities
each and segmented them into ten intervals, having two separate features (amount and
divergence) per interval (2 × 3 × 10 × 2 = 120). Therefore, the second analysis will answer
questions the first could not answer. For example, which are the most (least) important
segments (or phases) of the phenomenon, or whether the balance/divergence of activities is
a more suitable predictor than the number of activities. The variable importance, therefore,
complements the weighted mixtures of each activity. It cannot, however, answer as to
which source of data, source code or issue-tracking, is more important (that is, more apt to
predict an accurate severity). That is because variable importance is estimated on either
data source exclusively, as we maintain the split.20

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

4.8. Adaptive training

The adaptive training, while also having analytical properties, is in direct correspondence
with the main objective of this study: To automate the post mortem severity assessment.
As a byproduct, we shall also learn, for example, whether and which source of data, source
code or issue-tracking, is apt for use in a predictive model or what type of model works
best. The design of the adaptive training is subject to the propositions that a ground truth
with sufficient precision can be obtained (Pr. 2.1), and that there exist some artifacts
among the type-II data suitable for (adaptive) training (Pr. 3.1). We define the adaptive
training to be a kind of stability analysis, a process to which training data is continuously
added until the chosen stability criterion of sufficient confidence is satisfied [32]. The two
principal quantities that we will consider are the empirical generalization error or risk, R,
and the confidence in obtaining predictions close to it.

4.8.1. Notations

We use notations very similar to those of Bousquet and Elisseeff [32]. Only symmetric (ag-
nostic w.r.t. the order of the training samples) learning algorithms that produce a mapping
from some input or feature space X ⊂ R to some output space Y ⊂ R are considered. All
training is supervised. Hence, a training set S (6) consists of m tuples in Z = X × Y , drawn
i.i.d. from the unknown population D. An algorithm A, once fit, becomes the hypothesis
f : X → Y . Therefore, it is a function from Zm into the hypothesis space F ⊂ YX . We use
the notation AS to indicate that A was trained on S.

S = {z1 = (x1, y1), ... , zm = (xm, ym)} , (6)

c : Y × Y → R+ ∪ {0}, (7)

`(f, z) = c(f(x), y). (8)
The goodness of a fitted algorithm is evaluated using a cost function (7), which quantifies

the difference between the true and predicted outcome. The loss of a fitted algorithm
(a hypothesis f) with respect to an example z = (x, y) is defined as in (8).

4.8.2. Stability analysis

The stability criterion chosen for a learning algorithm depends on the goal. In this study,
the goal of the stability analysis is two-fold:
1. Select a champion model by the lowest empirical risk, among various configurations of

learning algorithm, training data source, applied pre-processing, and used feature types.
2. Approximate empirical confidence intervals based on the probability that the champion

model will predict an error that deviates from its expected error.
For (A), we require a model that satisfies the principal objective of predicting the severity
of the Fire Drill on previously unseen projects with sufficient confidence. For that, we
intend to repeatedly evaluate a large grid of various dimensions, in order to obtain robust
estimates for the empirical generalization error for each setup (e.g., used model type, data
source, etc.).

Instead of setting a threshold for what constitutes sufficient confidence, we select to
tie the second goal, (B), to the amount of available ground truth once a champion was
found since this is a source of actual scarcity. From pursuing the first goal, (A), the many

Article number 240106

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

repetitions for each constellation resulted in a set of validation errors. This set is regarded as
a separate random variable, V . Using this notion, a confidence interval can take two possible
forms. The first is to express it in terms of a probability that the model estimates an error
that deviates less or more from the expectation, given some bounds for the lower (da) and
upper (db) deviation (9). The second is to express it in terms of a deviation that corresponds
to a given lower/upper probability (pa, pb), that is, given a probability, a function that
indicates the maximally expected deviation from the expectation in either direction (10).
We can conveniently express the two notions using the probability density function (PDF),
cumulative distribution function (CDF), and percent-point function (PPF) of V .

fV , FV , f−1
V . . . PDF, CDF, and PPF of V,

µV = E [V] =
∫ ∞

−∞
x fV (x) dx, the expectation of V,

g(da, db) = FV (db + µV) − FV (µV − da), (9)

h(pa, pb) = sup
{∣∣∣ µV − f−1

V (FV (µV) − pa)
∣∣∣ ,

∣∣∣ FV (µV) − f−1
V (µV + pb)

∣∣∣}. (10)

When V follows a unimodal distribution, common inequalities can be applied to estimate
a confidence interval. For example, if V ∼ N , the Three-Sigma rule [77] can be applied. The
following four common inequalities are ordered by their bounds, from tightest to loosest:
Three-sigma rule < Vysochanskij–Petunin inequality < Gauss’s inequality < Chebyshev’s
inequality [78–80]. If any of these should be applied, one shall first evaluate the tightest
inequality for which the constraints are satisfied.

4.8.3. Training flow and model selection

The design of the training flow follows recommendations to obtain robust predictive models
under the constraints of small sample sizes as given by, e.g., [81–84]. Varma and Simon and
especially Vabalas et al. show that standard K-fold cross-validation (CV) produces strongly
biased performance estimates, particularly with small sample sizes. This problem can be
evaded by using some form of nested CV, train/test split approaches, and sufficiently many
repeats. Using this approach, others have previously obtained high-performing models [85].
Due to the scarcity of our data, we oversample the dataset using the well-established
synthetic minority oversampling technique (SMOTE) for regression, which has been proven
to significantly increase model performance [86]. For the outer resampling of the nested
CV, we define an extensive search grid. The dimensions are the following (the size of each
dimension is in parentheses):
– (2) types of data source: either source code or issue-tracking.
– (6) types of models, one of bagged CART, generalized linear model [87], Gradient Boost-

ing Machine [88], neural network, Random forest [89], and Support vector machine [90].
– (3) types of features used in training: Amount, divergence, or both (see Subsection 4.5.4).
– (2) conditionally apply pre-processing in the form of principal component analysis

(PCA), in order to test a lower-dimensional input space X ′.
– (49) number of training samples (using between two and 50 samples for training).
– (50) repeats using a deterministically randomized dataset.22

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

During each of the 50 repetitions, the entire data set is shuffled. Then, a number of training
samples (m) are removed without replacement, which constitutes the training dataset
S = {z1, ..., zm}. Then, a constant number of 50 validation samples is selected from the rest
of the dataset. These samples are completely excluded from any training and only used to
estimate the validation error using the root-mean-square error (RMSE) as a loss functional
` (8). The pre-processing pipeline consists of three steps: Removal of (near-)zero variance
predictors, conditionally reducing dimensionality using PCA, and z-standardization of the
data (center and scale). The pipeline is fitted to the training data and then applied to the
validation data.

The above grid has 176, 400 permutations. For each, a nested inner CV is performed. The
empirical risk estimator used in the nested CV is the so-called leave-one-out cross-validation
(LOOCV) [91]. It trains on all but the i-th instance of the training data. Therefore, it
estimates the stability with respect to changes in the training set. This process shall be
repeated for every i ∈ {1, ..., m} item in S, such that S\i is the training set without that
item (11). The associated Rloo estimator is the average over all m possible constellations
of S (12). It is known as the estimator of error stability, which is used as a measure of
the difference between true and empirical generalization error [92]. Since the training here
uses all but one data point during LOOCV training, it should be noted that the empirical
estimate of the generalization error has a slightly pessimistic bias [81].

S\i = {z1, ..., zi−1, zi+1, ..., zm} , (11)

Rloo(A, S) = 1
m

m∑
i=1

` (AS\i , zi) . (12)

The inner CV is repeated for a fixed number of 25 folds during which a nested CV is
performed for each. Each m-th estimate during LOOCV in addition is found by conducting
a nested grid search for optimal model-specific hyperparameters, which typically span
between 1e1 and 1e3 permutations. For the models gbm and nnet, fine-tuned grids and
fewer inner repeats are used. The many-times repeated training allows us to approximate
the probability density of V, its expectation E [V], and its associated confidence intervals.

5. Analysis and results

In this section, we report the results of the qualitative and quantitative analyses. Those
results, their validity, and limitations are then further discussed in Section 6. The reported
results represent our main findings and are those primarily relevant to the posed research
questions. The results here are presented in the same order as the relevant methodology:
First, we demonstrate results related to the qualitative evaluation. Then, results obtained
quantitatively are shown from Subsection 5.4 and onwards. The interested reader is directed
to an extensive technical report with numerous additional results that extend far beyond
the scope of this study [78].

5.1. Inter-rater reliability and consensus

Prior to conducting a session for finding a consensus, we assessed the inter-rater agreement.
This was done by first computing Gwet’s agreement coefficients AC1/AC2 [66] and then

Article number 240106

23

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Normal distribution for Gwet’s AC1/AC2 coefficient.

Kappa value

R
el

at
iv

e
Li

ke
lih

oo
d

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6
7

Moderate Substantial Almost
Perfect

12.88% 82.18% 4.94%

Figure 3. Gwet’s AC1/AC2 coefficients [66] benchmarked against the Kappa scale
of Landis and Koch [67]. The opacity indicates the probability for the agreement to be in the given

range. The distribution’s mean is at ≈ 0.681 and the standard deviation is ≈ 0.072

benchmarking it against the scale as suggested by Landis and Koch [67]. Gwet’s coefficient
results in a percent agreement of ≈ 86.2%, a by-chance percent agreement of ≈ 56.8%
(which it corrects for), an agreement coefficient (Kappa) of ≈ 0.681, a standard error
(deviation) of ≈ 0.072, and a p-value of ≈ 2e−7. The p-value indicates, under any common
significance level, that there is no practical corroboration for the null hypothesis of the
inter-rater agreement test that the raters’ agreement happened purely by chance. Instead,
we accept its alternative hypothesis that chance did not cause the observed agreement [93].
According to the computed benchmark, the agreement is, for the largest portion of ≈ 82.18%,
“substantial” [67]. Another ≈ 12.88% of the agreement is “moderate”, and some of it
(≈ 4.94%) is even regarded as “almost perfect.” This is visualized in Figure 3.

Assessing inter-rater agreement addresses RQ 1.1 directly. The computed benchmark
indicates that most of the agreement is substantial. However, in order to solidify our answer,
we also compute the benchmarks of Cicchetti and Sparrow [94], Fleiss [95], and Regier et
al. [96]. Note that the latter uses the same (positive) levels as the benchmark by Landis
and Koch, but only changes the labels (from “Moderate” to “Fair”, from “Substantial”
to “Very Good”, and from “Almost Perfect” to “Excellent”). For Cicchetti and Sparrow’s
benchmark, the agreement is “Fair” ([0.4, 0.6] ≈ 12.88%), “Good” ([0.6, 0.75] ≈ 70.14%), and
“Excellent” ([0.75, 1.0] ≈ 16.98%). For Fleiss’s benchmark, the agreement is “Intermediate
to Good” ([0.4, 0.75] ≈ 83.02%), as well as “Excellent” ([0.75, 1] ≈ 16.98%).

Finding a consensus is different from only applying, say, a weighted average. While
there was close or full agreement in many cases between the raters, some cases warranted
for a common, retrospective inspection of the projects’ artifacts, which led to ratings that
were sometimes outside the range of the individual assessment. Most often, however, the
raters were able to settle on one of the proposed ratings or a neighboring value.

5.2. Phenomenon prevalence and manifestation

Here, we report the summarized results of how the Fire Drill manifests across the projects,
in terms of concretely observed empirical instances of certain symptoms and consequences.24

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Those results address RQ 1.2 and were obtained by systematically analyzing the raters’
notes. The most recent phenomenological descriptions of the Fire Drill define seven super-
categories for symptoms and consequences (see Appendix A). We refer to them using the
notions SC1 through SC7. The qualitative evaluation led to us defining three additional
supercategories. Since these were derived from empirical observations, we refer to them
as ESC1, ESC2, and ESC3 (see Appendix C). An observation was only logged if the rater’s
notes allowed it. For example, some notes indicate a problem, without a cause: “descope
in later stages of the project,” or “poor testing”. Here, we cannot assign an instance of
a symptom/consequence. Also, if the severity cannot be decided between two levels, then
the rater’s Fire Drill severity is applied to reach a decision.

We should note that, due to the nature of the definition of SC7, no instances of
it were found. Its description would affect a project rather globally. However, some of
SC[1-6], as well as ESC[1-3] convey the portrayed problematic of SC7 in parts, so that
findings were assigned to these instead. During the evaluation of the raters’ notes, many
instances emerged that could have been assigned to the original symptoms and consequences
SC[1-7]. However, it became apparent that a new supercategory would perhaps be more
suitable for many instances. Therefore, we introduced the notion of ESC[1-3]. Those
reflect poor communication, high project risk, and poor usage of project management
tools and methodologies, respectively. ESC[1-3] are not supposed to become part of the
Fire Drill description. Rather, they were introduced for a more fine-grained assignment of
observations to superordinated symptoms and consequences. Therefore, any observation
assigned to ESC[1-3] could as well be assigned to the original symptoms and consequences.
Qualitative evaluation. Our findings indicate that the most reoccurring problem is high
project risk (ESC2). It is closely followed by poor communication (ESC1) and a compromised
project schedule or scope (SC6). The most infrequently observed problems (apart from
SC7) are a spike of development efforts towards project end (SC3), the absence of sufficient
quality assurance and project tracking during development (SC4), as well as the delivery of
only analytical/documentational artifacts over a (too) long period (SC2).

Project risk (ESC2) is the most diverse supercategory, that is, it has the most different
types of empirical observations by far (11). Risks are sometimes highly connected and
emerge consecutively, such that the consequence of one problem is the symptom of the
next problem. For example, an imbalance of activities (e.g., time spent on development
when it had been required on requirements analysis instead) often leads to descoping,
which itself caused frequent project schedule adaptations or quality regressions. Many
problems can be attributed to the lack of (professional) experience in students, such as
the misestimation of work items, technical difficulties (e.g., development environment,
infrastructure, etc.), improper self-organization, or the (unwitting) misinterpretation of
business requirements. However, not all problems were caused by students. For example,
the customer representative was sometimes not available at the required capacity, thwarting
the team. In other cases, the customer did not understand the technical challenges involved,
which led to, e.g., unrealistic expectations or greatly diverging effort estimations.

While observations of the second-largest problem, poor communication (ESC1), could
be attributed in many cases to project risk, many problems would go underappreciated if
doing so. The most frequent observation was an unresponsive customer or unsatisfactory
communication. It would often manifest through delayed, slow, or incomplete responses.
Sometimes, critical material, decisions, or information were imparted too late, causing other
problems, such as a stalled team or compromised schedule. This observation is perhaps the
most prominent for one of the root causes of a Fire Drill: management stalls development.

Article number 240106

25

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Poor communication can be mutual, that is, between parties, or be caused by just one
party. Most of the problems can be attributed to the mutual category. However, there are
also instances of students not renegotiating misunderstandings and of customers interfering
with the students’ project management without telling them.

The third-largest problem, a compromised project schedule or scope (SC6), had three
different manifestations that were observed multiple times, both in the same project as
well as across projects. Most often the schedule was compromised because the students
accepted change requests, the re-prioritization of existing issues, or the addition of new
issues in the middle of an iteration. This situation was often exacerbated by an improper
change management process. The second-most frequent observation for this problem was
that work was not completed as planned and the dragging of issues into the next iteration.
The reasons for these observations were multifarious, such as an over-challenged team,
misestimation, or unequal work distribution. Related to this observation, but still distinct
from it, is that the team gets used to and regularly accepts doing overtime (and prolongs
an iteration) or truncates scope (planned work).

As for problems of the remaining symptoms and consequences, the most frequent
observations were related to a slow project startup (SC1), especially with regard to non-
developmental activities. This was most often related to a familiarization process needed by
the new team, such as familiarization with the other members, new or changed tools, ways of
communication, or yet-to-be-improved early-stage procedures. Another common cause was
an unclear scope, such that the team went into procrastination (underscoped) or did have
a hard time finding their way into the project (overscoped). ESC3, the poor usage of project
management tools and related methodologies, constituted the next bigger class of symptoms
and consequences. Typical problems are attributed to the improper usage of ALM tools,
such as using wrong item types (e.g., marking an Epic as a Task), not breaking down large
deliverables and features, or careless and imprecise logging leading to a discrepancy between
logged and done work. The teams were allowed to use additional tools for information and
knowledge management, which led to confusion and unnecessary duplication. Lastly, SC5
concerns the final product, its quality, and delivery date. The quality was compromised
in some cases by skipping over planned features or proper quality assurance. In some cases,
the product was completed but delivered only after the final due date.

The refactored solution to a Fire Drill includes measures applicable for when there is time
(iterations) and resources left. While some projects showed increasingly stronger signs of the
phenomenon, no intermittent measures were implemented to alleviate the problems. It was
only towards the very end that a solution had to be found. This is attributed to our context:
While there are deliverables after each iteration, the customer is primarily interested in
the final product, as feature-complete as possible. The students are primarily interested in
passing the course, concentrating their focus on the final delivery, too. Refactored solutions
to ameliorate an eventuated late-stage Fire Drill are to re-negotiate the delivery date, to
triage the remaining budget into implementing missing features and quality assurance, or to
descope. Due to the lack of monetary interests (and related pressure) on the customer’s side
and the impossibility of changing the delivery date (constraint of the context), the Fire Drill
manifested predominantly through descoping, which proved to be a valuable predictor later.

Quantitative evaluation. We report on the average severity for each symptom and
consequence, as well as on the total severity. The utility of the average severity is a ranking
of the supercategories, that is, to determine what the common severity of the manifestation
for each superordinate category is. The total severity is the sum of the observations’ severity.26

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5

1

23

4

0/5
SC6 = 2.38 (16) SC7 = n/a (0) ESC1 = 2.78 (18) ESC2 = 2.07 (28) ESC3 = 1.43 (7)

SC1 = 1.38 (13) SC2 = 1.67 (3) SC3 = 3 (1) SC4 = 1.5 (2) SC5 = 3 (4)

Symptom / Consequence
SC1 SC2 SC3 SC4 SC5

SC6 SC7 ESC1 ESC2 ESC3

Average severity per symptom and consequence.

Figure 4. Average severity for each (empirical) Symptom/Consequence.
Also shown is the number of observed instances in parentheses

Its utility is more specific for learning for our concrete case, as it should give an indication
as to which symptom and consequence is the most pronounced in our projects.

Figure 4 shows the average severity per symptom and consequence. SC[2-5] have only
a single or few observations, which should be considered when ordering supercategories.
SC1 and SC6 make for a good comparison, for example. While both have similarly many
observations, the latter has a significantly stronger average severity. Encountering instances
of either symptom and consequence might be similarly likely, but an observation of the latter
indicates a worse case of a Fire Drill. The strongest average severity is exhibited by ESC1
(disregarding SC3 and SC5 which have only a few observations) with a value of ≈ 2.78. Recall

18 (13)

5 (3) 3 (1) 3 (2)

12 (4)

38 (16)

0 (0)

50 (18)

58 (28)

10 (7)

0

10

20

30

40

50

60

SC1 SC2 SC3 SC4 SC5 SC6 SC7 ESC1 ESC2 ESC3

Symptom / Consequence
SC1 SC2 SC3 SC4 SC5

SC6 SC7 ESC1 ESC2 ESC3

Total severity per symptom and consequence.

Figure 5. Total severity for each (empirical) symptom/consequence.
Also shown is the number of observed instances in parentheses

Article number 240106

27

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

that a value of 3 corresponds to the ordinal level “Moderate” (see Subsection 4.4), which
is characterized as clearly identifiable and reoccurring symptoms or direct corroboration.
Since its average severity exceeds that of SC6, the poor communication between stakeholders
comparatively appears to be the worst of all the problems in our case.

This impression slightly shifts towards ESC2 when looking at the total observed severity
(see Figure 5). Ten more instances (28 total) were observed of ESC2, which explains its high
total severity. In other words, while poor communication is comparatively worse when it
happens, the projects were substantially more often subject to some form of risk. A third,
quite evident problem is a compromised schedule or scope (SC6). By a larger margin, this
is followed by problems related to a longer stall during the project beginning (SC1), a final
product with low quality (SC5), and poor usage of ALM tools (ESC3). The low count of
observations for SC[2-5] also results in a comparatively low total severity.

5.3. Phenomenon absence

The evaluation of the raters’ notes also exhibited evidence for the absence of a Fire Drill
for a number of projects. In Appendix D, we have gathered a list of observed symptoms
and consequences in order to answer RQ 1.3. This list is comprised of symptoms and
consequences that are counter-indicative to what constitutes a Fire Drill. While the absence
of evidence is not evidence of absence, the gathered items should be more regarded as
true negatives. This list does not claim to be complete, nor is the presence of a single item
(or few) sufficient proof for the phenomenon’s absence. On the contrary, evaluation of the
raters’ notes indicates that a project may exhibit symptoms and consequences for and
against a Fire Drill, even simultaneously. For example, communication and collaboration
with the customer might be seamless (as indicated by the counter-indicative symptom
and consequence CISC01), but the project’s schedule might still get compromised due to
misestimation caused by inexperience. Sometimes, there are also signs for the opposite
of a Fire Drill (or other patterns). Our main observation here is essentially related to an
underchallenged or underutilized team, and often related to the quick completion of work
items, delivery before the deadline, a too-simple product, or skipping over quality assurance
or planning and/or analysis with the direct start of implementation.

5.4. Quantitative phenomenon manifestation

The previously won ground truth allows leveraging the quantitative type-II data. With each
project having a severity attached, we can find typical accumulations of (maintenance) activ-
ities that are characteristic of a Fire Drill (RQ 2.1). Figure 6 shows, for each activity as it
is found in source code and issue-tracking data, a weighted mixture (convex combination (2)
using the ground truth as weight). Three out of 15 projects had a ground truth consensus
of 0 and, therefore, do not contribute to any of the weighted mixtures. Another effect of
this circumstance is that the weighted mixtures quite obviously mirror the activities from
a few, severely affected projects. Since each activity’s mixture is an ordinary probability
distribution (with integral = 1), we can compare them in a straightforward manner.
Source code. The activities in the source code are derived from maintenance activities
(adaptive ∼ A, corrective+perfective ∼ CP) [52]. The overall commit frequency, regardless
of the associated activity, is depicted as FREQ. Adaptive activities show a somewhat slow
start, followed by a peak in the third quarter of the project, and a sharp decline afterward.28

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Weighted mixtures for the source code and issue-tracking activities.

Relative project time

R
el

at
iv

e
Li

ke
lih

oo
d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Activity

A
CP
FREQnm

REQ
DEV
DESC

Figure 6. Weighted mixtures for each of the source code and issue-tracking activities
(using the ground truth to create convex combinations)

To some degree, A follows the expectations according to the Fire Drill’s phenomenological
descriptions. CP and FREQ on the other hand, steadily increase for the first ≈ 80% of the
project, only to peak shortly after at about ≈ 90% of the project time. The combined
behavior of A and CP is counter-intuitive to the expected behavior of these activities, as
per the Fire Drill’s phenomenological descriptions (i.e., a significant increase of adaptive
activities with a simultaneous decrease in corrective+perfective activities). FREQ, on the
other hand, distinctively shows the expected peak of a Fire Drill towards the project end.
Issue-tracking. The issue-tracking activities provide us with an additional quantitative
perspective. Due to the nature of the projects, DEV is expected to only reflect adaptive
engineering, similar to source code’s A. The qualitative evaluation confirms this expectation,
because corrective and perfective activities were rarely, if at all, logged in the project
management tools. Indeed, we observe a quite similar temporal accumulation between A
and DEV, with a peak in the third quarter as well. More or less inversely proportional
to DEV is the accumulation of activities as captured by REQ. Both of these activities
are in accordance with the existing phenomenological descriptions, such as an imbalance
where in the beginning of a project activities connected to requirements, analysis, and
planning prevail, while development is thwarted for one or the other reason. Approximately
uniform distributions for these two activities would be asymptomatic for a Fire Drill in
the ideal case. The descoping activity DESC was designed by us based on the assumptions
that it would make for a good predictor of the Fire Drill. We observe that this activity
steadily – in fact almost linearly – accumulates from project start to end. This indicates
that affected projects are subject to descoping from the beginning and that these projects
do not manage to remedy this situation.

5.5. Variable importance

Another question we sought to answer quantitatively using type-II data was about the
importance of activities and project phases for accurately predicting the phenomenon
severity (RQ 2.2). For that, we subdivided the normalized relative project time into ten

Article number 240106

29

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

0.
10

3

0.
10

7

0.
06

3

0.
10

1

0.
15

3

0.
11

6

0.
14

8

0.
08

4

0.
09

1

0.
09

7

0.
10

9

0.
10

7

0.
07

9

0.
05

2

0.
11

8

0.
11

8

0.
07

2

0.
13

5

0.
06

2 0.
08

5

1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

Segment

R
el

at
iv

e
Im

po
rt

an
ce

Activity
A CP FREQnm A vs. CP A vs. FREQnm CP vs. FREQnm

REQ DEV DESC REQ vs. DEV REQ vs. DESC DEV vs. DESC

Variable importances for source code and issue-tracking, per segment.

Figure 7. Per-segment and per-feature variable importances as averaged across five models,
each repeated 100 times: Boosted Generalized Additive Model, Neural network,

(Generalized Linear) Partial Least Squares, and Bagged CART

equally long, consecutive segments (see Subsection 4.5.3). Figure 7 shows a graphical result
of this. The exact numeric results as shown in the figure are included in Tables E1 and E2,
which are to be found in Appendix E. Looking at the final numbers, we can say that
the divergence features have greater variable importance than the amount features, both
for source code (≈ 52.5%) and even more so for issue-tracking (≈ 56.2%). The two most
important features for either data source are A |0 CP (19%) and REQ |0 DESC (≈ 20.7%).
The two least important ones are A (≈ 14.2%) and REQ (≈ 13%).

As for the per-segment importance, the results diverge between data sources, with
a larger variance for source code. There, it ranges from ≈ 6.2% to ≈ 15.3%, with a standard
deviation of ≈ 3.3%. The first five segments, that is, the first half of the project, account
for ≈ 55.9% of all importance, where segments three and four seem to be particularly
important. Interestingly, segments seven, nine, and ten exhibit a comparatively low variable
importance for predicting phenomenon severity. The range for issue-tracking data is from
≈ 5.2% to ≈ 13.5%, with a lower standard deviation of ≈ 2.3%. Both project halves are
equally important when using issue-tracking data. Except for segments seven and nine,
each segment is almost equally important.

5.6. Adaptive training

The third set of results is related to the third set of propositions and hypotheses and
addresses the research questions therein. According to the previously described methodology
(see Subsection 4.8), we conduct the adaptive training, using a large number of constellations
and repeats in order to obtain robust estimates. We find that models trained using source
code data converge faster and result in a lower final training error (answer to RQ 3.1), that
not reducing dimensionality using PCA works better for a slight majority of cases, and that
using both kinds of features simultaneously leads to robust convergence. Figure 8 shows the
distribution of validation errors for all six models when trained on 20 instances. When we30

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

gbm

glm

nnet

rf

svmPoly

treebag

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

RMSE (validation data)

Model
gbm

glm

nnet

rf

svmPoly

treebag

Distribution of validation errors for all six models, each trained on 20 instances.

Figure 8. Distribution of validation errors (50 instances) computed
using the root-mean-square error for all six models, where each

was repeatedly trained on 20 instances of the source code dataset,
without applying PCA

Confidence intervals according to the 68–95–99.7%-rule.

0

20

40

60

80

100

C
on

fid
en

ce

Number of training instances

R
M

SE
(v

al
id

at
io

n
da

ta
)

5 10 15 20 25 30 35 40 45 50

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

Mean RMSE (validation)
≤1 standard deviation
≤2 std. devs.
≤3 std. devs.

Figure 9. Continuous confidence of the neural network predictor, with regard to the number
of training instances. Shown are the values according to the 68–95–99.7%-rule

(assuming a normal distribution for every generalization error).
The mean RMSE was determined using 50 models’ predictions on validation data.

The three color gradients correspond to the three sigmas

compare the data sources, models trained on source code achieve a lower mean (0.75/0.92),
median (0.52/0.71), minimum (0.152/0.158), and standard deviation (0.58/0.65) for the
validation RMSE error, summarized across all the different constellations.

The champion model is a standard feed-forward neural network that uses divergence
features from source code only. This is also reflected in Figure 8, however, here it is only

Article number 240106

31

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

shown for 20 instances. The full adaptive training of the champion model is shown in
Figure 9. The many observed validation errors obtained through the numerous repeats are
almost always normally distributed, indicating the robustness of the final model. That also
allowed us to apply the Three Sigma rule (which has the tightest bounds) to determine
a confidence interval per number of training instances and to find some answers to RQ 3.2.
Most notably, training the champion model on 25 instances produces an expected validation
error of ≈0.46, and this error will not be larger than ≈0.96 by a probability of 99.7%10. In
other words, such a model will predict the Fire Drill severity on a scale of 0–10, and by
doing so it will almost surely not deviate by more than one point on this scale (the expected
deviation is even less than 0.5). The expected RMSE falls below 1.0 for the first time when
trained on twelve instances. For 15 instances, the probability that the prediction will be off
by maximally 1 is already at ≥76%, as can be seen from the figure. For 20 instances, this
probability increases towards ≥92%. For 50 instances, the expected error plus deviation is
0.52 or less, by a probability of 99.7%.

6. Discussion

In this section, we first summarize all results and relate them to the previously established
propositions and hypotheses. We then discuss the validity of our study and its results, its
limitations, and address replicability and generalizability.

6.1. Summary of the results

We have shown that experts can independently agree on a subjectively chosen rating and
that their agreement was substantial and did not occur by chance. This was the basis
for the propositions Pr. 1.1 and Pr. 1.2. The existing phenomenological descriptions of
Fire Drill are sufficiently precise, and its severity can be accurately determined. It also
confirmed the hypothesis Hyp. 1.1 that the mostly unstructured type-I data provide
sufficient quality for the assessment task. The agreement on the absence was also reliable
(Pr. 1.3 and Hyp. 1.2) so we were able to gather a list of counter-indicative symptoms
and consequences. Most notably, however, the qualitative assessment and the following
quantitative evaluation of the Fire Drill’s manifestation allowed us to identify the most
pronounced and prevalent symptoms and consequences in the considered projects. We find
prime examples of reoccurring Fire Drill elements across our projects, such as instances of
(chains of) project risk, poor stakeholder communication, and regressions in the form of
descoping and compromised schedules. The circumstances and constraints of the studied
context allow us to deduce explanations for the concrete manifestation.

For the first quantitative analysis, we compose a weighted average of how activities
typical for a Fire Drill-affected project accumulate. It is deemed an appropriate represen-
tation since we previously confirmed hypothesis Hyp. 2.1, that is, activities will display
a behavior characteristic of or conforming to the Fire Drill’s phenomenological descriptions.
These allow us to establish an additional quantitative understanding of the phenomenon.
We take advantage of the wide range of digital artifacts and reliable ground truth to do so
(Pr. 2.1). The weighted mixtures unveiled some unexpected results, which are, however,

10While these and the following results can be seen in Figure 9, they are calculated exactly using the
previously introduced notions for probabilities (9) and deviations (10) of confidence intervals, respectively.32

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

explained by the confines of the studied context and case and corroborated by findings from
our qualitative analysis. Late-stage Fire Drills were most often addressed by descoping,
which is a valid – here the only valid – refactored solution. This is reflected quite well in
the activities found in the source code. Instead of rushing to add the last missing features,
the focus is predominantly on corrective activities and then on perfective activities. We
know this from decomposing CP into its separate activities. While the Fire Drill description
to date does not differentiate between corrective (C) and perfective (P), using source
code allowed us to gain this insight. This is surprising since the delivery of agreed-upon
requirements is deliberately prioritized over maintenance in these projects. An explanation
for this might be that it became apparent in some of these projects that some form of
compromise of scope is inevitable, so the efforts were likely re-focused on ensuring that
a minimum quality corresponding to the requirements, for the to-date existing features,
was met, or that the product works at all.

The second analysis of variable importance unveiled two principal findings. First,
knowing about the (im-)balance of two activities is a more important predictor for Fire
Drill severity than knowing how much time was spent on the activities. This is an important
finding, as the balance between two activities is a relative metric. The phenomenological
descriptions, as well as the results of our qualitative analysis, both support this. This result
means that, at least on average, it is of greater relevance to know how diverging any two
activities are, rather than their concrete amount (cumulative probability). Rather than
waiting until the project end to calculate the amount of each activity in each segment, we
can observe how activities diverge in a single segment intermittently and use this as an
indicator in the future. The second important finding is that segments (project phases) are,
except for a few cases, almost equally important (also, no phase has (near-)zero importance,
Hyp. 2.2).

The third analysis was designed to determine whether a robust, reliable, and low-risk
predictive model can be obtained. The designed adaptive training workflow showed that we
can obtain a suitable model from those data (Pr. 3.1, Hyp. 3.1). With sufficient confidence
as our stability criterion, we demonstrate that models trained on as few as 15 instances
will completely automate severity assessment in the future, within acceptable confidence
intervals (Pr. 3.2). Both sources of data individually, source code or issue-tracking, are
suitable for this task (Hyp. 3.2). Generally, we observe that the adaptive training flow
converges nicely with increasing amounts of training data. Clearly, the stability of the
model is closely related to the amount of available training data. As for RQ 3.2, the precise
threshold for stable depends on the application, but we figure that to predict the severity
of the Fire Drill in our case and context, a model trained on 15 to 25 instances would
deliver sufficient stability, as the results would not be misleading, even when off slightly.

6.2. Validity, limitations, replicability, and generalizability

The choice to conduct an embedded case study was a natural one, given the principal
objective and the previous pilot study [51]. Our study is of longitudinal character, as the
same course was studied repeatedly and projects were selected over a duration of three
years. Each project is unique with regard to individuals, groups, social structure, software,
etc., and it is unlikely that the same set of events unfolds again in the same way [97].
Therefore, to maximize reliability and minimize bias, projects were selected from each
year. Instead of conducting a case study for each project, we chose a common case and
context that allows us to collect and analyze quantitative data as well, especially since we

Article number 240106

33

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

intended to backpropagate the gained knowledge to the phenomenological descriptions and,
therefore, the studied case.

A case study should be chosen when conducting an empirical investigation of a contem-
porary phenomenon in its real-life context, especially when the phenomenon cannot be
clearly separated from its context [55]. Furthermore, a variety of data sources is required
(see Subsection 1.1). The Fire Drill is a phenomenon that is always embedded in some
(social) context it cannot be separated from, and it is not the goal of this study to
propose or attempt a separation. Instead, we have made extensive efforts to minimize the
impact our study may have. In order to maximize the degree to which this study can
be (partially) replicated, we outline an extensive protocol (see Section 4) and publish all
original data [62] and experimental designs [78]. Construct validity is achieved by a variety
of measures, such as the usage of multiple data sources and observers (triangulation),
ascertaining of inter-rater reliability, and controlled experiments (e.g., many repeats, model
averaging, training with stability criterion, etc.). Independent raters and an assessor use
systematic protocols, which allowed us to suggest and confirm chains of causality and
ensure repeatability and replicability. The usage of two completely independent data
sources (source code and issue-tracking) provided a second perspective that we exploited
to corroborate our findings.

The limitations of the obtained results lie in the external validity and generalizability.
Results such as the predictive model, weighted mixtures, or variable importance do not have
validity outside the studied context, as it introduced constraints that force the phenomenon
to take certain turns. We have observed a great number of concrete instances of symptoms
and consequences. Although extensive, these observations cannot be exhaustive, nor can
their distribution be representative outside our context. This is similarly true for the
asymptomatic, counter-indicative observations. The Fire Drill shares similarities and
indicators with other kindred phenomena, which are also based on temporal accumulations
of activities (see Subsection 3.1.2). Therefore, we expect the external validity of the protocol
suggested for studies of these phenomena. The generalizability of this study comes from
subsequent and replicating case studies. For example, one study may examine the pattern
“Half Done is Enough” in the same context and another one the Fire Drill in an industrial
context. Only with a sufficient amount of case studies will we be able to reach a definitive
understanding of the Fire Drill and how it does (not) manifest in certain contexts.

7. Conclusions and future work

We have shown that activity-based detection of complex phenomena is viable and can be
used to reduce the otherwise required amount of expert-based, qualitative, and extensive
analyses. Our work has several practical implications. First, instances of maintenance
activities are plentifully found in typical software projects and make for highly cost-effective
and robust features. Second, an existing ground truth can be leveraged to make sense
out of these quantitative features. Third, predictive models using these features require
only a few observations (projects) to produce low-risk predictions. Last, A well-trained
model can produce predictions that are accurate enough such that they can support or
(partially) replace the expensive, error-prone, and expert-based evaluations. The practical
implication is that such a model can be reused on only the quantitative data (e.g., we have
shown that the commits of the repository are sufficient) of future projects for predicting
the severity of complex phenomena. This may be useful in circumstances where a fast34

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

and computationally cheap analysis is required to, e.g., quickly filter and flag (for a full
follow-up in-depth qualitative analysis) projects affected by a problem.

7.1. Synthesis

For an embedded case study, it is important to synthesize all results and to backpropagate
them to the studied case [25]. We have presented results from each project’s individual,
qualitative, and idiographic study, as well as results from the quantitative, nomothetic
analysis across all projects (see Section 5).

We studied the Fire Drill as is embedded within a software engineering course. For
this specific case and its surrounding context, we predominantly find results that are in
agreement with the phenomenological descriptions. The in-depth individual study of each
project, as well as a common evaluation across projects, allowed us to find explanations
for all the results diverging from it. In affected projects, we observe typical peculiarities
of a Fire Drill, such as management that stalls development, or late-stage rushes. While
the anti-pattern suggests renegotiating the final deadline as one solution, the students
truncated the scope of their applications to mitigate the fallout, thereby implementing the
only valid refactored solution within the course. We gather the most significant symptoms
and consequences of a Fire Drill within the course. Evaluation of total and average severity
showed that project risk, poor communication, and a compromised project schedule or -scope
are the biggest problems that students encounter. We learn that a Fire Drill may affect
a project as a whole, but we also observe micro instances affecting single iterations. It was
previously suggested and now confirmed by us that the Fire Drill is an anti-pattern that can
be the result of, encompass, or cause other, often conceptually smaller anti-patterns such as
“Analysis Paralysis” or “Cart Before The Horse”. We find evidence that is counter-indicative
of a Fire Drill and observe projects that exhibit evidence both for and against its presence,
simultaneously. Raters are able to identify this and other circumstances by being provably
able to confidently agree on a severity. Our conjecture that descoping makes for a strong
predictor is confirmed; projects are affected by it over the course of their entire lifecycle
and the amount of time wasted on it consistently increases. We conclude that the Fire
Drill is an anti-pattern that was deliberately described vaguely, but that it is still possible
to derive concrete and specific problem instances from it. Observing only a few instances
proved sufficient for building low-risk predictive models that can exploit activities that are
modeled after either source code or issue-tracking data, as both kinds of data sources are
eligible for the task.

We suggest that other phenomena that are characterized by activities that can be
captured and analyzed similarly can be subjected to the methodology presented in this
work. Therefore, we intend for the methodology to be the main contribution. Our empirical
observations are likely valid in other similar cases and contexts, too, but subsequent
(partially) replicating case studies will have to show this. Most patterns today are only
described from anecdotes or other literature (phenomenological descriptions), but rarely
come with a set of empirical observations attached. We contribute directly to the existing
understanding of the Fire Drill by unearthing concrete empirical instances associated
with its ascribed symptoms and consequences (the supercategories). More significantly,
though, we have shown how to use a (scarce) ground truth to establish an additional,
quantitative understanding by leveraging the available data (which was not possible
previously), making the Fire Drill perhaps the first pattern-like phenomenon that is
described from both perspectives. Lastly, having uncovered the most frequent and prevalent

Article number 240106

35

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

issues that participants of the course encounter, we will attempt to incorporate the won
insights into future editions of the course to improve all participants’ experiences.

7.2. Future work

This study is the first to properly replicate the significant findings from the previous pilot
study [51]. We intend to replicate this study with other related and similar phenomena.
Candidates are, for example, Cart Before the Horse, Half Done is Enough, the Net-negative
Producing Programmer, the Lone Wolf, Nine Pregnant Women (a variant of Brook’s law),
or Analysis Paralysis. We also encourage conducting (partial) replication studies with the
same or a different phenomenon and alterations to the context, especially in industrial
settings. It might also be worthwhile to consider additional artifacts found in the application
lifecycle management data for data triangulation. Additional analyses, such as an earned
value analysis, might provide additional corroboration, especially when its result can be
correlated with the maintenance activities. Subsequent studies that analyze the Fire Drill
will contribute towards a more complete picture of the phenomenon. Studies using other
phenomena will also help to increase the margin between phenomena, making them more
distinguishable from each other. Once a sufficient number of case studies were conducted,
a multiple case study should be performed that summarizes all findings.

Acknowledgments

We would like to express our gratitude towards raters two and three, who helped to find
a ground truth. We acknowledge the support of Linnaeus University’s Centre for Data In-
tensive Sciences and Applications (DISA) and the Swedish Research School of Management
and IT (MIT). This work was supported by the European structural and investment funds
(ESIF) project CZ.02.1.01/0.0/0.0/17_048/0007267 (InteCom). We express our gratitude
towards the anonymous reviewers who provided thorough and constructive feedback that
allowed us to considerably improve our work.

References

[1] C.J. Neill, P.A. Laplante, and J.F. DeFranco, Antipatterns: Managing Software Organizations
and People, 2nd ed., Auerbach Publications, 2011.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel,
A Pattern Language – Towns, Buildings, Construction, Oxford University Press, 1977.

[3] W.H. Brown, R.C. Malveau, H.W. McCormick III, and T.J. Mowbray, AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis, John Wiley and Sons, Inc., 1998.

[4] P.A. Laplante and C.J. Neill, Antipatterns: Identification, Refactoring, and Management
(Auerbach Series on Applied Software Engineering), 1st ed., CRC Press, Auerbach Publications,
2005, 336 pp.

[5] L. Simeckova, P. Brada, and P. Picha, “SPEM-based process anti-pattern models for detection
in project data,” in 46th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2020, Portoroz, Slovenia, August 26–28, 2020, IEEE, 2020, pp. 89–92.

[6] I. Stamelos, “Software project management anti-patterns,” Journal of Systems and Software,
Vol. 83, No. 1, pp. 52–59, 2010.

[7] R.R. Nelson, “It project management: Infamous failures, classic mistakes, and best practices,”
MIS Quarterly Executive, Vol. 6, No. 2, 2008. [Online]. Available: https://aisel.aisnet.org/mis
qe/vol6/iss2/436

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://aisel.aisnet.org/misqe/vol6/iss2/4
https://aisel.aisnet.org/misqe/vol6/iss2/4

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

[8] R.S. Kenett and E.R. Baker, Software Process Quality: Management and Control (Computer
Aided Engineering New York, N.Y., 6), 1st ed., Marcel Dekker, Inc., 1999.

[9] C.P. Halvorsen and R. Conradi, “A taxonomy to compare SPI frameworks,” in Software
Process Technology, 8th European Workshop, EWSPT 2001, Witten, Germany, June 19–21,
2001, Proceedings, V. Ambriola, Ed., Ser. Lecture Notes in Computer Science, Vol. 2077,
Springer, 2001, pp. 217–235.

[10] A. Birk, T. Dingsoyr, and T. Stalhane, “Postmortem: Never leave a project without it,” IEEE
Software, Vol. 19, No. 3, pp. 43–45, 2002.

[11] W.J. Brown, H.W. McCormick III, and S.W. Thomas, AntiPatterns in Project Management,
John Wiley and Sons, Inc., 2000.

[12] P. Silva, A.M. Moreno, and L. Peters, “Software project management: Learning from our
mistakes,” IEEE Software, Vol. 32, No. 3, pp. 40–43, 2015.

[13] A. Nizam, “Software project failure process definition,” IEEE Access, Vol. 10, pp. 34 428–34 441,
2022.

[14] P. Brada and P. Picha, “Software process anti-patterns catalogue,” in Proceedings of the 24th
European Conference on Pattern Languages of Programs, EuroPLoP 2019, Irsee, Germany,
July 3–7, 2019, T.B. Sousa, Ed., Ser. EuroPLoP ’19, ACM, 2019, 28:1–28:10.

[15] P.G.F. Matsubara, B.F. Gadelha, I. Steinmacher, and T.U. Conte, “SEXTAMT: A systematic
map to navigate the wide seas of factors affecting expert judgment software estimates,”
Journal of Systems and Software, p. 111 148, 2021. [Online]. Available: https://www.sciencedi
rect.com/science/article/pii/S0164121221002429

[16] F.U. Muram, B. Gallina, and L.G. Rodriguez, “Preventing omission of key evidence fallacy in
process-based argumentations,” in 11th International Conference on the Quality of Information
and Communications Technology, QUATIC 2018, Coimbra, Portugal, September 4–7, 2018,
A. Bertolino, V. Amaral, P. Rupino, and M. Vieira, Eds., IEEE Computer Society, 2018,
pp. 65–73.

[17] P. Picha, P. Brada, R. Ramsauer, and W. Mauerer, “Towards architect’s activity detection
through a common model for project pattern analysis,” in 2017 IEEE International Conference
on Software Architecture Workshops, ICSA Workshops 2017, Gothenburg, Sweden, April 5–7,
2017, IEEE Computer Society, 2017, pp. 175–178.

[18] P. Picha and P. Brada, “Software process anti-pattern detection in project data,” in Proceedings
of the 24th European Conference on Pattern Languages of Programs, EuroPLoP 2019, Irsee,
Germany, July 3–7, 2019, T.B. Sousa, Ed., Ser. EuroPLoP ’19, ACM, 2019, 20:1–20:12.

[19] D. Settas, S. Bibi, P. Sfetsos, I. Stamelos, and V.C. Gerogiannis, “Using bayesian belief
networks to model software project management antipatterns,” in Fourth International
Conference on Software Engineering, Research, Management and Applications (SERA 2006),
9–11 August 2006, Seattle, Washington, USA, IEEE Computer Society, 2006, pp. 117–124.

[20] D. Settas and I. Stamelos, “Using ontologies to represent software project management
antipatterns,” in Proceedings of the Nineteenth International Conference on Software Engi-
neering and Knowledge Engineering (SEKE’2007), Boston, Massachusetts, USA, July 9–11,
2007, Knowledge Systems Institute Graduate School, 2007, pp. 604–609.

[21] M.B. Perkusich, G. Soares, H.O. Almeida, and A. Perkusich, “A procedure to detect problems
of processes in software development projects using bayesian networks,” Expert Systems with
Applications, Vol. 42, No. 1, pp. 437–450, 2015.

[22] N.E. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, and M. Tailor, “Making resource
decisions for software projects,” in 26th International Conference on Software Engineering
(ICSE 2004), May 23–28 2004, Edinburgh, United Kingdom, A. Finkelstein, J. Estublier, and
D.S. Rosenblum, Eds., IEEE Computer Society, 2004, pp. 397–406.

[23] M. Unterkalmsteiner, T. Gorschek, A.M. Islam, C.K. Cheng, R.B. Permadi, and R. Feldt,
“Evaluation and measurement of software process improvement – A systematic literature
review,” IEEE Transactions on Software Engineering, Vol. 38, No. 2, pp. 398–424, 2012.

[24] J.J.P. Schalken, S. Brinkkemper, and H. van Vliet, “Using linear regression models to analyse
the effect of software process improvement,” in Product-Focused Software Process Improvement,
7th International Conference, PROFES 2006, Amsterdam, The Netherlands, June 12–14,

Article number 240106

37

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://www.sciencedirect.com/science/article/pii/S0164121221002429
https://www.sciencedirect.com/science/article/pii/S0164121221002429

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

2006, Proceedings, J. Münch and M. Vierimaa, Eds., Ser. Lecture Notes in Computer Science,
Vol. 4034, Springer, 2006, pp. 234–248.

[25] R.K. Yin, Case Study Research: Design and Methods (Applied Social Research Methods),
5th ed., SAGE Publications, 2013.

[26] R.W. Scholz and O. Tietje, Embedded Case Study Methods: Integrating Quantitative and
Qualitative Knowledge, 1st, SAGE Publications, Inc., 2001.

[27] T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, and N. Khovanova, “Machine learning
for predictive modelling based on small data in biomedical engineering,” IFAC-PapersOnLine,
Vol. 48, No. 20, pp. 469–474, 2015, 9th IFAC Symposium on Biological and Medical Systems
BMS 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S24058963
15020765

[28] Y. Zhang and C. Ling, “A strategy to apply machine learning to small datasets in materials
science,” npj Computational Materials, Vol. 4, No. 1, p. 25, May 2018.

[29] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research in Software Engineering
– Guidelines and Examples, Wiley, 2012. [Online]. Available: http://eu.wiley.com/Wiley
CDA/WileyTitle/productCd-1118104358.html

[30] K.L. Gwet, Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring the Extent
of Agreement Among Raters, 4th ed., Advanced Analytics, Sep. 2014.

[31] E. Tüzün, H. Erdogmus, M.T. Baldassarre, M. Felderer, R. Feldt, and B. Turhan, “Ground-
-truth deficiencies in software engineering: When codifying the past can be counterproductive,”
IEEE Software, Vol. 39, No. 3, pp. 85–95, 2022.

[32] O. Bousquet and A. Elisseeff, “Stability and generalization,” Journal of Machine Learning
Research, Vol. 2, pp. 499–526, 2002. [Online]. Available: http://jmlr.org/papers/v2/bousquet
02a.html

[33] K. Scott, The unified process explained, 1st ed., Boston, MA: Addison Wesley Professional,
Nov. 2001.

[34] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy: A Practitioner’s Guide to
the RUP (Addison-Wesley object technology series), Boston, MA: Addison-Wesley Educational,
Apr. 2003, 464 pp.

[35] W.R. Shadish, T.D. Cook, and D.T. Campbell, Experimental and Quasi-Experimental Designs
for Generalized Causal Inference, 3rd ed., Houghton Mifflin Company, 2002.

[36] J.M. Verner, J. Sampson, V. Tosic, N.A.A. Bakar, and B.A. Kitchenham, “Guidelines for
industrially-based multiple case studies in software engineering,” in Proceedings of the Third
IEEE International Conference on Research Challenges in Information Science, RCIS 2009,
Fès, Morocco, April 22–24, 2009, A. Flory and M. Collard, Eds., IEEE, 2009, pp. 313–324.

[37] R. Zhu, D. Zeng, and M.R. Kosorok, “Reinforcement learning trees,” Journal of the American
Statistical Association, Vol. 110, No. 512, pp. 1770–1784, 2015, PMID:26903687.

[38] D. Draheim and L. Pekacki, “Process-centric analytical processing of version control data,” in
6th International Workshop on Principles of Software Evolution (IWPSE 2003), September
1–2, 2003, Helsinki, Finland, IEEE Computer Society, 2003, p. 131.

[39] R. Ramsauer, D. Lohmann, and W. Mauerer, “Observing custom software modifications:
A quantitative approach of tracking the evolution of patch stacks,” in Proceedings of the 12th
International Symposium on Open Collaboration, OpenSym 2016, Berlin, Germany, August
17–19, 2016, A.I. Wasserman, Ed., ACM, 2016, 4:1–4:4.

[40] D.A. Tamburri, F. Palomba, A. Serebrenik, and A. Zaidman, “Discovering community patterns
in open-source: A systematic approach and its evaluation,” Empirical Software Engineering,
Vol. 24, No. 3, pp. 1369–1417, 2019.

[41] S.Z̆. Talpová and T. Čtvrtníková, “Scrum anti-patterns, team performance and responsibility,”
International Journal of Agile Systems and Management, Vol. 14, No. 1, p. 170, 2021.

[42] A. Hachemi, “Software development process modeling with patterns,” in WSSE 2020: The
2nd World Symposium on Software Engineering, Chengdu, China, September 25–27, 2020,
ACM, 2020, pp. 37–41.

[43] T. Frtala and V. Vranic, “Animating organizational patterns,” in 8th IEEE/ACM International
Workshop on Cooperative and Human Aspects of Software Engineering, CHASE 2015, Florence,38

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://www.sciencedirect.com/science/article/pii/S2405896315020765
https://www.sciencedirect.com/science/article/pii/S2405896315020765
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118104358.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118104358.html
http://jmlr.org/papers/v2/bousquet02a.html
http://jmlr.org/papers/v2/bousquet02a.html

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Italy, May 18, 2015, A. Begel, R. Prikladnicki, Y. Dittrich, C.R.B. de Souza, A. Sarma, and
S. Athavale, Eds., IEEE Computer Society, 2015, pp. 8–14.

[44] A.H.M. ter Hofstede, C. Ouyang, M.L. Rosa, L. Song, J. Wang, and A. Polyvyanyy, “APQL:
A process-model query language,” in Asia Pacific Business Process Management – First Asia
Pacific Conference, AP-BPM 2013, Beijing, China, August 29–30, 2013. Selected Papers,
M. Song, M.T. Wynn, and J. Liu, Eds., Ser. Lecture Notes in Business Information Processing,
Vol. 159, Springer, 2013, pp. 23–38.

[45] J. Roa, E. Reynares, M.L. Caliusco, and P.D. Villarreal, “Towards ontology-based anti-patterns
for the verification of business process behavior,” in New Advances in Information Systems
and Technologies – Volume 2 [WorldCIST’16, Recife, Pernambuco, Brazil, March 22–24,
2016], Ser. Advances in Intelligent Systems and Computing, Á. Rocha, A.M.R. Correia,
H. Adeli, L.P. Reis, and M.M. Teixeira, Eds., Vol. 445, Springer, 2016, pp. 665–673.

[46] A. Awad, A. Barnawi, A. Elgammal, R.E. Shawi, A. Almalaise, and S. Sakr, “Runtime
detection of business process compliance violations: An approach based on anti patterns,” in
Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca, Spain,
April 13–17, 2015, R.L. Wainwright, J.M. Corchado, A. Bechini, and J. Hong, Eds., ACM,
2015, pp. 1203–1210.

[47] T.O.A. Lehtinen, M. Mäntylä, J. Vanhanen, J. Itkonen, and C. Lassenius, “Perceived causes
of software project failures – an analysis of their relationships,” Information and Software
Technology, Vol. 56, No. 6, pp. 623–643, 2014.

[48] L. Rising and N.S. Janoff, “The scrum software development process for small teams,” IEEE
Software, Vol. 17, No. 4, pp. 26–32, 2000.

[49] P.G. Smith and D.G. Reinertsen, Developing Products in Half the Time: New Rules, New
Tools, 2nd ed., Nashville, TN: John Wiley and Sons, Oct. 1997.

[50] F.P. Brooks Jr, The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition, 2nd ed., Boston, MA: Addison-Wesley Longman, Aug. 1995.

[51] P. Picha et al., “Process anti-pattern detection in student projects – a case study,” in
Proceedings of the 27th European Conference on Pattern Languages of Programs, EuroPLoP
2022, Irsee, Germany, July 6–10, 2022, T.B. Sousa, Ed., Ser. EuroPLoP ’22, ACM, 2022.

[52] E.B. Swanson, “The dimensions of maintenance,” in Proceedings of the 2nd International
Conference on Software Engineering, San Francisco, California, USA, October 13–15, 1976,
R.T. Yeh and C.V. Ramamoorthy, Eds., IEEE Computer Society, 1976, pp. 492–497. [Online].
Available: http://dl.acm.org/citation.cfm?id=807723

[53] S. Hönel, M. Ericsson, W. Löwe, and A. Wingkvist, “Using source code density to improve the
accuracy of automatic commit classification into maintenance activities,” Journal of Systems
and Software, Vol. 168, p. 110 673, 2020.

[54] D.I.K. Sjøberg, T. Dybå, B.C.D. Anda, and J.E. Hannay, “Building theories in software
engineering,” in Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D.I.K. Sjøberg, Eds., Springer, 2008, pp. 312–336.

[55] C. Wohlin and A. Rainer, “Is it a case study? – A critical analysis and guidance,” Journal of
Systems and Software, Vol. 192, p. 111 395, 2022.

[56] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation
in Software Engineering, 1st ed., Springer, 2012.

[57] S. Hönel and C. Wohlin, Personal communication, Prof. Wohlin recently authored guidelines
for correctly classifying studies [55]., Dec. 2022.

[58] M.J. Tiedeman, “Post-mortems – Methodology and experiences,” IEEE Journal on Selected
Areas in Communications, Vol. 8, No. 2, pp. 176–180, 1990.

[59] B. Collier, T. DeMarco, and P. Fearey, “A defined process for project post mortem review,”
IEEE Software, Vol. 13, No. 4, pp. 65–72, 1996.

[60] J. Gerring, Case Study Research: Principles and Practices (Strategies for Social Inquiry),
2nd ed., Cambridge University Press, 2017.

[61] K. Petersen and C. Wohlin, “Context in industrial software engineering research,” in Pro-
ceedings of the Third International Symposium on Empirical Software Engineering and

Article number 240106

39

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
http://dl.acm.org/citation.cfm?id=807723

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Measurement, ESEM 2009, October 15–16, 2009, Lake Buena Vista, Florida, USA, IEEE
Computer Society, 2009, pp. 401–404.

[62] S. Hönel, P. Pícha, P. Brada, L. Rychtarova, and J. Danek, Detection of the Fire Drill
anti-pattern: 15 real-world projects with ground truth, issue-tracking data, source code density,
models and code, The repository for the source code based method is at: https://github.com
/MrShoenel/anti-pattern-models, Jan. 2023.

[63] D. Chappell, What is application lifecycle management? Dec. 2008. [Online]. Available:
https://web.archive.org/web/20141207012857/http://www.microsoft.com/global/application
platform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20
Management.pdf [Acessed: 07. 12. 2014].

[64] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in
software engineering,” Empirical Software Engineering, Vol. 14, No. 2, pp. 131–164, 2009.

[65] J. Cohen, “Weighted kappa: Nominal scale agreement provision for scaled disagreement or
partial credit.,” Psychological bulletin, Vol. 70, No. 4, p. 213, 1968.

[66] K.L. Gwet, “Computing inter-rater reliability and its variance in the presence of high
agreement,” British Journal of Mathematical and Statistical Psychology, Vol. 61, No. 1,
pp. 29–48, 2008.

[67] J.R. Landis and G.G. Koch, “An application of hierarchical kappa-type statistics in the
assessment of majority agreement among multiple observers,” Biometrics, Vol. 33, No. 2,
pp. 363–374, Jun. 1977, PMID:884196.

[68] D. Klein, “Implementing a general framework for assessing interrater agreement in stata,”
The Stata Journal, Vol. 18, No. 4, pp. 871–901, 2018.

[69] B.W. Boehm, Software Engineering Economics, 1st ed., Philadelphia, PA: Prentice Hall, Oct.
1981.

[70] N.C. Dalkey, “The Delphi Method: An experimental study of group opinion,” The RAND
Corporation, Santa Monica, CA, Tech. Rep., 1969, Document Number: RM-5888-PR. [Online].
Available: https://www.rand.org/pubs/research_memoranda/RM5888.html

[71] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” The
Annals of Mathematical Statistics, Vol. 27, No. 3, pp. 832–837, 1956, zbMATH:0073.14602,
MathSciNet:MR79873.

[72] D.M. Endres and J.E. Schindelin, “A new metric for probability distributions,” IEEE Trans-
actions on Information Theory, Vol. 49, No. 7, pp. 1858–1860, 2003.

[73] B. Hofner, L. Boccuto, and M. Göker, “Controlling false discoveries in high-dimensional
situations: Boosting with stability selection,” BMC Bioinformatics, Vol. 16, No. 1, p. 144,
May 2015.

[74] W.N. Venables and B.D. Ripley, Modern Applied Statistics with S, Fourth, New York: Springer,
2002. [Online]. Available: http://www.stats.ox.ac.uk/pub/MASS4

[75] F. Bertrand and M. Maumy-Bertrand, plsRglm: Partial least squares linear and generalized
linear regression for processing incomplete datasets by cross-validation and bootstrap techniques
with R, arXiv, 2018.

[76] A. Peters and T. Hothorn, ipred: Improved Predictors, R package version 0.9-9, 2019. [Online].
Available: https://CRAN.R-project.org/package=ipred

[77] F. Pukelsheim, “The three sigma rule,” The American Statistician, Vol. 48, No. 2, pp. 88–91,
1994. [Online]. Available: http://www.jstor.org/stable/2684253

[78] S. Hönel, “Technical reports compilation: Detecting the Fire Drill anti-pattern using source
code and issue-tracking data,” CoRR, Vol. abs/2104.15090, Jan. 2023.

[79] D. Vysochanskij and Y.I. Petunin, “Justification of the 3σ rule for unimodal distributions,”
Theory of Probability and Mathematical Statistics, Vol. 21, pp. 25–36, 1980.

[80] P. Tchébychef, “Des Valeurs Moyennes,” Journal de Mathématiques Pures et Appliquées,
2nd Ser., Vol. 12, pp. 177–184, 1867, Traduction du Russe par M. N. de Khanikof. [Online].
Available: http://eudml.org/doc/234989

[81] G.C. Cawley and N.L.C. Talbot, “On over-fitting in model selection and subsequent selection
bias in performance evaluation,” Journal of Machine Learning Research, Vol. 11, pp. 2079–2107,
2010.40

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://github.com/MrShoenel/anti-pattern-models
https://github.com/MrShoenel/anti-pattern-models
https://web.archive.org/web/20141207012857/http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
https://web.archive.org/web/20141207012857/http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
https://web.archive.org/web/20141207012857/http://www.microsoft.com/global/applicationplatform/en/us/RenderingAssets/Whitepapers/What%20is%20Application%20Lifecycle%20Management.pdf
https://www.rand.org/pubs/research_memoranda/RM5888.html
http://www.stats.ox.ac.uk/pub/MASS4
https://CRAN.R-project.org/package=ipred
http://www.jstor.org/stable/2684253
http://eudml.org/doc/234989

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

[82] S. Raudys and A.K. Jain, “Small sample size effects in statistical pattern recognition:
Recommendations for practitioners,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 13, No. 3, pp. 252–264, 1991.

[83] S. Varma and R. Simon, “Bias in error estimation when using cross-validation for model
selection,” BMC Bioinformatics, Vol. 7, No. 1, Feb. 2006.

[84] A. Vabalas, E. Gowen, E. Poliakoff, and A.J. Casson, “Machine learning algorithm validation
with a limited sample size,” PLOS ONE, Vol. 14, No. 11, E. Hernandez-Lemus, Ed., pp. 1–20,
Nov. 2019.

[85] T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, and N. Khovanova, “Machine learning
for predictive modelling based on small data in biomedical engineering,” IFAC-PapersOnLine,
Vol. 48, No. 20, pp. 469–474, 2015.

[86] L. Torgo, R.P. Ribeiro, B. Pfahringer, and P. Branco, “SMOTE for regression,” in Progress
in Artificial Intelligence – 16th Portuguese Conference on Artificial Intelligence, EPIA 2013,
Angra do Heroísmo, Azores, Portugal, September 9–12, 2013. Proceedings, L. Correia, L.P. Reis,
and J. Cascalho, Eds., Ser. Lecture Notes in Computer Science, Vol. 8154, Springer, 2013,
pp. 378–389.

[87] R Core Team, R: A language and environment for statistical computing, R Foundation for
Statistical Computing, Vienna, Austria, 2020. [Online]. Available: https://www.R-project.org/

[88] B. Greenwell, B. Boehmke, J. Cunningham, and G. Developers, gbm: Generalized Boosted
Regression Models, R package version 2.1.8, 2020. [Online]. Available: https://CRAN.R-proje
ct.org/package=gbm

[89] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R News, Vol. 2,
No. 3, pp. 18–22, 2002. [Online]. Available: https://CRAN.R-project.org/doc/Rnews/

[90] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, “Kernlab – an S4 package for kernel
methods in R,” Journal of Statistical Software, Vol. 11, No. 9, pp. 1–20, 2004. [Online].
Available: https://www.jstatsoft.org/index.php/jss/article/view/v011i09

[91] P.A. Lachenbruch and M.R. Mickey, “Estimation of error rates in discriminant analysis,”
Technometrics, Vol. 10, No. 1, pp. 1–11, 1968. [Online]. Available: http://www.jstor.org/stabl
e/1266219

[92] M.J. Kearns and D. Ron, “Algorithmic stability and sanity-check bounds for leave-one-out
cross-validation,” Neural Computation, Vol. 11, No. 6, pp. 1427–1453, 1999.

[93] J.L. Fleiss, J. Cohen, and B.S. Everitt, “Large sample standard errors of kappa and weighted
kappa.,” Psychological Bulletin, Vol. 72, No. 5, pp. 323–327, Nov. 1969.

[94] D.V. Cicchetti and S.A. Sparrow, “Developing criteria for establishing interrater reliability of
specific items: applications to assessment of adaptive behavior,” American Journal of Mental
Deficiency, Vol. 86, No. 2, pp. 127–137, Sep. 1981.

[95] J.L. Fleiss, Statistical Methods for Rates and Proportions (Probability and Mathematical
Statistics S.), 2nd ed., Nashville, TN: John Wiley and Sons, May 1981.

[96] D.A. Regier et al., “DSM-5 field trials in the United States and Canada, part II: Test-retest
reliability of selected categorical diagnoses,” American Journal of Psychiatry, Vol. 170, No. 1,
pp. 59–70, Jan. 2013.

[97] A.S. Lee, “A scientific methodology for MIS case studies,” MIS Quarterly, Vol. 13, No. 1,
pp. 33–50, 1989.

Article number 240106

41

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://www.R-project.org/
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/doc/Rnews/
https://www.jstatsoft.org/index.php/jss/article/view/v011i09
http://www.jstor.org/stable/1266219
http://www.jstor.org/stable/1266219

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Appendices
The following appendices provide additional information about the Fire Drill phenomenon
in full (A), the projects’ setup (B), the Fire Drill’s observed symptoms and consequences, as
well as supercategories (C), observations counter-indicative of a Fire Drill (D), and, lastly,
a more detailed and numeric view of the quantitative analysis’ variable importance (E).

Appendix A. Full Fire Drill description

Here, we include the most recent and complete description of the Fire Drill anti-pattern
using a pattern language and a typically structured template [3, 12]. This study operates
on this description and any won insights, new results, forces, symptoms and consequences,
etc., were not incorporated into this original description. The following is an exact copy
of the original resource by Picha et al. [51]11. The elements Also Known As, Variations
(optional), Example(s) (optional), and Notes (optional) were left out as they are currently
empty and reserved for future use.

Fire Drill

Summary

Requirements and Analysis phases prolonged and consuming disproportionate amount of
resources (because management want to do them “right”), then frantic “everything needs
to be done yesterday” period to finish on time (when management finds out they wasted
most of project’s schedule and resources on analysis).

Context

Waterfall(ish) projects, especially when project oversight is loose and/or management is
not driven by outcome.

Unbalanced forces

– need (desire) to have specifications perfect,
– management consumed by internal (political) issues,
– actual development of a high-quality product takes time,
– quality objectives formally stated and high,
– strict deadlines for delivery.

Symptoms and consequences

– long period at project start where activities connected to requirements, analysis and
planning prevail, and design and implementation activities are rare,

– only analytical or documentational artefacts for a long time,

11Full Fire Drill Description. 2022. https://github.com/ReliSA/Software-process-antipatterns-catalogue/
blob/master/catalogue/Fire_Drill.md42

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20221212131731/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/catalogue/Fire_Drill.md
https://web.archive.org/web/20221212131731/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/catalogue/Fire_Drill.md

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

– relatively short period towards project end with sudden increase in development efforts
(i.e. rock-edge burndown, especially when viewing implementation tasks only),

– little testing/QA and project progress tracking activities during development period,
– final product with poor code quality, many open bug reports, poor or patchy documen-

tation,
– if the previous trhee points do not apply, project schedule or scope is compromised (i.e.,

either delayed delivery or descoping occurs),
– stark contrast between interlevel communication in project hierarchy (management -

developers) during the first period (close to silence) and after realizating the problem
(panic and loud noise).

Causes

– management does not take seriously development effort (time) estimates,
– management absorbed in “various technopolitical issues (…) prevent[ing] the development

staff from making progress”,
– team is happy to produce artifacts early in the project,
– requirements are complex and their prioritization is not forced early on,
– team overseeing the need to prioritize “working code over comprehensive documenta-

tion”,
– management wants to appear the project to be on track,
– management believes it is more important to deliver complete functionality than good

quality,
– project tracking and oversight is loose, easily lulled inco complacency by easy-to-reach

outcomes.

(Refactored) solution

– force the team to start delivering (parts of) the “consumable solution” early, possibly
alongside the analysis and planning artefacts, by instituting strong project tracking
and oversight related to actual outcomes,

– it helps to follow an iterative process, architecture-driven development, and have
a well-performing product owner.

Anti-pattern Relation

Analysis Paralysis potential cause
Collective Procrastination [18] more generic case

Sources

[12], [SOU’ 18], Fire Drill, [3]

Appendix B. Project setup

Table B1 gives an overview about each project’s setup, including number of team members,
project duration, number of iterations, man-hours logged on issues, and the number of
issues or commits per activity (see Subsection 4.5). Each project developed a different kind

Article number 240106

43

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20221212131738/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/catalogue/Analysis_Paralysis.md
https://web.archive.org/web/20221212131738/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/catalogue/Collective_Procrastination.md
https://web.archive.org/web/20221212131739/https://github.com/ReliSA/Software-process-antipatterns-catalogue/blob/master/References.md
https://web.archive.org/web/20221210073556/https://sourcemaking.com/antipatterns/fire-drill

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Table B1. General characteristics of the student projects

Project Team Project Iterations Time Issues Time logged (h) Commits
members duration (d) spent (h) REQ/DEV/DESC A/C/P

1 4 78 6 277.95 104 62/158/0 36/32/48
2 4 93 6 399.35 98 115/177.9/4 42/108/76
3 4 97 7 303.80 113 59.3/136.7/24.5 26/35/50
4 4 100 6 346.75 118 67.5/221.8/66 29/59/38
5 2 61 4 238.25 44 60/131.3/14 33/26/51
6 4 98 5 234.62 101 39.4/157.9/2 79/63/75
7 5 100 6 396.35 114 80.8/183.1/26.5 83/64/36
8 4 94 7 206.00 85 46.5/89.5/0 10/6/14
9 4 84 6 285.35 112 37/176.3/51.5 54/23/23
10 4 91 6 348.40 128 59.7/152.8/9.5 74/38/46
11 4 83 6 300.00 114 45.8/147.6/15 151/168/223
12 4 94 7 292.25 81 35/172.6/0 35/61/40
13 4 105 6 409.25 181 49.3/210.6/122.4 67/48/77
14 3 95 6 204.75 72 14.3/104.8/7.4 34/8/20
15 4 98 6 246.30 62 18.8/86.5/0.8 24/27/15

of application. The following list gives a brief description for the developed application in
each.
Pr. 1: Desktop and web application for full-text searches in scanned documents
Pr. 2: Heatmap web application over open data
Pr. 3: Enhancement of web application for complex graph visualization
Pr. 4: Web application for HR management
Pr. 5: A Universal deserializer in and for Java
Pr. 6: Upgrade of a web application for linguistic research
Pr. 7: Mobile application for museum visitors
Pr. 8: Bitmap generator for public transportation
Pr. 9: Web application simulating pivot tables
Pr. 10: Client web front-end for sensor data
Pr. 11: Application for certificate management with web and desktop interfaces
Pr. 12: Web application over two databases with linguistic research data
Pr. 13: Web and mobile application for open weather data visualization and prediction
Pr. 14: Virtual Reality application arm rehabilitation machine control
Pr. 15: Sensor dashboard for the Raspberry Pi platform
Lastly, the projects were free to choose a programming language that best suited their
needs and conformed with the customer’s requirements. The following list shows the share
each language had, obtained from the lines of code12.
Pr. 1: Desktop and web application for full-text searches in s
Pr. 1: 43.64 % Java, 37.90 % TypeScript, 9.70 % HTML, and 8.76 % Others
Pr. 2: 30.90 % Python, 18.28 % CSS, 18.23 % PHP, 11.41 % SCSS, 8.50 % JavaScript,

8.48 % Twig, and 4.19 % Others
Pr. 3: 57.89 % JavaScript, 28.16 % Java, 8.47 % CSS, and 5.48 % Others
Pr. 4: 77.41 % Java, 17.29 % JavaScript, and 5.30 % Others
Pr. 5: 98.95 % JavaScript, and 1.05 % Java and Others
Pr. 6: 88.34 % PHP, 3.29 % PLpgSQL, and 8.37 % HTML, JavaScript and Others
Pr. 7: 63.71 % PHP, 35.48 % Blade, and 0.81 % Others
Pr. 8: 100.00 % Java

12GitHub Linguist was used to compute the shares, see https://github.com/github/linguist (2023).44

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20230127084458/https://github.com/github/linguist

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

Pr. 9: 78.84 % Java, 10.92 % HTML, 7.84 % HTML, and 2.39 % CSS
Pr. 10: 62.87 % TypeScript, 24.07 % SCSS, 12.03 % HTML, and 1.03 % Others
Pr. 11: 80.14 % Python, 10.57 % HTML, 7.32 % JavaScript, and 1.97 % Others
Pr. 12: 42.52 % JavaScript, 27.30 % HTML, 16.58 % PHP, 11.17 % Java, and 2.43 % CSS

and Others
Pr. 13: 72.51 % C#, 22.92 % ShaderLab, 3.76 % HLSL, and 0.82 % HTML
Pr. 14: 76.31 % C++, 14.44 % C#, 6.37 % Python, 1.79 % QMake, and 1.09 % Others
Pr. 15: 100.00 % Python

Appendix C. Fire Drill symptoms and consequences

This appendix shows the results of the systematic analysis of the raters’ notes for each
project, according to the methodology described in Subsection 4.4. The raters’ notes, as
well as all other data is to be found in [62]. This list is an excerpt from the most recent
Fire Drill description13. It is organized into a top-level list of symptoms and consequences
(SC1–SC7 and ESC1–ESC3) and a nested list for each with concrete observed, empirical
instances (denoted as Exx). Each empirical instance has a severity attached. It follows
the format [project, rater(s), severity], e.g., [1,AB,3] indicates that raters A and
B commonly identify a problem instance in project one, and the severity is three out
of five. As of the second pass, some observations and their severity were aggregated.
For example, ([13,A,3], [13,B,2], [13,C,4]) ⇒[13,ABC,5] means that all three raters
observed a symptom/consequence in project 13, with varying severity each. The aggregation
reduces this to a single observation with higher severity, according to the ordinal scale’s
description.
– SC1. long period at project start where activities connected to requirements, analysis

and planning prevail, and design and implementation activities are rare,
– E01. can be caused by, e.g., the team needing some time for familiarization with the

(new, changed) tools, way of communication, or process in the beginning [1,A,1],
[3,B,2], [5,A,1], [7,B,1], [9,B,2], [13,A,1], [14,A,1], [15,A,2],

– E02. work delayed due to external factors, such as ramping-down of previous project
or other, non-related work [1,A,0], [15,A,0],

– E03. project is under- or over-scoped from the beginning, so the team spends time
idling or does not know where to start [3,C,1], ([13,A,3], [13,B,2], [13,C,4])
⇒[13,ABC,5], [15,C,1];

– SC2. only analytical or documentational artifacts for a long time,
– E04. Development takes place only at the end of an iteration, sometimes rushed

(opposite of CISC08) [3,C,1], [6,A,1], [14,A,3];
– SC3. relatively short period towards project end with a sudden increase in development

efforts (i.e. rock-edge burndown, especially when viewing implementation tasks only),
– E05. team rushes to deliver at least an MVP to meet the final deadline [13,A,3];

– SC4. little testing/QA and project progress tracking activities during the development
period,
– E06. sometimes caused by improper usage of project management tools, for example

logging time only at the end of a phase [3,C,2],

13The Fire Drill description in the process anti-pattern catalog. 2023. https://github.com/Mr-
Shoenel/Software-process-antipatterns-catalogue/blob/7a4d8/catalogue/Fire_Drill.md.

Article number 240106

45

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/
https://web.archive.org/web/20230127100225/https://github.com/MrShoenel/Software-process-antipatterns-catalogue/blob/7a4d8/catalogue/Fire_Drill.md
https://web.archive.org/web/20230127100225/https://github.com/MrShoenel/Software-process-antipatterns-catalogue/blob/7a4d8/catalogue/Fire_Drill.md

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

– E07. too much focus on “visible” progress by managerial decision while testing/QA
is neglected, which leads to an accumulation of technical debt in the long-term (Half
Done Is Enough) [12,A,1];

– SC5. final product with poor code quality, many open bug reports, poor or patchy
documentation,
– E08. too meet the final delivery date, the product quality is decreased by skipping,

e.g., features or proper Q/A (alternatively, the may be delivered late, but as
agreed) ([4,B,1], [4,C,2]) ⇒[4,BC,3], [6,C,2], [7,B,2], ([13,A,4], [13,C,2])
⇒[13,AC,5],

– SC6. if points SC3 through SC5 do not apply, (likely) the project schedule or scope is
compromised (i.e., either delayed delivery or descoping occurs),
– E09. team accepts change requests, re-prioritization of existing or new issues

within a phase (e.g., after the start of a sprint); improper change management
process [1,A,1], [3,C,4], ([5,A,1], [5,B,1]) ⇒[5,AB,2], [9,A,1], [10,B,2],
[12,A,3], ([13,A,4], [13,B,4]) ⇒[13,AB,5],

– E10. planned work is not completed and overflows into the next phase (e.g., sprint),
due to, e.g., an over-challenged team (opposite of CISC28), misestimation, or unequal
work distribution [3,C,4], [7,C,3], [9,C,3], [10,C,1], [14,A,1], [15,B,1],

– E11. iterations are too short and are artificially prolonged, forcing the team to do
overtime or to truncate the workload [3,C,4], [4,C,2], [7,C,1];

– SC7. stark contrast between interlevel communication in project hierarchy (management
– developers) during the first period (close to silence) and after realizing the problem
(panic and loud noise).

Here is a list of new, empirical symptoms and causes:
– ESC1. poor communication (e.g., unresponsive, relayed, large overhead, or underqualified

decision-maker) between stakeholders (e.g., customer) and the development team,
– E12. unresponsive customer or unsatisfactory (e.g., late, incomplete, or slow) com-

munication (critical infos or materials not provided timely) ([3,A,4], [3,B,4])
⇒[3,AB,5], ([4,A,3], [4,B,4], [4,C,3]) ⇒[4,ABC,5], [5,C,1], ([6,A,3],
[6,B,3]) ⇒[6,AB,4], ([7,A,3], [7,C,3]) ⇒[7,AC,4], ([10,A,3], [10,B,3],
[10,C,2]) ⇒[10,ABC,5], [11,A,1], [12,A,1], [13,C,1], [14,A,1], ([15,A,1],
[15,C,1]) ⇒[15,AC,2],

– E13. requirements cannot be clearly negotiated or are ambiguous [3,C,3], ([10,A,3],
[10,B,3]) ⇒[10,AB,4], ([13,A,3], [13,C,4]) ⇒[13,AC,5],

– E14. post-negotiation misunderstandings (without proper re-negotiation) [3,A,2],
– E15. tacit misunderstanding (stakeholder and team believe they are on the same

page, but they are not in actuality) [3,A,3], [4,C,1],
– E16. customer interferes with project management without properly communicating

the made changes, which directly translates into a project risk [9,B,2];
– ESC2. high project risk (opposite of CISC26), often manifests itself through, e.g., un-

realistic work item estimates, the absence of proper testing (opposite of CISC09), or
improper documentation,
– E17. business requirements (tacitly/unknowingly) misinterpreted ([3,C,3], [3,A,3])

⇒[3,AC,4], [4,C,3], [6,A,2], [12,A,1],
– E18. finalized work does not conform to the defined specification/expectation

[3,C,2],
– E19. new functionality introduces bugs, and not enough slack was allocated during

planning for the fixing (or preventing by proper testing) of these [3,C,1], [4,A,2],46

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

– E20. tasks are done in the wrong order (Cart Before Horse), esp. development
before properly analyzing and planning ([6,A,2], [6,B,2]) ⇒[6,AB,3], [12,A,1],
[15,A,1]

– E21. imbalanced activities at the beginning, end, or during the project, such as
too much focus on development early and requirements analysis later that leads
to descoping, for example ([6,B,2], [6,C,2]) ⇒[6,BC,3], ([7,A,1], [7,B,1])
⇒[7,AB,2], [9,A,1], [12,C,1], ([13,A,3], [13,B,2]) ⇒[13,AB,4],

– E22. lack of experience that leads to misestimation of work items [6,C,1], [9,A,1],
[13,C,2],

– E23. work items or goals not properly defined, absent, or defined too late [7,C,4],
[13,A,4],

– E24. management fails to ascertain that the development team is available to its
planned capacity (e.g., it allows the team to be affected by external factors), which
has a negative impact on the progression of the project, such as descoping, quality
regression, or delayed delivery [9,C,1], [11,A,1], [13,A,1],

– E25. Strong dependency between stakeholders and the development team, such
that the team cannot proceed very long or at all by themselves (opposite of CISC15)
[10,C,1],

– E26. technical difficulties in the environment, such as the infrastructure, which cause
unexpected delays to, e.g., the development or deployment ([12,A,3], [12,B,1])
⇒[12,AB,3], ([15,A,1], [15,C,1]) ⇒[15,AC,2],

– E27. frequent project schedule adaptions, manifested by excessive use of administra-
tive tools, leading to a low-quality product [13,B,4], [15,A,2];

– ESC3. poor usage of project management tools and methodologies which gives rise to
management misinterpreting the progress and state of the project,
– E28. too-large goals that were not properly broken down into smaller issues [3,C,1],
– E29. mislabeling of items; for example, marking an Epic as a Task [4,C,1],
– E30. a discrepancy between the defined work and the actual work exists, due

to, e.g., time not logged properly, issues not defined, or work completed during
undocumented overtime [3,C,1], [7,C,4], [10,A,1], [15,A,1],

– E31. information mismanagement, for example, by duplication or using too many
different systems for storing and disseminating information [4,B,1].

Appendix D. Symptoms and consequences indicating the absence

During the analysis of the raters’ notes, recurring elements of healthy projects, showing no
or miniscule signs of a Fire Drill, emerged. While the absence of evidence does not mean
that a Fire Drill is not present, we gathered some empirical evidence for symptoms and
consequences that would be counter-indicative of the phenomenon. The following unordered
list is another excerpt from the most recent description. It is numbered similarly to the
list of symptoms and consequences (CISC01–CISC29), but does not include the number of
observations or how strong an observation manifested. We use the abbreviation CISC to
mean counter-indicative symptom and consequence.
– CISC01. communication and collaboration with the customer is seamless;
– CISC02. no descoping which typically happens towards the end of a phase (sprint,

milestone, etc.);
– CISC03. timely product delivery according to agreed-upon quality;

Article number 240106

47

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

– CISC04. satisfaction among all stakeholders (e.g., team, customer, etc.);
– CISC05. regular and successful iteration evaluations that do not result in the unveiling

of (large/additional) problems;
– CISC06. clear understanding of the requirements and resulting unproblematic execution;
– CISC07. equal (or almost equal) work distribution among team members (also: fair

work distribution among differently-skilled/-tasked team members);
– CISC08. linear burn-down (i.e., done work is distributed uniformly, instead of, e.g., at

the end of a phase);
– CISC09. product tested properly (e.g., appropriate tests and/or good coverage), as well

regularly/continuously;
– CISC10. starting to implement features right from the project inception (clear require-

ments);
– CISC11. proper allocation of project resources (esp. time);
– CISC12. proper (planning of) distribution of time (spent) across the required activities

(e.g., enough time spent on defining requirements properly);
– CISC13. appropriate prioritization of activities when resources (often time) become

(temporarily) scarce;
– CISC14. successful intermediate and final product deliveries (according to customer’s

acceptance criteria);
– CISC15. team can proceed at least short-term even if the customer is unavailable (good

internal crisis management);
– CISC16. accurate work-item estimates (time, points, etc.), esp. no over-estimation

(which indicates high level of uncertainty and, therefore, risk);
– CISC17. project management tool(s) used accordingly; e.g., proper usage of primitives

(item types), the Scrum/Kanban board (or swimlanes), regular updates (all these
indicate proper management);

– CISC18. regular activities according to used methodology (e.g., Scrum), such as daily
meetings, retrospectives, and milestones;

– CISC19. change requests, re-prioritization of existing or new issues are rejected by the
team once the phase (e.g., sprint) started in which they were planned for (as should
be);

– CISC20. proper communication among team members; direct messaging, as well as
dedicated channels and often the usage of bots (from, e.g., a CI pipeline);

– CISC21. efficient communication with customer, that is, direct (no relays), quick,
unproblematic, of high quality, tending to the necessary aspects of the product (low
overhead);

– CISC22. stable team (no developer churn) and harmony among members;
– CISC23. mutual understanding: effort estimations between customer and team are

similar (customer understands technical challenges and team understands business
requirements);

– CISC24. activities in right order (e.g., analysis before design before implementation
etc.);

– CISC25. progress is reflected empirically (objectively), i.e., provably no discrepancy
between reported and actual progress exists;

– CISC26. proper risk management through, e.g., the development of prototypes;
– CISC27. the scope may change and adapt over the course of the project (due to the

agile nature), but it does not increase/widen without additional resources;
48

Article number 240106

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

Sebastian Hönel et al. e-Informatica Software Engineering Journal, 18 (2024), 240106

– CISC28. team is not undersized for the project: no (steady) accumulation of non-finished
work items into the next phase;

– CISC29. when external forces and (un)forseeable events happen, development is sus-
pended and/or the product is delayed accordingly, allowing the team to catch up (rather
than forcing them to do overtime).

Appendix E. Detailed variable importance

Tables E1 and E2 show the detailed variable importance for source code and issue-tracking,
respectively. Both tables reflect the same result as shown in Figure 7.

Table E1. Detailed variable importance (scaled to percent) for the no-pattern source code dataset,
including means and sums across segments and features

Variable (feature) Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Seg. 6 Seg. 7 Seg. 8 Seg. 9 Seg. 10 Sum

A 1.58 0.69 1.44 2.70 1.47 1.67 0.73 0.81 1.44 1.68 14.20
CP 1.53 1.32 3.39 2.19 1.33 2.31 1.38 1.89 1.10 0.72 17.16
FREQnm 2.60 1.00 2.35 1.69 0.79 2.62 1.23 1.17 1.59 1.08 16.12
A |0 CP 1.27 1.28 2.87 2.95 2.08 0.59 2.01 3.65 1.13 1.18 19.00
A |0 FREQnm 0.64 0.74 2.12 2.27 2.53 2.47 1.61 2.91 1.49 0.77 17.55
CP |0 FREQnm 2.65 1.31 3.16 3.02 0.91 1.28 0.98 1.41 0.45 0.80 15.97

Mean 1.71 1.06 2.55 2.47 1.52 1.82 1.32 1.97 1.20 1.04 n.a.
Sum 10.28 6.35 15.33 14.81 9.10 10.94 7.93 11.84 7.21 6.23 200.00

Table E2. Detailed variable importance (scaled to percent) for the no-pattern issue-tracking
dataset, including means and sums across segments and features

Variable (Feature) Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Seg. 6 Seg. 7 Seg. 8 Seg. 9 Seg. 10 Sum

REQ 1.19 1.20 1.50 2.42 1.63 1.25 0.89 0.64 1.15 1.16 13.02
DEV 1.20 2.93 1.70 1.02 1.00 1.55 0.62 1.74 2.48 2.39 16.63
DESC 1.39 0.72 1.24 1.26 0.78 1.50 0.60 2.84 2.47 1.39 14.19
REQ |0 DEV 1.76 1.21 3.14 1.07 1.99 1.68 1.06 2.15 2.91 1.58 18.55
REQ |0 DESC 3.86 2.99 2.94 1.31 1.42 2.07 1.17 1.75 2.23 0.99 20.72
DEV |0 DESC 1.25 1.00 1.04 1.30 2.88 2.68 0.83 2.67 2.23 1.00 16.89

Mean 1.78 1.68 1.93 1.40 1.62 1.79 0.86 1.97 2.24 1.42 n.a.
Sum 10.65 10.05 11.56 8.38 9.69 10.74 5.17 11.79 13.47 8.50 200.00

Article number 240106

49

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240107, DOI: 10.37190/e-Inf240107

Boosting and Comparing Performance
of Machine Learning Classifiers with

Meta-heuristic Techniques
to Detect Code Smell

Shivani Jain∗ , Anju Saha∗

∗Information Technology, GGS Indraprastha University
shivani.1091@gmail.com, anju_kochhar@yahoo.com

Abstract

Background: Continuous modifications, suboptimal software design practices, and
stringent project deadlines contribute to the proliferation of code smells. Detecting and
refactoring these code smells are pivotal to maintaining complex and essential software
systems. Neglecting them may lead to future software defects, rendering systems challenging
to maintain, and eventually obsolete. Supervised machine learning techniques have emerged
as valuable tools for classifying code smells without needing expert knowledge or fixed
threshold values. Further enhancement of classifier performance can be achieved through
effective feature selection techniques and the optimization of hyperparameter values.
Aim: Performance measures of multiple machine learning classifiers are improved by
fine tuning its hyperparameters using various type of meta-heuristic algorithms including
swarm intelligent, physics, math, and bio-based, etc. Their performance measures are
compared to find the best meta-heuristic algorithm in the context of code smell detection
and its impact is evaluated based on statistical tests.
Method: This study employs sixteen contemporary and robust meta-heuristic algorithms
to optimize the hyperparameters of two machine learning algorithms: Support Vector
Machine (SVM) and k-Nearest Neighbors (k-NN). The No Free Lunch theorem underscores
that the success of an optimization algorithm in one application may not necessarily extend
to others. Consequently, a rigorous comparative analysis of these algorithms is undertaken
to identify the best-fit solutions for code smell detection. A diverse range of optimization
algorithms, encompassing Arithmetic, Jellyfish Search, Flow Direction, Student Psychology
Based, Pathfinder, Sine Cosine, Jaya, Crow Search, Dragonfly, Krill Herd, Multi-Verse,
Symbiotic Organisms Search, Flower Pollination, Teaching Learning Based, Gravitational
Search, and Biogeography-Based Optimization, have been implemented.
Results: In the case of optimized SVM, the highest attained accuracy, AUC, and F -measure
values are 98.75%, 100%, and 98.57%, respectively. Remarkably, significant increases in
accuracy and AUC, reaching 32.22% and 45.11% respectively, are observed. For k-NN,
the best accuracy, AUC, and F -measure values are all perfect at 100%, with noteworthy
hikes in accuracy and ROC-AUC values, amounting to 43.89% and 40.83%, respectively.
Conclusion: Optimized SVM exhibits exceptional performance with the Sine Cosine
Optimization algorithm, while k-NN attains its peak performance with the Flower
Optimization algorithm. Statistical analysis underscores the substantial impact of
employing meta-heuristic algorithms for optimizing machine learning classifiers, enhancing
their performance significantly. Optimized SVM excels in detecting the God Class, while
optimized k-NN is particularly effective in identifying the Data Class. This innovative

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 28 Nov. 2023; Revised: 4 Mar. 2024; Accepted: 3 Apr. 2024; Available online: 9 Apr. 2024

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8856-0675
https://orcid.org/0000-0002-3392-1231

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

fusion automates the tuning process and elevates classifier performance, simultaneously
addressing multiple longstanding challenges.

Keywords: Code Smell, Machine Learning, Meta-heuristics, Support Vector
Machine, k-Nearest Neighbors, Optimization

1. Introduction

Using software is an integral part of our lives. They are embedded in every aspect of our
existence, like education, transportation, entertainment, communication, healthcare, and
security. Software systems have become complex and colossal with advancements in science
and technology [1]. Designing and developing them takes a mere 30–40% of effort in the
complete life cycle of software; the rest is dedicated to maintaining them [2]. Maintaining it
includes continuously adding, deleting, and changing artefact functionalities to meet users’
needs and satisfaction, which requires more resources and effort [3]. The un-involvement of the
maintenance team in the development phase, time crunch, implementation of substandard
design practices, tight deadlines, and inexperience of developers provides bedding ground
for the spread of code smells throughout the system [4, 5]. A code smell is not a syntax error
but may lead to it. It is a structural flaw that violates fundamental design principles and
deteriorates code quality [6]. Furthermore, it makes code more complicated to understand
and maintain and prevents code from changing, contributing to technical debts. So, it is
best to identify and eradicate them whenever a new feature is added, while fixing a bug or
during code reviews. It can be corrected by small and disciplined changes in code called
refactoring. It is restructuring internal design but ensuring no change in external behaviour.
Refactoring improves code quality and reverses software entropy. It makes the system more
readable, understandable, efficient, flexible, and maintainable. Identifying and detecting
smells is the first step in refactoring, making the system more robust and contemporary.

Code smell detection has several real-world applications in software development and
maintenance. Smell detection helps developers identify code areas that may benefit from
refactoring. By addressing code smells, developers can enhance code maintainability and
readability, reducing technical debt and making the code base more sustainable. Incorporating
smell detection as part of the quality assurance process ensures that newly developed or
modified code adheres to best practices. In legacy systems where code has accumulated
over time, identifying and mitigating code smells can be crucial for improving the health
of the code base. It is essential when introducing new features, fixing bugs, or integrating
modern technologies. Integrating code smell detection into Continuous Integration (CI)
and Continuous Deployment (CD) pipelines ensures that any new changes introduced
to the code base adhere to coding standards and best practices. Certain code smells are
indicative of potential sources of bugs or errors. By proactively addressing these smells,
developers can reduce the likelihood of introducing bugs and enhance the overall reliability
of the software. Some code smells, such as duplicated code or inefficient algorithms, can
impact the performance of the software. Detecting and addressing these smells can lead to
performance improvements in the application. Code smell detection tools can be integrated
into various development environments and IDEs, making it convenient for developers to
identify and address issues during the coding process. In summary, code smell detection is
a valuable practice with tangible benefits regarding code quality, maintainability, and team2

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

collaboration. It contributes to the overall improvement of software development processes
and the longevity of software systems.

Various code smell detection tools based on the visualization [7], machine based ap-
proach [8], and metric evaluation [9] are available in the market and they are of manual [10],
automatic [11], and semi-automatic [12] in nature. Although code smell detection tools
function effectively, subsequent research has shown essential flaws that jeopardize their
widespread use. The agreement between different detectors is also impaired. Tools’ strategies
rely heavily on setting up detection rules and threshold values. Engineers need in-depth
technical knowledge of code smells in order to define these rules [13]. Another problem is that
code smells picked up by current detectors can be interpreted differently by specialists. More
crucially, to identify smelly code components from non-smelly ones, the majority of smells
require the specific threshold values, and naturally, the choice of threshold significantly
impacts their count. Additionally, full consideration of size, domain, design, and complexity
is typically lacking, which casts doubt on the veracity of other performance indicators [14].
The usage of code smell rules, using insufficient information, and metrics threshold levels
are all overcome by supervised machine learning approach.

A supervised machine learning algorithm feeds in independent variables, commonly
called training data, to determine the dependent variable’s value and improves by learning
through examples [15]. Performance measures are assessed, and the algorithm improves
response from the difference between expected and generated output. Techniques like
hyperparameter tuning [16], SMOTE [17], feature engineering [18], feature selection [19],
etc., can be used to enhance results further. When using a machine learning approach,
establishing rules and setting thresholds is left up to the algorithm rather than experts,
significantly reducing time and effort [20].

This study uses two supervised machine learning classifiers, Support Vector Machine
and k-Nearest Neighbors, to identify smelly instances. These classifiers employ a set
of hyperparameters to enhance their results, and by choosing the appropriate values of
hyperparameters, one may minimize error [21]. A hyperparameter is an external configuration
to the model whose value must be defined by an expert as it cannot be determined
from the data. The grid search technique can also improve the performance of machine
learning algorithms [22]. However, it has many disadvantages, and for an algorithm to
work successfully, a specialist must choose hyperparameter values. It takes specialized
knowledge, intuition, and frequent trial and error for the best outcomes. It becomes
impossible when the number of hyperparameters grows as evaluations grow exponentially.
Therefore, meta-heuristic algorithms are employed to choose the appropriate values for the
hyperparameters of machine learning algorithms to overcome this challenge and do away
with the requirement for experts [23].

Meta-heuristic algorithms are high-level, problem-independent techniques that use
gradient-free mechanisms and provide near-optimal solutions to highly complex real-world
problems within limited computing time [24]. They search for a solution(s) in a search space
that minimizes or maximizes an objective function while fulfilling certain constraints. The
success of a meta-heuristic algorithm depends on two processes: exploration and exploitation.
Diversification ensures that the whole search space is explored and not confined to specific
areas, whereas, in intensification, certain better regions are explored more thoroughly to
find a better solution. We have employed various meta-heuristic algorithms, which are
stochastic in nature, exploring the search space and exploiting it for the best solution [25].

The no Free Lunch theorem states that no single optimization technique can solve all
optimization problems [26]. This theorem underscores that the efficacy of an algorithm for

Article number 240107

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

one application may not necessarily translate to success in another optimization problem. It
led to the development of more than three hundred meta-heuristic algorithms for conquering
numerous optimization problems. Consequently, the prudent approach involves implementing
and comparing optimization algorithms to identify the most apt solution for a given context.
Their categorization will guide us in understanding their basic work principles and strategies.
They are categorized as follows:
– Evolutionary: These algorithms are inspired by Darwin’s theory of survival of the

fittest. The iterative selection, crossover, and mutation process make the stochastically
generated population fitter. Evolutionary Programming [27], Genetic Algorithms [28],
and Differential Evolution [29] are some evolutionary algorithms.

– Swarm: These algorithms utilize the social behaviour and hunting strategies of the
genus of animals. Animals or insects work together in an organized manner and con-
stantly interact to explore the entire search space and converge when necessary [30].
Examples of swarm-based algorithms are Particle Swarm Optimization [31], Ant Colony
Optimization [32], etc.

– Physics: These algorithms imitate physical principles of the universe, such as gravitation,
kinematics, fluid mechanics, and electromagnetism [33]. They can be categorized into
thermodynamics, classical mechanics, optics, etc. Some physics-based algorithms are
Multi-Verse Optimizer [34], Nuclear Reaction Optimization [35], etc.

– Human: These algorithms are inspired by the characteristics and behaviour of the
human population. Brain Storm Optimization [36] and Battle Royale Optimization [37]
are some examples.

– Others: Bio-inspired algorithms are based on interactions or biological processes observed
in nature. Examples are Virus Colony Search [38], Earthworm Optimization [39], etc.
Math-based algorithms such as Hill Climbing always move towards the peak to aim
for a better solution [40]. Moreover, the Sine Cosine Algorithm explores and exploits
search space using a mathematical model based on sine and cosine functions [41].

1.1. Motivation

Code smell detection has long been a focal point in software engineering research. This
study pioneers a transformative approach by integrating meta-heuristic algorithms to
amplify the performance of machine learning classifiers, offering a groundbreaking solution
to enduring challenges. Employing an optimization algorithm eliminates the need for an
expert and the painful task of finding the best hyperparameter values, automating and
simplifying the whole process. This innovative fusion elevates classifier performance and
presents a profound breakthrough in the field, addressing multiple long-standing issues
concurrently.

The following research underscores the influence of meta-heuristic algorithms to optimize
machine learning classifiers for code smell detection. The research delves into a comprehen-
sive comparison of sixteen distinct meta-heuristic techniques, evaluating their efficacy in
identifying and addressing smells within source code. In this research, the focus lies on the
utilization of optimization algorithms to obtain optimal hyperparameter values for SVM
and k-NN. A diverse range of optimization algorithms, encompassing Arithmetic, Jellyfish
Search, Flow Direction, Student Psychology Based, Pathfinder, Sine Cosine, Jaya, Crow
Search, Dragonfly, Krill Herd, Multi-Verse, Symbiotic Organisms Search, Flower Pollination,
Teaching Learning Based, Gravitational Search, and Biogeography-Based Optimization,
have been implemented.4

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

A comprehensive comparative analysis examines the performance of machine learning
classifiers across three scenarios: absence of optimization, grid search application, and
optimization implementation. Key performance metrics, including Accuracy, ROC Area
Under the Curve (ROC-AUC), F -measure, and execution time, are meticulously docu-
mented for analytical purposes. The techniques are implemented 25 times, Acknowledging
the stochastic nature of meta-heuristic algorithms. The resultant best and average values
are considered for evaluation. Furthermore, a juxtaposition is drawn between these novel
meta-heuristic methods and classical algorithms, such as Differential Evolution, Particle
Swarm Optimization, Genetic Algorithm, and Simulated Annealing, enhancing the breadth
and depth of the comparative study.

The overall contribution of this paper is:
– Enhancing the performance of machine learning classifiers through the utilization of

diverse meta-heuristic algorithms.
– Demonstrating the profound influence of meta-heuristic algorithms in optimizing ma-

chine learning classifiers, specifically in the context of code smell detection.
– Identifying the optimal meta-heuristic technique for effectively detecting code smells

within source code.
– Disclosing the most readily detectable code smell instances.
– Establishing a foundational reference study for prospective qualitative and quantitative

comparative research across various domains.
The research paper is structured across seven distinct sections. Commencing with an

introductory segment, the paper outlines fundamental concepts, underscores the study’s
necessity, and articulates its contributions. The introduction is followed by an overview of
related research and the pivotal role of the current study. The third section comprehensively
details the experiment setup and methodology, accompanied by an illustrative workflow.
Results, their in-depth analysis, and statistical tests comprise the fourth section, followed
by an expansive discussion in the fifth. The sixth section meticulously examines potential
threats to validity, providing corresponding mitigation strategies. The paper culminates in
a conclusive seventh section, encapsulating final thoughts and avenues for future exploration.
Additionally, the machine learning algorithms employed and concise profiles of the sixteen
meta-heuristic algorithms employed are expounded upon within the appendices.

2. Related work

The use of machine learning and optimization algorithms represent highly sought-after
and crucial areas of research. Extensive investigations have been undertaken to enhance
the efficiency of machine learning algorithms employing diverse techniques, among which
the utilization of meta-heuristic algorithms holds significance. Optimization algorithms
serve a dual purpose within this landscape like facilitating feature selection and hyperpa-
rameter tuning for machine learning algorithms. Moreover, these algorithms find utility
in establishing detection rules for code smells, employing tailored threshold values and
metrics. Applying optimization algorithms extends to prioritizing refactoring for multiple
code smells, predicated on factors such as severity and risk in the context of extensive
software systems. The following section outlines pertinent research efforts in this domain.

Hassaine et al. utilized a machine learning-inspired technique called an Immune-based
Detection Strategy that imitated the immune system of the human body [42]. IDS is based
on the Artificial Immune Systems (AIS) algorithm, which mimics the defense mechanisms

Article number 240107

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

of the human immune system. The authors drew a parallel between the human body and
system design to develop a detection method that identifies smelly classes, equivalent
to pathogens, using some features of the classes in the form of metrics. Compared to
DECOR [43] and Bayesian Belief Networks, IDS outperformed in precision and computation
time.

Maiga et al. introduced SMURF – Support Vector Machines that consider practitioners’
feedback [44]. SMURF was compared with DETEX [43] and BDTEX [45]; it performed
better in accuracy, precision, and recall. Fontana et al. implemented multiple variations and
boosted versions of J48, Random Forest, Naive Bayes, JRip, SMO, and SVM, constituting
32 machine-learning algorithms to detect four code smells. They concluded that J48 and
Random Forest yield the highest performance, and support vector machines are the worst.
Boosting only sometimes helps; in some cases, it diminishes performance [46].

Kessentini et al. proposed a multi-objective genetic programming algorithm (MOGP)
to generate rules for automatically detecting code smells in Android applications. They
identified detection rules for ten smells and evaluated their technique on 184 Android
projects. Results projected that average correctness was more than 82% and an average
relevance of 77% based on the feedback of active developers of mobile apps [47]. Kaur et al.
designed a new meta-heuristic optimization algorithm inspired by sandpipers’ searching
and attacking behaviours, known as the Sandpiper Optimization Algorithm (SPOA). They
collaborated SPOA with B-J48 pruned machine-learning approach to detect five code
smells in three open-source software [48].

Jain et al. applied three hybrid feature selection techniques with ensemble machine learn-
ing algorithms to improve the performance in detecting code smells. Seven machine learning
classifiers with different kernel variations, along with three boosting designs, two stacking
methods, and bagging, were implemented. Combining filter-wrapper, filter-embedded, and
wrapper-embedded methods was executed for feature selection. After application of hybrid
feature selection, performance measure increased, accuracy by 21.43%, ROC AUC value by
53.24%, and F -measure by 76.06% [16].

In other work, Jain et al. implemented 32 machine learning algorithms with feature
selection that drastically eliminated the dimensionality curse and improved performance
measures. Two correlation methodologies, brute force and random forest, were used to
discard irrelevant features with three filter methods: mutual information, fisher score and
univariate ROC-AUC. Results showed that the accuracy of machine learning models had
surged up to 26.5%, F -measure by 70.9%, the area under the ROC curve had levelled up
to 26.74%, and average training time has reduced up to 62 secs as compared to measures
of models without feature selection [49].

Boussaa et al. proposed a promising technique to identify detection rules for code
smell detection. Two populations evolved simultaneously. The first produced a set of
detection rules for detecting code smells, and the second introduced artificial code smells
to support the main objective of the first population. When tested on four open-source
Java systems, this technique outperformed two single population-based meta-heuristics,
Genetic Programming and Artificial Immune Systems [50].

Similarly, Kessentini et al. parallelly used genetic programming to generate code smell
detection rules and genetic algorithms to produce code smell examples. Cooperative P-EA
outperforms single population evolution and random search [51]. Sahin et al. implied
code smell detection as a bilevel problem [52]. They used genetic programming for the
upper-level problems, i.e., detection rules and generated artificial code smells for lower-level
problems. However, there was no parallelism in this bilevel approach; levels were executed6

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

serially. This technique outperformed Genetic Programming, Competitive Coevolutionary
Search [50] and non-search-based methods.

Mansoor et al. used multi-objective genetic programming (MOGP) to find the most
optimized detection rules to maximize the detection of smells and minimize false detection
problems. Five code smells were inspected on seven large open-source systems, and the
algorithm achieved 87% precision and 92% recall [53]. Saranya et al. proposed Euclidean
distance-based Genetic Algorithm and Particle Swarm Optimization (EGAPSO) to develop
detection rules that outperformed other detection methods like Genetic Algorithm, DECOR,
Parallel Evolutionary Algorithm, and Multi-Objective Genetic Programming. The approach
was tested on open-source projects like the Gantt Project and Log4j to identify the five
code smells [54].

Kannan developed hybrid particle swarm optimization with mutation (HPSOM) to
formulate detection rules using appropriate metrics and thresholds. He then compared
its performance with other evolutionary techniques like the parallel evolutionary algo-
rithm, genetic algorithm, genetic programming, and particle swarm optimization. HPSOM
outperformed all of them by achieving a precision of 94% and recall of 92%. He worked
with nine open-source projects and detected five code smells: blob, data class, spaghetti
code, functional decomposition, and feature envy [55]. Moatasem et al. used a whale
optimization algorithm to formulate ideal detection rules for nine code smells. Equations
were tested on five medium and large-size open-source projects. Results were better than
other search-based algorithms; 94.24% precision and 93.4% recall were observed [56].

Amal et al. evaluated a refactoring series to make the system more robust using a genetic
algorithm and artificial neural network (ANN) [57]. They compared their techniques with
other search-based refactoring techniques, such as the IGA technique presented by Ghannem
et al. [58] and a design defect detection and correction tool called JDeodorant [59]. Dea
et al. used distributed evolutionary algorithms where many evolutionary algorithms with
different adaptations (fitness functions, solution representation, and change operators) are
implemented in parallel to get a series of refactoring. Cooperative D-EA outperforms single
population evolution and random search based on a benchmark of eight sizable open-source
systems where more than 86% of code smells are fixed using the suggested refactoring [60].

Saranya et al. used the Strength Pareto Evolutionary Algorithm (SPEA) to prioritize
the list of refactorings. Blob, Functional Decomposition, Shotgun Surgery, Data Class,
Schizophrenic Class, and Swiss Army Knife were considered and tested on two open-source sys-
tems, Xerces-J and J Hot Draw. SPEA outperformed Chemical Reaction Optimization (CRO)
and Non-dominated Sorting Genetic Algorithm in prioritizing code smell correction tasks [61].

Large-scale systems have a volume of code smells, and prioritizing them according to
risk, impact, importance, and severity is an efficient way to eliminate them. Ouni et al. used
chemical reaction optimization to find a series of refactoring to remove smells according to the
risk and other factors involved. Seven code smells were tested on five medium to large-scale
open-source systems. The proposed technique outsmarted existing methods compared to
Genetic Algorithm, Simulated Annealing, and Particle Swarm Optimization [62]. Using the
Sandpiper Optimization Algorithm, Kaur et al. detected the severity of five harmful code
smells, namely blob, feature envy, data class, functional decomposition, and spaghetti code.
The approach was tested on four open-source Java software: Gantt-Project, Log4j, and two
different versions of Xerces. Studies showed that many code smells could be refactored with
a severe decrease in refactoring effort [63].

This work utilizes the influence of sixteen powerful meta-heuristic algorithms to optimize
machine learning algorithms. This approach addresses problems such as evaluating the

Article number 240107

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

best hyperparameter values of machine learning algorithms to elevate their performance.
This fusion eliminates needing an expert, reduces time and effort, and effectively deciphers
complex software engineering challenges.

3. Research methodology

The following section delves into the research questions, studies answers, description of
code smells analyzed, datasets used, and complete experimentation settings.

3.1. Research questions addressed

This study aims to investigate the following research questions:
– RQ 1: Does using meta-heuristic algorithms for optimizing machine learning classifiers

boost their performance for detecting code smell in complex software systems?
– RQ 2: How significant is the impact of optimization of machine learning algorithms

with meta-heuristic techniques on its overall performance?
– RQ 3: Given the meta-heuristic algorithms, which yields the best performance in

optimizing classifiers to detect code smell and why?
– RQ 4: How does our approach perform compared to existing machine learning based

techniques?

3.2. Code Smells investigated

This study entails the optimization of two distinct machine learning classifiers by utilizing
a comprehensive array of sixteen selected meta-heuristic algorithms, a strategy aimed at
refining performance metrics. The primary focus of this optimization effort is detecting
four distinct types of code smells, each of which bears distinctive characteristics and
implications. Specifically, two class-level code smells [64] under scrutiny are the Data Class
and the God Class. Data Class is a passive container for data, housing attributes, getters,
and setters intended for use by other encapsulating classes. This class does not engage
in the execution of substantial operations on its stored data. It impacts data abstraction
and encapsulation properties of the system. It can be refactored with the Encapsulate
Collection, Move Method, Extract Method, Encapsulate Field, and Hide Method.

God Class is characterized by its tendency for extensive functionality implementation,
leveraging attributes sourced from various other classes. This behaviour results in a notably
intricate and expansive class structure that is difficult to understand and maintain. It
promotes code duplication and complex methods. It affects cohesion, coupling, complexity,
and size of the system. It can be refactored with Extract Class, Extract Subclass, Extract
Interface, and Duplicate Observed Data. Further delving into the method-level code
smells [65], two distinct categories are investigated: Feature Envy and Long Method.
Feature Envy manifests when a method tends to access attributes originating from external
classes while interacting with data derived from these classes. It harms the coupling and
data abstraction properties of code. It can be treated with Extract Method and Move
Method refactoring.

The long method is overly extensive and draws information from other methods. These
methods often seek to centralize a class’s intelligence and encompass many features. It
impacts coupling, cohesion complexity, and the size of the whole system. One can eliminate8

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

the Long Method with the Extract Method, Replace Temp with Query, Introduce Parameter
Object, Preserve Whole Object, Replace Method with Method Object, and Decompose
Conditional refactoring techniques. While individually diverse in their manifestations, these
code smells collectively embody some of the most insidious and prevalent issues encountered
within software code bases [66]. Their systematic detection and subsequent remediation
are pivotal to enhancing software quality, maintainability, and comprehensibility.

3.3. Datasets used

In this research, we have used four datasets curated by Fontana et al. [46] to facilitate the
classification of specific code smells. These datasets have been assembled from 74 compilable
Java systems sourced from the Qualitas Corpus [67]. Collectively, these systems span
a diverse spectrum of application domains and exhibit a wide range of sizes, thereby
endowing our research with a robust and comprehensive foundation. Datasets included an
intra-system setup to prevent machine learning models from succumbing to over-fitting.
List of all heterogeneous systems is included in the Table 1 of supplementary file1. They
developed the Design Features and Metrics for Java (DFMCFJ) tool, underpinned by the
Eclipse JDT Library, which extracts a rich array of object-oriented metrics at multiple
granularities, spanning project, package, class, and method levels.

Each dataset comprises 420 data points, partitioned into 280 negative samples, signifying
the absence of code smell, and 140 positive samples, denoting presence. Datasets are rooted
in a comprehensive assessment of object-oriented metrics, spanning multiple strata of code
design, such as coupling, complexity, cohesion, and size. Details of all metrics used in
datasets are mentioned in the Table 2 of supplementary file. The datasets are judiciously
leveraged by stratified sampling techniques, thus generating balanced and labeled datasets.
It is imperative to note that each entry within these datasets is expressly associated with
either a method or a class. Each row is labeled with the help of Advisor (Code smell
detection tools such as PMD, iPlasma, Fluid Tool, and Antipattern Scanner) and validated
by trained MSc students after thorough discussion.

The metrics encompass a comprehensive view of code design focused on method-level
code smells, extending across project, package, class, and method levels. The method-level
datasets harnessed 82 distinct metrics. Conversely, the datasets dedicated to class-level
code smells have a set of metrics spanning project, package, and class levels, totaling 61
in number. This approach ensures that our research is firmly grounded in a wealth of
empirical data, encompassing a multifaceted view of code characteristics. Thus, it is poised
to yield comprehensive insights into code smell detection. Datasets are made available by
Fontana et al.2.

3.4. Experimentation setup

This research aims to enhance the performance of two prominent machine learning classifiers:
Support Vector Machine (SVM) and k-Nearest Neighbors (k-NN). This enhancement is
pursued by utilizing sixteen distinct meta-heuristic algorithms, expertly calibrated to
fine-tune the hyperparameters governing these classifiers. A comprehensive assessment and
comparative analysis of the efficacy and impact of these meta-heuristic algorithms within

1Details of Datasets – https://drive.google.com/file/d/1Jt3jnRDUKgCvN-ZUM6xwtZTut8GuIFcL/vie
w?usp=sharing

2Datasets – https://drive.google.com/file/d/15aXc_el-nx4tQwU3khunQ-I5ObSA1-Zb/

Article number 240107

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/
https://drive.google.com/file/d/1Jt3jnRDUKgCvN-ZUM6xwtZTut8GuIFcL/view?usp=sharing
https://drive.google.com/file/d/1Jt3jnRDUKgCvN-ZUM6xwtZTut8GuIFcL/view?usp=sharing
https://drive.google.com/file/d/15aXc_el-nx4tQwU3khunQ-I5ObSA1-Zb/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Figure 1. Workflow

machine learning is pursued. This research unfolds within the computational domain of
Python [68], with the scikit-learn [69] framework serving as the foundational infrastructure.
To visually represent the holistic research process, we have encapsulated the workflow of
our study in Figure 1.

The data pre-processing ensures the cleanliness and readiness of datasets before they
are divided into training and test sets [70]. This preliminary data grooming is essential,
as it directly influences the quality and appropriateness of the data employed for model
training. It ameliorates model performance, reduces training duration, mitigates over-fitting
risks, and enhances model interpretability [71]. The following steps are taken to prepare
datasets. The missing data values are replaced with a zero value due to intra-system
settings. A scaling operation establishes an equitable ground for our independent variables.
This normalization strategy serves the dual purpose of bridging any inherent gaps between
features and curbing the potential introduction of bias.

The next step in the data refinement entails identifying and eliminating constant,
quasi-constant, and duplicated features. These categories encapsulate features that either
exhibit an unchanging value across instances (constant features), furnish redundant or
repetitive information (duplicate features), or verge on maintaining nearly identical values
for every instance (quasi-constant features) [72]. The independent variables should not be
correlated and reasonably correlate with the dependent variable. Thus, correlated indepen-
dent variables are precisely identified and eliminated. Pearson’s correlation coefficient [73]
is employed for the same, a well-established statistical metric renowned for its adeptness in
quantifying the linear relationship between two variables.

The dataset is randomly partitioned into two sets for training and testing purposes.
The training dataset is formulated, constituting 80% of the entire dataset, while the test
dataset accounts for the remaining 20%. K-fold cross-validation is employed to assess
a predictive model’s performance and generalization ability. It scrutinizes the efficacy
and proficiency of machine learning models when confronted with previously unseen data.
This method divides the dataset into K parcels of identical size, denoted as “folds”. We
set the value of K to 10, signifying ten equivalent folds [74]. The model is iteratively
trained on k − 1 folds while reserving one fold for validation. This cyclic process iterates
K times, each fold having a turn as the validation set. The final model’s performance is
the aggregation of performance scores garnered across all K iterations. Machine learning
algorithms are implemented, and their hyperparameters are obtained from meta-heuristic
optimization techniques. Employing meta-heuristic algorithms explores and scrutinizes the
parameter space to identify the optimal hyperparameters that give the peak performance
of the machine learning classifier. The working of meta-heuristic algorithms is presented in
Figure 2, which is explained in the following section:10

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Figure 2. Flowchart: Steps involved in working of meta-heuristic algorithms

1. Define the optimization problem. At its core, the optimization task revolves
around minimizing errors in machine-learning classifiers. This entails identifying optimal
hyperparameter values, a prerequisite before the classifier’s training phase, and direct-
ing and shaping its behaviour. The Support Vector Machine (SVM) has two critical
hyperparameters, “C” and “gamma,” for optimization. Simultaneously, the k-Nearest
Neighbors (k-NN) classifier undergoes refinement by selecting optimal “n_neighbors”
and “p” values. In the case of SVM, the Radial Basis Function (RBF) kernel is a natural
choice, endowed with a track record of superior performance.

2. Set parameter values for meta-heuristic algorithm. The parameter values,
such as population size, iteration count, generation specifications, etc., are initialized.
These selected parameter values for meta-heuristic algorithms and the hyperparameter
spectrum of machine learning classifiers are thoughtfully detailed in Table 1. Arriving

Table 1. Parameter values used for meta-heuristics algorithms
and range of hyperparameters for machine learning classifiers

Ref Meta-heuristic algorithms Year Category Parameters

[75] Arithmetic Optimization 2021 Math size = 5, alpha = 5, mu = 0.5
[76] Jellyfish Search Optimization 2021 Swarm jellyfishes = 5, eta = 4, beta = 3,

gamma = 0.1, c_0 = 0.5
[77] Flow Direction Optimization 2021 Physics size = 5, beta = 8
[78] Student Psychology Based Optimiza-

tion
2020 Human size = 5, generations = 50

[79] Pathfinder Optimization 2019 Swarm size = 5, generations = 50
[80] Sine Cosine Optimization 2016 Math solutions = 5, a_linear_component = 2,

r1 = 2
[81] Jaya Optimization 2016 Swarm size = 5, generations = 50
[82] Crow Search Optimization 2016 Swarm size = 5, ap = 0.02, fL = 0.02
[83] Dragonfly Optimization 2016 Swarm size = 3, generations = 50
[84] Krill Herd Optimization 2016 Swarm size = 5, generations = 50,

mutation_rate = 0.1, eta = 1,
c_t = 1, mu = 1, elite = 0

[85] Multi-Verse Optimization 2015 Physics universes = 5
[86] Symbiotic Organisms Search 2014 Bio size = 5, eta = 1, generations = 50,

mutation_rate = 0.1
[87] Flower Pollination Optimization 2012 Evolutionary flowers = 3, gamma = 0.5, lamb = 1.4,

p = 0.8, beta = 1.5
[88] Teaching Learning Based Optimization 2012 Human size = 5, generations = 50
[89] Gravitational Search Optimization 2009 Physics swarm_size = 5
[90] Biogeography-Based Optimization 2008 Bio size = 5, mutation_rate = 0.1,

elite = 0, eta = 1, gens = 50

[91] Support Vector Machine – – C = [10, 1000], gamma = [0.05, 10],
kernel = rbf

[92] k-Nearest Neighbors – – n_neighbors = [3, 50], p = [1, 2]

Article number 240107

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

at these optimal values is underpinned by an exhaustive investigative process involving
comprehensive research, literature survey, and methodical empirical experimentation.
These chosen values are supported by foundational research. Furthermore, the machine
learning algorithm’s hyperparameter range is selected by drawing insights from research,
experimentation, and practical experience.

3. Generate initial population. During this phase, the algorithm initializes the popu-
lation of the candidate solution, a process that can involve randomized generation or
employ alternative strategies [93]. For optimization, a comprehensive ensemble of sixteen
meta-heuristic optimization algorithms is harnessed. These encompass Arithmetic, Jel-
lyfish Search, Flow Direction, Student Psychology Based, Pathfinder, Sine Cosine, Jaya,
Crow Search, Dragonfly, Krill Herd, Multi-Verse, Symbiotic Organisms Search, Flower
Pollination, Teaching Learning Based, Gravitational Search, and Biogeography-Based
Optimization. The objective is determining the optimal hyperparameter values for
classifiers to augment the performance. The behaviour, working principle, and learning
equation of each meta-heuristic algorithm are mentioned in the Appendix B.

4. Fitness evaluation. In this phase, the fitness of each candidate solution undergoes
scrutiny. This undertaking entails training the machine learning classifier, which utilizes
the hyperparameters intrinsic to each candidate solution. Subsequently, their perfor-
mance is appraised primarily on a validation dataset. A designated performance metric,
accuracy or F -measure, is wielded as the discerning fitness function, serving as the
threshold to quantify the efficacy of each solution.

5. Updating Position Vectors. The candidate solutions are updated based on the
information obtained in the fitness evaluation step and the rules of the meta-heuristic
algorithm. This involves adjusting the position of each search agent, updating the
best-performing agent, or selecting new agents to replace under-performing ones.

6. Termination Criteria. The position updation continues until a stopping criterion
is met. This could involve checking if the maximum number of iterations has been
reached, if the best-performing solution has not improved in a certain number of
iterations, or if the solutions have converged to a certain level of accuracy. For this
study, stopping criteria are set to 50 iterations because experimentation found that this
number is sufficient to converge to an appropriate solution. As optimization algorithms
are stochastic, the process is repeated 25 times to achieve the best and average values.

7. Output. If the termination criteria have been met, the algorithm finds the best-
performing hyperparameters found; otherwise, it returns to step 4 and continues the
optimization process.

8. Training. In this step, the machine learning classifier is trained with the best hyperpa-
rameter values derived from the above step. Our study has chosen SVM and k-NN for
optimization, and its working is mentioned in the Appendix A.

9. Evaluation. The performance measures of machine learning classifiers, such as accuracy,
F -measure, and ROC-AUC, are evaluated for analysis and comparison purposes.
By using meta-heuristic algorithms to search for the best hyperparameter values, we

can avoid the time-consuming and error-prone process of manual tuning [94]. The aim
is to minimize the error component, that is, the difference between the predicted and
actual value of the target variable. Accuracy, ROC Area Under the Curve (ROC-AUC),
F -measure, and execution time are recorded for analysis after optimization. Deviation from
the standard and time for one iteration is an average of 25 executions. Further, the final
performance is compared with the scenario when no such optimization technique is used,
the grid search method is used, and classic meta-heuristic algorithms such as Differential12

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Evolution, Particle Swarm Optimization, Genetic Algorithm, and Simulated Annealing
are used. Results are presented in tabular form in the next section with a qualitative and
quantitative analysis.

3.5. Performance measures

Following are the performance measures for classification problems that have been used to
analyze and compare machine learning algorithms:

3.5.1. Accuracy

It is the sum of all correctly predicted code smells divided by the total number of smells
present in the code. It can be calculated by the formula:

Detected Code Smells
Total Code Smells Present

3.5.2. F -measure

F -measure is the weighted harmonic mean of recall and precision.

F -measure = 2 · precision · recall
precision + recall

Precision is the number of smells predicted as smelly and are also actually smelly. It is
calculated as:

(Present Code Smells)
⋂

(Detected Code Smells)
(Detected Code Smells)

Recall is the number of instances that are actually smelly and are also predicted correctly
as smelly. It is calculated as:

(Present Code Smells)
⋂

(Detected Code Smells)
(Present Code Smells)

3.5.3. ROC-AUC

Receiver Operating Characteristics (ROC) is a plot of the False Positive Rate (on the x-axis)
versus the True Positive Rate (on the y-axis) for every possible classification threshold.
The area calculated under the ROC curve is known as ROC-AUC.

ROC-AUC = 1 + TPrate − FPrate
2

It represents the probability that a machine learning model ranks a randomly chosen
positive observation higher than a randomly chosen negative observation, and thus it is
a useful metric even for skewed datasets [95].

Article number 240107

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

4. Results and analysis

Leveraging meta-heuristic algorithms to attain the optimal hyperparameter values for
machine learning algorithms is a prominent strategy for achieving peak performance. In
this study, the Support Vector Machine and k-Nearest Neighbors undergo optimization
by using sixteen meta-heuristic methods. The following evaluation encompasses a compre-
hensive comparison and scrutiny of their respective performance measures, facilitating the
identification of the most effective optimization algorithm. This analysis accounts for four
distinct code smells, categorized into class-level and method-level varieties. The research
findings present results via tables and in-depth analytical modules.

Tables 3 through 6 comprehensively examine the performance measures for the Support
Vector Machine (SVM) in conjunction with various meta-heuristic algorithms across all
four distinct code smells. Tables 8 to 11 meticulously present the performance metrics
of k-Nearest Neighbors (k-NN) when optimized with various meta-heuristic algorithms,
encompassing all four distinct code smells. Notably, all sixteen meta-heuristic algorithms
are executed twenty-five times to derive the average values for all performance measures.
Across these twenty-five iterations, the most exceptional performance measure is recorded
for each code smell. This measure is compared against the original performance metrics
obtained when no optimization technique is applied. This comparative analysis seeks to
elucidate the precise impact that optimization algorithms wield over machine learning
processes.

It is important to note that in cases where the F -measure is not always measurable,
the difference related to this metric is omitted from consideration. Additionally, standard
deviation values are computed, providing insights into the degree of variation within the
data. Furthermore, the time required per iteration is documented, offering a glimpse into
the computational efficiency of these optimization algorithms. As part of this comprehensive
evaluation, the performance of the selected meta-heuristic algorithms is juxtaposed with
that of four widely recognized and fundamental techniques: Genetic Algorithm, Differential
Evolution, Particle Swarm Optimization, and Simulated Annealing. The best performance
measures are denoted in bold to highlight the most outstanding results. Subsequently, this
narrative will delve into a detailed and systematic analysis of how optimization impacts
the performance of classifiers in the context of each specific code smell.

4.1. Support Vector Machine

Table 2 presents an extensive evaluation of the performance metrics, including accuracy,
ROC-AUC, and F -measure, of the Support Vector Machine (SVM). This evaluation
encompasses instances without optimization and when grid search is executed. In grid
search, range of hyperparameter selected is as follows – C: [0.1, 1, 10, 100, 1000], gamma: [1,
0.1, 0.01, 0.001, 0.0001]. Without optimization, the God Class exhibits the highest values,
recording accuracy and ROC-AUC of 73.89% and 84.88%, respectively. When employing
grid search, best metrics are noted as 75% for accuracy and 73.69% for ROC-AUC. Notably,
the Data Class demonstrates some gains in accuracy of 3.61%. With grid search ROC-AUC
value always decreased, even up to 11.19%. It’s noteworthy that grid search fails to improve
results in all cases, even decreased in some, underscoring the necessity for alternative
techniques to achieve optimal outcomes.14

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Table 2. Performance measures of Support Vector Machine (SVM)

Without optimization Grid search

Code smells Accuracy ROC-AUC F -measure Accuracy ROC-AUC F -measure

Data class 67.92 62.78 0 71.53 55.83 21.67
Feature envy 64.17 68.72 18 61.94 67.25 0
God class 73.89 84.88 0 75 73.69 0
Long method 64.17 66.22 18 64.31 61.92 13

4.1.1. Data class

The Data Class detection outcomes are carefully presented in Table 3. Among the
meta-heuristic algorithms, Symbiotic Organisms Search Optimization emerges as the
unequivocal champion, consistently exhibiting the maximum, optimal average, and most
substantial improvements in all three performance metrics. Symbiotic Organisms Search
Optimization attains a peak accuracy of 97.64% and the finest average accuracy of 97.64%
while achieving an impressive increase of 29.72% (∆1) when juxtaposed with non-optimized
results. Furthermore, this algorithm achieves highest ROC-AUC of 100% and a remarkable
99.96% as the best average value, with a minimal deviation of 0.15; these achievements
correspond to a notable surge of 37.22% (∆2) compared to the non-optimized baseline. For
F -measure, both Jellyfish Search and Symbiotic Organisms Search Optimization emerge
as front runners, securing the highest maximum and optimal average value of 96%. Among
the algorithmic contenders, Dragonfly Optimization appears the swiftest, boasting an
execution time of 6.97 seconds per iteration. In contrast, Pathfinder Optimization is the
most time-consuming option for detecting Data Class.

4.1.2. Feature envy

Table 4 encapsulates the findings identifying Feature Envy through SVM and diverse
meta-heuristic algorithms. Crow Search Optimization stands out with its highest recorded
accuracy of 86.11%. In parallel, Dragonfly Optimization attains the highest ROC-AUC
and F -measure, registering remarkable values of 99.33% and 94.29%, respectively. When
considering the average performance metrics, Symbiotic Organisms Search Optimization
emerges as the frontrunner, achieving the best average accuracy of 94.36% and the highest
average F -measure, 92.37%. These achievements come with minimal deviations of 1.34
and 1.18, respectively. Pathfinder Optimization secures the best average ROC-AUC value,
an impressive 98.57%. Furthermore, Dragonfly Optimization is characterized by the most
substantial improvements in accuracy and ROC-AUC values, attaining increments of
32.08% (∆1) and 30.61% (∆2), respectively, compared to the non-optimized baseline. It is
also the swiftest optimization algorithm, with an execution time of merely 7.09 seconds
per iteration. In stark contrast, Pathfinder Optimization ranks as the slowest algorithm
in execution time, with an enduring 242.03 seconds per iteration. The results underscore
Dragonfly Optimization as the most proficient algorithm for Feature Envy detection
when coupled with SVM.

4.1.3. God class

Table 5 furnishes the outcomes pertinent to identifying the God Class, showcasing the
results obtained when utilizing SVM with diverse meta-heuristic algorithms. Sine Cosine

Article number 240107

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Ta
bl

e
3.

Pe
rf

or
m

an
ce

m
ea

su
re

s
of

SV
M

op
tim

iz
ed

w
ith

m
et

a-
he

ur
ist

ic
al

go
rit

hm
s

fo
r

D
at

a
C

la
ss

Pe
rf

or
m

an
ce

m
ea

su
re

s
A

cc
ur

ac
y

R
O

C
-A

U
C

F
-m

ea
su

re
T

im
e

of
on

e

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s
B

es
t

[%
]

Av
g

[%
]

St
d

∆
1

B
es

t
[%

]
Av

g
[%

]
St

d
∆

2
B

es
t

[%
]

Av
g

[%
]

St
d

it
er

at
io

n
[s

]

A
ri

th
m

et
ic

O
pt

im
iz

at
io

n
91

.6
7

75
.8

8
7.

76
23

.7
5

95
.8

3
90

.3
3

2.
84

33
.0

5
83

.9
0

16
.8

7
24

.7
7

15
.3

1
Je

lly
fis

h
Se

ar
ch

O
pt

im
iz

at
io

n
97

.5
0

97
.5

0
0.

00
29

.5
8

98
.6

7
98

.6
7

0.
00

35
.8

9
96

.0
0

96
.0

0
0.

00
36

.6
5

Fl
ow

D
ir

ec
ti

on
O

pt
im

iz
at

io
n

90
.2

8
90

.2
8

0.
00

22
.3

6
94

.0
0

94
.0

0
0.

00
31

.2
2

88
.0

6
88

.0
6

0.
00

20
3.

12

St
ud

en
t

P
sy

ch
ol

og
y

B
as

ed
O

pt
im

iz
at

io
n

96
.3

9
93

.7
2

9.
04

28
.4

7
99

.3
3

97
.9

2
3.

83
36

.5
5

94
.6

7
90

.8
8

18
.5

5
47

.7
0

Pa
th

fin
de

r
O

pt
im

iz
at

io
n

90
.5

6
90

.5
1

0.
22

22
.6

4
97

.8
3

97
.8

3
0.

00
35

.0
5

84
.7

1
84

.7
1

0.
00

21
4.

55
Si

ne
C

os
in

e
O

pt
im

iz
at

io
n

94
.1

7
94

.1
7

0.
00

26
.2

5
98

.8
9

98
.8

9
0.

00
36

.1
1

88
.0

0
88

.0
0

0.
00

32
.0

8
Ja

ya
O

pt
im

iz
at

io
n

90
.2

8
87

.1
0

7.
28

22
.3

6
96

.1
1

94
.7

2
3.

76
33

.3
3

77
.9

0
65

.4
4

28
.5

6
13

.5
4

C
ro

w
Se

ar
ch

O
pt

im
iz

at
io

n
85

.8
3

74
.3

9
7.

09
17

.9
1

96
.8

3
89

.9
6

3.
20

34
.0

5
87

.7
1

34
.6

3
24

.0
8

25
.3

8
D

ra
go

nfl
y

O
pt

im
iz

at
io

n
95

.4
2

93
.9

5
3.

96
27

.5
0

99
.1

7
98

.4
4

0.
59

36
.3

9
95

.1
4

88
.1

8
11

.6
8

6.
97

K
ri

ll
H

er
d

O
pt

im
iz

at
io

n
82

.7
8

80
.9

8
1.

41
14

.8
6

90
.1

7
89

.0
5

0.
99

27
.3

9
78

.8
1

75
.5

3
1.

93
21

.3
0

M
ul

ti
-V

er
se

O
pt

im
iz

at
io

n
91

.5
3

86
.7

3
9.

48
23

.6
1

98
.1

1
98

.1
1

0.
00

35
.3

3
86

.7
1

71
.3

2
30

.6
6

29
.2

1
Sy

m
bi

ot
ic

O
rg

an
is

m
s

Se
ar

ch
O

pt
im

iz
at

io
n

97
.6

4
97

.6
4

0.
00

29
.7

2
10

0.
00

99
.9

6
0.

15
37

.2
2

96
.0

0
96

.0
0

0.
00

85
.1

2

Fl
ow

er
Po

lli
na

ti
on

O
pt

im
iz

at
io

n
95

.4
2

89
.7

0
10

.2
5

27
.5

0
97

.5
0

97
.0

1
0.

97
34

.7
2

91
.3

3
72

.4
0

34
.8

0
8.

14

Te
ac

hi
ng

Le
ar

ni
ng

B
as

ed
O

pt
im

iz
at

io
n

96
.3

9
96

.3
9

0.
00

28
.4

7
99

.1
7

99
.1

7
0.

00
36

.3
9

91
.3

3
91

.3
3

0.
00

51
.0

6

G
ra

vi
ta

ti
on

al
Se

ar
ch

O
pt

im
iz

at
io

n
95

.2
8

76
.2

0
8.

46
27

.3
6

99
.4

4
98

.2
4

1.
63

36
.6

6
91

.2
4

32
.4

4
32

.9
9

20
.0

7

B
io

ge
og

ra
ph

y-
B

as
ed

O
pt

im
iz

at
io

n
94

.0
3

83
.5

7
12

.9
2

26
.1

1
97

.5
6

96
.7

9
1.

76
34

.7
8

91
.1

4
41

.5
8

41
.0

8
37

.8
0

D
iff

er
en

ti
al

E
vo

lu
ti

on
66

.6
7

66
.6

7
0.

00
−

1.
25

67
.6

4
60

.7
2

8.
49

4.
86

0.
00

0.
00

0.
00

14
.0

3
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
63

.0
6

63
.0

6
0.

00
−

4.
86

65
.4

4
60

.0
3

7.
23

2.
66

0.
00

0.
00

0.
00

36
.5

15
4

G
en

et
ic

A
lg

or
it

hm
65

.4
2

59
.7

4
1.

61
−

2.
50

68
.4

2
56

.7
0

5.
16

5.
64

9.
00

5.
76

4.
32

9.
23

01
1

Si
m

ul
at

ed
A

nn
ea

lin
g

66
.6

7
64

.3
7

0.
68

−
1.

25
58

.0
0

54
.3

6
1.

53
−

4.
78

10
.0

0
0.

80
2.

71
13

.1
4

16

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Ta
bl

e
4.

Pe
rf

or
m

an
ce

m
ea

su
re

s
of

SV
M

op
tim

iz
ed

w
ith

m
et

a-
he

ur
ist

ic
al

go
rit

hm
s

fo
r

Fe
at

ur
e

En
vy

Pe
rf

or
m

an
ce

m
ea

su
re

s
A

cc
ur

ac
y

R
O

C
-A

U
C

F
-m

ea
su

re
T

im
e

of
on

e

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s
B

es
t

[%
]

Av
g

[%
]

St
d

∆
1

B
es

t
[%

]
Av

g
[%

]
St

d
∆

2
B

es
t

[%
]

Av
g

[%
]

St
d

it
er

at
io

n
[s

]

A
ri

th
m

et
ic

O
pt

im
iz

at
io

n
79

.5
8

78
.7

4
0.

96
15

.4
1

82
.8

6
71

.1
2

4.
25

14
.1

4
13

.3
3

11
.7

3
4.

33
14

.7
7

Je
lly

fis
h

Se
ar

ch
O

pt
im

iz
at

io
n

85
.6

9
83

.8
8

6.
14

21
.5

2
93

.0
6

93
.0

6
0.

00
24

.3
4

82
.0

5
82

.0
5

0.
00

39
.6

7

Fl
ow

D
ir

ec
ti

on
O

pt
im

iz
at

io
n

85
.8

3
84

.9
0

0.
41

21
.6

6
97

.6
7

97
.6

7
0.

00
28

.9
5

67
.0

0
65

.8
6

0.
57

22
8.

73

St
ud

en
t

P
sy

ch
ol

og
y

B
as

ed
O

pt
im

iz
at

io
n

84
.5

8
80

.3
1

5.
24

20
.4

1
92

.5
0

91
.6

9
2.

12
23

.7
8

51
.0

0
46

.9
2

13
.8

4
51

.6
0

Pa
th

fin
de

r
O

pt
im

iz
at

io
n

88
.1

9
88

.1
9

0.
00

24
.0

2
98

.5
7

98
.5

7
0.

00
29

.8
5

58
.3

3
58

.3
3

0.
00

24
2.

03
Si

ne
C

os
in

e
O

pt
im

iz
at

io
n

84
.4

4
84

.4
4

0.
00

20
.2

7
98

.3
3

98
.3

3
0.

00
29

.6
1

55
.6

7
55

.6
7

0.
00

16
.1

0
Ja

ya
O

pt
im

iz
at

io
n

84
.4

4
79

.3
3

6.
26

20
.2

7
96

.9
4

96
.9

4
0.

00
28

.2
2

61
.3

3
49

.0
7

24
.5

3
14

.4
9

C
ro

w
Se

ar
ch

O
pt

im
iz

at
io

n
86

.1
1

58
.2

0
8.

91
21

.9
4

92
.5

0
82

.4
3

4.
76

23
.7

8
81

.1
3

13
.1

8
27

.9
5

19
.2

1
D

ra
go

nfl
y

O
pt

im
iz

at
io

n
96

.2
5

88
.2

7
10

.8
5

32
.0

8
99

.3
3

97
.0

0
1.

96
30

.6
1

94
.2

9
82

.0
0

29
.1

0
7.

09
K

ri
ll

H
er

d
O

pt
im

iz
at

io
n

65
.4

2
65

.4
2

0.
00

1.
25

57
.8

3
57

.6
9

0.
34

−
10

.8
9

0.
00

0.
00

0.
00

29
.3

6
M

ul
ti

-V
er

se
O

pt
im

iz
at

io
n

91
.6

7
86

.4
2

10
.5

0
27

.5
0

97
.0

0
97

.0
0

0.
00

28
.2

8
88

.9
5

46
.2

6
44

.4
4

14
.3

1
Sy

m
bi

ot
ic

O
rg

an
is

m
s

Se
ar

ch
O

pt
im

iz
at

io
n

95
.5

6
94

.3
6

1.
34

31
.3

9
99

.0
0

98
.2

5
0.

75
30

.2
8

93
.8

1
92

.3
7

1.
18

88
.5

4

Fl
ow

er
Po

lli
na

ti
on

O
pt

im
iz

at
io

n
77

.2
2

74
.9

7
3.

61
13

.0
5

93
.6

1
91

.2
6

7.
35

24
.8

9
41

.3
3

24
.8

0
20

.2
5

8.
98

Te
ac

hi
ng

Le
ar

ni
ng

B
as

ed
O

pt
im

iz
at

io
n

84
.7

2
83

.5
7

0.
34

20
.5

5
97

.5
6

97
.5

6
0.

00
28

.8
4

61
.3

3
59

.4
1

0.
39

54
.3

2

G
ra

vi
ta

ti
on

al
Se

ar
ch

O
pt

im
iz

at
io

n
79

.0
3

65
.1

6
3.

43
14

.8
6

92
.5

6
89

.5
2

4.
94

23
.8

4
64

.5
7

2.
58

12
.6

5
16

.4
0

B
io

ge
og

ra
ph

y-
B

as
ed

O
pt

im
iz

at
io

n
84

.3
1

73
.3

6
6.

32
20

.1
4

95
.5

0
91

.3
2

6.
78

26
.7

8
60

.6
7

26
.1

1
28

.7
3

27
.8

3

D
iff

er
en

ti
al

E
vo

lu
ti

on
61

.9
4

61
.9

4
0.

00
−

2.
23

67
.0

0
65

.8
0

2.
75

−
1.

72
0.

00
0.

00
0.

00
16

.2
6

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

71
.6

7
71

.6
7

0.
00

7.
50

61
.6

7
59

.5
3

3.
48

−
7.

05
0.

00
0.

00
0.

00
51

.1
5

G
en

et
ic

A
lg

or
it

hm
72

.7
8

72
.7

8
0.

00
8.

61
71

.7
3

61
.3

9
5.

22
3.

01
0.

00
0.

00
0.

00
13

.0
5

Si
m

ul
at

ed
A

nn
ea

lin
g

63
.0

6
63

.0
6

0.
00

−
1.

11
62

.1
7

60
.3

3
1.

04
−

6.
55

0.
00

0.
00

0.
00

17
.1

7

Article number 240107

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Ta
bl

e
5.

Pe
rf

or
m

an
ce

m
ea

su
re

s
of

SV
M

op
tim

iz
ed

w
ith

m
et

a-
he

ur
ist

ic
al

go
rit

hm
s

fo
r

G
od

C
la

ss

Pe
rf

or
m

an
ce

m
ea

su
re

s
A

cc
ur

ac
y

R
O

C
-A

U
C

F
-m

ea
su

re
T

im
e

of
on

e

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s
B

es
t

[%
]

Av
g

[%
]

St
d

∆
1

B
es

t
[%

]
Av

g
[%

]
St

d
∆

2
B

es
t

[%
]

Av
g

[%
]

St
d

it
er

at
io

n
[s

]

A
ri

th
m

et
ic

O
pt

im
iz

at
io

n
71

.6
7

71
.6

7
0.

00
−

2.
22

97
.7

8
91

.5
9

5.
23

12
.9

0
33

.0
0

1.
79

6.
77

16
.5

6
Je

lly
fis

h
Se

ar
ch

O
pt

im
iz

at
io

n
93

.8
9

90
.3

2
9.

66
20

.0
0

95
.1

1
94

.9
5

0.
54

10
.2

3
92

.2
9

92
.2

9
0.

00
33

.5
3

Fl
ow

D
ir

ec
ti

on
O

pt
im

iz
at

io
n

95
.5

6
95

.5
6

0.
00

21
.6

7
98

.5
7

98
.5

7
0.

00
13

.6
9

91
.3

3
91

.3
3

0.
00

23
7.

48

St
ud

en
t

P
sy

ch
ol

og
y

B
as

ed
O

pt
im

iz
at

io
n

94
.0

3
91

.1
4

7.
66

20
.1

4
10

0.
00

10
0.

00
0.

00
15

.1
2

89
.2

4
71

.3
9

35
.7

0
29

.8
6

Pa
th

fin
de

r
O

pt
im

iz
at

io
n

90
.4

2
90

.4
2

0.
00

16
.5

3
97

.9
4

97
.9

4
0.

00
13

.0
6

85
.9

5
85

.8
7

0.
11

22
6.

15
Si

ne
C

os
in

e
O

pt
im

iz
at

io
n

98
.7

5
98

.7
5

0.
00

24
.8

6
10

0.
00

10
0.

00
0.

00
15

.1
2

98
.5

7
98

.5
7

0.
00

15
.4

1
Ja

ya
O

pt
im

iz
at

io
n

93
.7

5
84

.9
0

11
.8

0
19

.8
6

10
0.

00
10

0.
00

0.
00

15
.1

2
91

.2
4

58
.3

9
43

.7
9

13
.9

8
C

ro
w

Se
ar

ch
O

pt
im

iz
at

io
n

78
.7

5
70

.9
4

1.
76

4.
86

95
.5

6
81

.7
8

5.
45

10
.6

8
57

.0
0

6.
95

15
.1

4
20

.0
7

D
ra

go
nfl

y
O

pt
im

iz
at

io
n

95
.0

0
82

.3
4

12
.1

4
21

.1
1

10
0.

00
94

.0
2

2.
84

15
.1

2
92

.2
9

76
.7

1
28

.4
4

9.
17

K
ri

ll
H

er
d

O
pt

im
iz

at
io

n
59

.7
2

59
.7

2
0.

00
−

14
.1

7
56

.0
0

56
.0

0
0.

00
−

28
.8

8
0.

00
0.

00
0.

00
24

.7
5

M
ul

ti
-V

er
se

O
pt

im
iz

at
io

n
95

.1
4

80
.6

7
12

.5
2

21
.2

5
95

.4
4

93
.9

6
1.

21
10

.5
6

93
.2

4
50

.1
3

44
.5

0
27

.4
9

Sy
m

bi
ot

ic
O

rg
an

is
m

s
Se

ar
ch

O
pt

im
iz

at
io

n
97

.7
8

96
.9

4
0.

57
23

.8
9

10
0.

00
99

.9
8

0.
10

15
.1

2
97

.1
4

96
.2

3
0.

69
10

6.
65

Fl
ow

er
Po

lli
na

ti
on

O
pt

im
iz

at
io

n
94

.4
4

83
.5

9
14

.4
8

20
.5

5
99

.4
4

97
.0

7
5.

23
14

.5
6

93
.0

0
59

.5
2

44
.6

4
10

.0
1

Te
ac

hi
ng

Le
ar

ni
ng

B
as

ed
O

pt
im

iz
at

io
n

97
.7

8
96

.0
8

6.
53

23
.8

9
99

.4
4

99
.1

3
0.

50
14

.5
6

96
.0

0
83

.5
7

30
.8

7
73

.3
7

G
ra

vi
ta

ti
on

al
Se

ar
ch

O
pt

im
iz

at
io

n
92

.6
4

63
.3

3
8.

30
18

.7
5

99
.0

0
97

.9
7

2.
31

14
.1

2
0.

00
0.

00
0.

00
25

.5
8

B
io

ge
og

ra
ph

y-
B

as
ed

O
pt

im
iz

at
io

n
93

.0
6

67
.6

3
7.

50
19

.1
7

97
.5

6
95

.5
0

3.
40

12
.6

8
90

.8
6

21
.6

5
38

.5
3

30
.6

2

D
iff

er
en

ti
al

E
vo

lu
ti

on
67

.9
2

67
.9

2
0.

00
−

5.
97

65
.8

3
64

.4
4

3.
78

−
19

.0
5

0.
00

0.
00

0.
00

16
.4

1
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
69

.1
7

69
.1

7
0.

00
−

4.
72

51
.6

7
51

.0
0

0.
82

−
33

.2
1

0.
00

0.
00

0.
00

35
.0

2

G
en

et
ic

A
lg

or
it

hm
65

.4
2

65
.4

2
0.

00
−

8.
47

80
.7

5
64

.1
9

9.
19

−
4.

13
0.

00
0.

00
0.

00
14

.9
4

Si
m

ul
at

ed
A

nn
ea

lin
g

60
.8

3
60

.8
3

0.
00

−
13

.0
6

66
.3

3
60

.0
5

3.
80

−
18

.5
5

0.
00

0.
00

0.
00

20
.1

4

18

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Optimization is the most proficient performer, consistently achieving the highest values
across all three performance metrics. Sine Cosine Optimization attains a remarkable
maximum accuracy of 98.75%, with the best average accuracy standing at 98.75%, as well.
This impressive achievement represents a substantial improvement of 24.86% (∆1) compared
to the non-optimized baseline. Furthermore, the algorithm achieves a maximum ROC-AUC
of 100%, with the best average ROC-AUC reaching 100%. Notably, Student Psychology
Based and Jaya Optimization also attain maximum and best average ROC-AUC values of
100%. Symbiotic Organisms Search Optimization also secures the best ROC-AUC value of
100%, effectively tying with its counterparts. Highest gain in ROC-AUC value observed is
15.12%. Regarding the F -measure, the maximum and best average value achieved is 98.57%.
Notably, Krill Herd Optimization consistently ranks as the poorest-performing algorithm
across all cases, exhibiting subpar results. Regarding computational efficiency, Dragonfly
Optimization is the fastest algorithm in this context, with an execution time of 9.17 seconds
per iteration. The results highlight Sine Cosine Optimization as the preeminent algorithm
for detecting the God Class when combined with SVM.

4.1.4. Long method

Table 6 presents the findings of detecting Long Method using the Support Vector Ma-
chine (SVM) in conjunction with various meta-heuristic algorithms. Among these algo-
rithms, Symbiotic Organisms Search Optimization stands out as the top-performing
meta-heuristic, consistently exhibiting the highest values across all three performance met-
rics. Symbiotic Organisms Search Optimization attains an impressive maximum accuracy
of 96.39%, a maximum ROC-AUC of 100%, and a maximum F -measure of 94.57%. It’s
also worth noting that Flower Pollination Optimization achieves a perfect ROC-AUC score
of 100%. When considering the best average performance, Symbiotic Organisms Search
Optimization secures the highest average accuracy of 95.34%, with a deviation of 0.75.
Additionally, it achieves a best average ROC-AUC of 99.36% with a deviation of 0.40 and
a best average F -measure of 93.50% with a deviation of 0.53. These findings underscore
the algorithm’s consistent and robust performance. Regarding improvements over the
non-optimized baseline, Symbiotic Organisms Search Optimization achieves the maximum
hike in accuracy and ROC-AUC, with increases of 32.22% (∆1) and 33.78% (∆2), respec-
tively. Conversely, Krill Herd Optimization consistently ranks as the poorest-performing
algorithm across all scenarios. Regarding computational efficiency, Dragonfly Optimization
is the fastest technique, with an execution time of 8.17 seconds per iteration. To summarize,
these results emphasize the superiority of Symbiotic Organisms Search Optimization for
detecting Long Method when paired with SVM.

4.2. k-Nearest neighbors

Table 7 comprehensively presents the performance metrics encompassing the best and
average values for accuracy, ROC-AUC, and F -measure concerning k-Nearest Neighbors
(k-NN). The results are categorized into two scenarios: one when no optimization is applied
and another when grid search is employed. In grid search, the hyperparameter spectrum is
as follows – k: [ranges from 1 to 60], p: [1, 1.2, 1.5, 2]. In the absence of optimization, it is
evident that the God Class stands out with the best accuracy of 71.81%, ROC-AUC of
68.25% and an F -measure of 49.33%. Upon the introduction of the grid search, the Long
Method emerged as the leader in accuracy, achieving a notable 77.78%. Simultaneously, the

Article number 240107

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Ta
bl

e
6.

Pe
rf

or
m

an
ce

m
ea

su
re

s
of

SV
M

op
tim

iz
ed

w
ith

m
et

a-
he

ur
ist

ic
al

go
rit

hm
s

fo
r

Lo
ng

M
et

ho
d

Pe
rf

or
m

an
ce

m
ea

su
re

s
A

cc
ur

ac
y

R
O

C
-A

U
C

F
-m

ea
su

re
T

im
e

of
on

e

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s
B

es
t

[%
]

Av
g

[%
]

St
d

∆
1

B
es

t
[%

]
Av

g
[%

]
St

d
∆

2
B

es
t

[%
]

Av
g

[%
]

St
d

it
er

at
io

n
[s

]

A
ri

th
m

et
ic

O
pt

im
iz

at
io

n
89

.1
7

72
.6

7
6.

09
25

.0
0

98
.6

1
86

.3
2

7.
11

32
.3

9
64

.3
3

2.
77

12
.6

0
18

.6
1

Je
lly

fis
h

Se
ar

ch
O

pt
im

iz
at

io
n

80
.8

3
80

.4
2

2.
04

16
.6

6
92

.5
0

92
.5

0
0.

00
26

.2
8

50
.0

0
46

.0
0

13
.5

6
34

.1
2

Fl
ow

D
ir

ec
ti

on
O

pt
im

iz
at

io
n

91
.9

4
90

.9
2

0.
30

27
.7

7
97

.2
2

97
.2

2
0.

00
31

.0
0

88
.3

8
86

.7
0

0.
62

22
8.

81

St
ud

en
t

P
sy

ch
ol

og
y

B
as

ed
O

pt
im

iz
at

io
n

87
.6

4
85

.2
7

6.
41

23
.4

7
96

.0
0

95
.4

4
1.

12
29

.7
8

76
.3

8
54

.9
9

34
.3

0
31

.7
0

Pa
th

fin
de

r
O

pt
im

iz
at

io
n

87
.2

2
87

.2
2

0.
00

23
.0

5
97

.0
0

97
.0

0
0.

00
30

.7
8

84
.8

8
84

.8
8

0.
00

22
9.

40
Si

ne
C

os
in

e
O

pt
im

iz
at

io
n

87
.0

8
87

.0
8

0.
00

22
.9

1
97

.5
0

97
.5

0
0.

00
31

.2
8

65
.0

0
65

.0
0

0.
00

16
.1

9
Ja

ya
O

pt
im

iz
at

io
n

91
.5

3
79

.5
9

12
.4

2
27

.3
6

98
.1

1
98

.1
1

0.
00

31
.8

9
88

.4
8

60
.1

6
41

.2
7

16
.0

9
C

ro
w

Se
ar

ch
O

pt
im

iz
at

io
n

69
.1

7
69

.1
7

0.
00

5.
00

95
.5

0
86

.6
1

9.
58

29
.2

8
18

.3
3

0.
93

3.
68

28
.3

0
D

ra
go

nfl
y

O
pt

im
iz

at
io

n
94

.0
3

82
.5

1
10

.4
5

29
.8

6
97

.3
3

92
.8

7
2.

64
31

.1
1

91
.1

4
76

.5
7

22
.6

4
8.

17
K

ri
ll

H
er

d
O

pt
im

iz
at

io
n

66
.6

7
66

.6
7

0.
00

2.
50

72
.8

3
72

.8
3

0.
00

6.
61

0.
00

0.
00

0.
00

22
.7

2
M

ul
ti

-V
er

se
O

pt
im

iz
at

io
n

91
.3

9
68

.7
2

17
.0

0
27

.2
2

95
.1

3
95

.1
3

0.
00

28
.9

1
91

.9
4

36
.7

8
45

.0
4

15
.2

2
Sy

m
bi

ot
ic

O
rg

an
is

m
s

Se
ar

ch
O

pt
im

iz
at

io
n

96
.3

9
95

.3
4

0.
75

32
.2

2
10

0.
00

99
.3

6
0.

40
33

.7
8

94
.5

7
93

.5
0

0.
53

82
.0

0

Fl
ow

er
Po

lli
na

ti
on

O
pt

im
iz

at
io

n
90

.4
2

77
.4

2
12

.4
9

26
.2

5
10

0.
00

96
.9

0
9.

68
33

.7
8

87
.4

3
66

.4
5

37
.3

4
9.

72

Te
ac

hi
ng

Le
ar

ni
ng

B
as

ed
O

pt
im

iz
at

io
n

94
.0

3
94

.0
3

0.
00

29
.8

6
99

.3
3

98
.8

9
0.

16
33

.1
1

92
.1

3
77

.3
9

33
.7

7
75

.3
8

G
ra

vi
ta

ti
on

al
Se

ar
ch

O
pt

im
iz

at
io

n
71

.6
7

71
.6

7
0.

00
7.

50
97

.2
2

95
.1

1
4.

45
31

.0
0

36
.6

7
1.

47
7.

19
19

.5
1

B
io

ge
og

ra
ph

y-
B

as
ed

O
pt

im
iz

at
io

n
91

.8
1

67
.8

7
11

.8
6

27
.6

4
99

.3
3

97
.8

1
2.

38
33

.1
1

90
.1

0
21

.5
7

38
.3

8
32

.0
1

D
iff

er
en

ti
al

E
vo

lu
ti

on
64

.1
7

64
.1

7
0.

00
0.

00
66

.0
0

63
.5

1
5.

55
−

0.
22

0.
00

0.
00

0.
00

10
.3

6
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
67

.9
2

67
.9

2
0.

00
3.

75
64

.3
3

62
.2

9
3.

10
−

1.
89

0.
00

0.
00

0.
00

43
.8

2

G
en

et
ic

A
lg

or
it

hm
69

.1
7

69
.1

7
0.

00
5.

00
80

.1
1

62
.1

6
8.

20
13

.8
9

0.
00

0.
00

0.
00

16
.8

6
Si

m
ul

at
ed

A
nn

ea
lin

g
70

.4
2

70
.4

2
0.

00
6.

25
63

.5
0

60
.4

7
0.

91
−

2.
72

0.
00

0.
00

0.
00

20
.2

0

20

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Table 7. Performance measures of k-Nearest Neighbors (k-NN)

Without optimization Grid search

Code Smells Accuracy ROC-AUC F -measure Accuracy ROC-AUC F -measure

Data class 56.11 59.17 29.86 66.81 59.03 21.67
Feature envy 63.33 63.78 43.24 63.89 61.83 50.98
God class 71.81 68.25 49.33 74.17 67.33 51.86
Long method 68.06 65.62 15.67 77.78 65 42

God Class maintains prominence with the best ROC-AUC and F -measure values, amounting
to 67.33% and 51.86%, respectively. While examining the magnitude of improvements by
grid search, it becomes apparent that the uplift in performance measures is not particularly
substantial. The most noteworthy enhancements include a 10.69% increase in accuracy
for Data Class and 9.72% for Long Method. ROC-AUC always decreased if grid search is
applied. A significant boost of 26.33% in F -measure for the Long Method is observed, but
F -measure degraded by 8.19% for Data Class. In summary, the findings suggest that grid
search, while functional, may not induce significant improvements in performance measures
across all scenarios. Results indicate that there is a need for alternative strategy to boost
performance.

4.2.1. Data class

The outcomes related to detecting the Data Class are thoughtfully presented in Table 8.
Among the array of employed meta-heuristic algorithms, it’s evident that Flower Pollina-
tion Optimization emerges as the most effective. It remarkably attains the maximum
accuracy score of 100%, thereby exhibiting a substantial increase of 43.89% (∆1) compared
to scenarios without optimization. Regarding average accuracy, Pathfinder seizes the top
position, achieving a commendable accuracy of 97.62% with a negligible deviation of
0.05. Furthermore, for ROC-AUC values, Pathfinder, Sine Cosine, Jaya, Crow Search,
Teaching Learning Based, Multi-Verse, and Flower Pollination Optimization jointly secure
the highest value at 100%, reflecting an impressive hike of 40.83% (∆2). Pathfinder and
Sine Cosine Optimization maintain this elevated performance level by achieving the best
average ROC-AUC of 100%, with no deviations observed. Regarding the F -measure metric,
Flower Pollination Optimization stands out, boasting a maximum value of 100% and a best
average performance score of 96.45%. Finally, from an efficiency perspective, Dragonfly
Optimization demonstrates its prowess by completing each iteration in a mere 4.90 seconds,
rendering it the fastest among the considered optimization algorithms.

4.2.2. Feature envy

Table 9 presents the comprehensive results for detecting the Feature Envy with optimized
k-NN. Remarkably, Symbiotic Organisms Search Optimization emerges as a standout
performer, achieving the maximum accuracy and F -measure scores of 96.39% and 92.67%,
respectively. Additionally, it boasts the best average accuracy and F -measure, securing
impressive values of 96.30% and 92.32%. Notably, Symbiotic Organisms Search Optimization
demonstrates a significant increase in accuracy, registering a top hike of 33.06% (∆1).
Conversely, Multi-Verse Optimization excels in the ROC-AUC metric, showcasing the
highest promenade of 35% (∆2). The ROC-AUC metric further reveals that Multi-Verse
and Jaya Optimization jointly achieve the maximum and best average ROC-AUC scores at

Article number 240107

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Ta
bl

e
8.

Pe
rf

or
m

an
ce

m
ea

su
re

s
of

k
-N

N
op

tim
iz

ed
w

ith
m

et
a-

he
ur

ist
ic

al
go

rit
hm

s
fo

r
D

at
a

C
la

ss

Pe
rf

or
m

an
ce

m
ea

su
re

s
A

cc
ur

ac
y

R
O

C
-A

U
C

F
-m

ea
su

re
T

im
e

of
on

e

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s
B

es
t

[%
]

Av
g

[%
]

St
d

∆
1

B
es

t
[%

]
Av

g
[%

]
St

d
∆

2
B

es
t

[%
]

Av
g

[%
]

St
d

it
er

at
io

n
[s

]

A
ri

th
m

et
ic

O
pt

im
iz

at
io

n
95

.2
8

92
.4

7
2.

16
39

.1
7

99
.3

3
98

.8
7

0.
27

40
.1

6
94

.2
9

90
.5

6
2.

79
40

.5
9

Je
lly

fis
h

Se
ar

ch
O

pt
im

iz
at

io
n

92
.9

2
92

.4
7

0.
60

36
.8

1
98

.5
7

98
.3

4
0.

22
39

.4
0

86
.0

0
85

.8
4

0.
37

24
.4

0

Fl
ow

D
ir

ec
ti

on
O

pt
im

iz
at

io
n

96
.2

5
96

.2
0

0.
24

40
.1

4
99

.5
8

99
.3

7
0.

21
40

.4
1

95
.1

4
95

.1
2

0.
11

26
6.

47

St
ud

en
t

P
sy

ch
ol

og
y

B
as

ed
O

pt
im

iz
at

io
n

96
.5

3
95

.4
3

0.
78

40
.4

2
99

.1
7

98
.6

3
0.

43
40

.0
0

94
.5

7
92

.3
5

2.
52

47
.7

7

Pa
th

fin
de

r
O

pt
im

iz
at

io
n

97
.6

4
97

.6
2

0.
05

41
.5

3
10

0.
00

10
0.

00
0.

00
40

.8
3

95
.7

1
95

.2
8

0.
35

18
6.

47
Si

ne
C

os
in

e
O

pt
im

iz
at

io
n

95
.4

2
94

.8
8

0.
64

39
.3

1
10

0.
00

10
0.

00
0.

00
40

.8
3

94
.2

9
93

.7
7

0.
54

14
.7

2
Ja

ya
O

pt
im

iz
at

io
n

94
.3

1
93

.9
8

0.
44

38
.2

0
10

0.
00

99
.7

8
0.

21
40

.8
3

91
.2

4
90

.8
2

0.
63

7.
06

C
ro

w
Se

ar
ch

O
pt

im
iz

at
io

n
96

.5
3

95
.7

3
1.

09
40

.4
2

10
0.

00
98

.6
2

0.
69

40
.8

3
96

.5
7

92
.2

1
2.

26
24

.0
5

D
ra

go
nfl

y
O

pt
im

iz
at

io
n

96
.2

5
93

.6
7

1.
57

40
.1

4
99

.5
8

98
.7

2
1.

02
40

.4
1

92
.6

7
89

.1
6

2.
70

4.
90

K
ri

ll
H

er
d

O
pt

im
iz

at
io

n
67

.9
2

67
.9

2
0.

00
11

.8
1

55
.7

2
55

.7
2

0.
00

−
3.

45
0.

00
0.

00
0.

00
38

.2
3

M
ul

ti
-V

er
se

O
pt

im
iz

at
io

n
94

.1
7

93
.1

8
1.

23
38

.0
6

10
0.

00
99

.7
8

0.
18

40
.8

3
93

.2
1

92
.3

5
0.

90
13

.7
1

Sy
m

bi
ot

ic
O

rg
an

is
m

s
Se

ar
ch

O
pt

im
iz

at
io

n
96

.2
5

95
.0

9
1.

57
40

.1
4

97
.9

2
97

.6
4

0.
49

38
.7

5
93

.0
0

91
.4

5
1.

68
61

.7
1

Fl
ow

er
Po

lli
na

ti
on

O
pt

im
iz

at
io

n
10

0.
00

96
.6

8
6.

00
43

.8
9

10
0.

00
99

.9
7

0.
10

40
.8

3
10

0.
00

96
.4

5
4.

35
8.

95

Te
ac

hi
ng

Le
ar

ni
ng

B
as

ed
O

pt
im

iz
at

io
n

97
.6

4
95

.0
1

1.
33

41
.5

3
10

0.
00

99
.9

8
0.

08
40

.8
3

96
.5

7
91

.9
8

2.
08

46
.4

9

G
ra

vi
ta

ti
on

al
Se

ar
ch

O
pt

im
iz

at
io

n
91

.5
3

89
.6

9
2.

41
35

.4
2

98
.8

3
98

.3
1

0.
33

39
.6

6
91

.6
3

88
.9

9
1.

91
13

.0
0

B
io

ge
og

ra
ph

y-
B

as
ed

O
pt

im
iz

at
io

n
95

.1
4

94
.3

7
0.

83
39

.0
3

99
.4

4
97

.8
4

0.
67

40
.2

7
91

.6
7

89
.7

4
2.

06
27

.1
2

D
iff

er
en

ti
al

E
vo

lu
ti

on
77

.5
0

70
.9

3
5.

07
21

.3
9

84
.5

0
77

.0
3

5.
22

25
.3

3
66

.1
9

61
.2

2
5.

42
8.

33
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
83

.1
9

80
.1

4
3.

69
27

.0
8

87
.3

6
86

.5
5

0.
94

28
.1

9
81

.3
5

77
.2

5
4.

44
7.

31

G
en

et
ic

A
lg

or
it

hm
79

.8
6

75
.5

3
2.

81
23

.7
5

86
.3

9
81

.4
9

2.
67

27
.2

2
69

.1
9

57
.3

4
4.

50
26

.4
5

Si
m

ul
at

ed
A

nn
ea

lin
g

78
.4

7
75

.7
3

2.
22

22
.3

6
81

.9
4

80
.5

9
0.

83
22

.7
7

69
.8

1
59

.7
1

15
.3

7
17

.4
1

22

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Ta
bl

e
9.

Pe
rf

or
m

an
ce

m
ea

su
re

s
of

k
-N

N
op

tim
iz

ed
w

ith
m

et
a-

he
ur

ist
ic

al
go

rit
hm

s
fo

r
Fe

at
ur

e
En

vy

Pe
rf

or
m

an
ce

m
ea

su
re

s
A

cc
ur

ac
y

R
O

C
-A

U
C

F
-m

ea
su

re
T

im
e

of
on

e

O
pt

im
iz

at
io

n
al

go
ri

th
m

s
B

es
t

[%
]

Av
g

[%
]

St
d

∆
1

B
es

t
[%

]
Av

g
[%

]
St

d
∆

2
B

es
t

[%
]

Av
g

[%
]

St
d

it
er

at
io

n
[s

]

A
ri

th
m

et
ic

O
pt

im
iz

at
io

n
91

.8
1

86
.6

7
3.

51
28

.4
8

96
.1

7
93

.7
2

1.
14

32
.3

9
80

.6
7

74
.2

6
9.

51
18

.8
1

Je
lly

fis
h

Se
ar

ch
O

pt
im

iz
at

io
n

88
.1

9
88

.0
5

0.
51

24
.8

6
98

.3
3

98
.0

7
0.

23
34

.5
5

75
.6

7
73

.9
6

73
.9

6
32

.0
4

Fl
ow

D
ir

ec
ti

on
O

pt
im

iz
at

io
n

87
.2

2
86

.8
0

0.
99

23
.8

9
95

.5
6

95
.3

9
0.

20
31

.7
8

75
.2

4
74

.0
7

1.
55

28
5.

53

St
ud

en
t

P
sy

ch
ol

og
y

B
as

ed
O

pt
im

iz
at

io
n

88
.3

3
83

.9
9

3.
63

25
.0

0
95

.8
3

93
.6

2
1.

26
32

.0
5

70
.6

7
56

.6
3

8.
68

49
.7

4

Pa
th

fin
de

r
O

pt
im

iz
at

io
n

94
.1

7
94

.1
3

0.
19

30
.8

4
98

.4
7

98
.0

3
0.

22
34

.6
9

88
.1

7
88

.1
7

0.
00

19
3.

51
Si

ne
C

os
in

e
O

pt
im

iz
at

io
n

90
.6

9
90

.6
7

0.
05

27
.3

6
96

.0
0

95
.4

9
0.

27
32

.2
2

79
.5

7
79

.4
0

0.
44

10
.5

3
Ja

ya
O

pt
im

iz
at

io
n

90
.6

9
90

.5
0

0.
45

27
.3

6
98

.7
5

98
.1

1
0.

30
34

.9
7

79
.0

0
78

.5
9

0.
86

5.
91

C
ro

w
Se

ar
ch

O
pt

im
iz

at
io

n
83

.3
3

80
.0

6
3.

45
20

.0
0

94
.6

1
93

.2
4

0.
74

30
.8

3
63

.0
0

47
.1

3
14

.0
7

25
.1

1
D

ra
go

nfl
y

O
pt

im
iz

at
io

n
85

.8
3

82
.1

6
2.

89
22

.5
0

96
.6

7
95

.1
9

0.
98

32
.8

9
67

.0
0

54
.6

7
11

.8
3

4.
27

K
ri

ll
H

er
d

O
pt

im
iz

at
io

n
74

.8
6

70
.5

7
2.

03
11

.5
3

78
.6

7
74

.7
2

1.
68

14
.8

9
48

.7
2

39
.5

2
6.

13
9.

61
M

ul
ti

-V
er

se
O

pt
im

iz
at

io
n

89
.3

1
88

.6
9

1.
01

25
.9

8
98

.7
8

97
.4

2
0.

55
35

.0
0

80
.0

0
78

.5
0

2.
52

11
.4

5
Sy

m
bi

ot
ic

O
rg

an
is

m
s

Se
ar

ch
O

pt
im

iz
at

io
n

96
.3

9
96

.3
0

0.
30

33
.0

6
98

.1
9

97
.5

2
1.

50
34

.4
1

92
.6

7
92

.3
2

0.
61

76
.4

7

Fl
ow

er
Po

lli
na

ti
on

O
pt

im
iz

at
io

n
94

.0
3

91
.5

7
1.

65
30

.7
0

98
.5

0
97

.3
3

1.
04

34
.7

2
89

.8
1

74
.4

4
21

.3
0

9.
05

Te
ac

hi
ng

Le
ar

ni
ng

B
as

ed
O

pt
im

iz
at

io
n

92
.9

2
91

.0
0

1.
90

29
.5

9
97

.5
8

96
.7

7
0.

77
33

.8
0

90
.3

8
87

.7
6

2.
34

47
.0

5

G
ra

vi
ta

ti
on

al
Se

ar
ch

O
pt

im
iz

at
io

n
88

.1
9

86
.7

3
2.

56
24

.8
6

96
.5

8
94

.9
8

0.
91

32
.8

0
82

.4
8

79
.4

9
7.

66
17

.5
4

B
io

ge
og

ra
ph

y-
B

as
ed

O
pt

im
iz

at
io

n
90

.0
0

86
.0

7
2.

88
26

.6
7

95
.6

7
94

.7
8

0.
46

31
.8

9
81

.6
3

77
.9

4
4.

76
33

.5
6

D
iff

er
en

ti
al

E
vo

lu
ti

on
77

.5
0

74
.8

6
2.

74
14

.1
7

83
.3

9
81

.8
3

1.
33

19
.6

1
61

.5
0

50
.1

8
9.

69
10

.7
9

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

74
.0

3
73

.3
3

0.
62

10
.7

0
81

.1
1

80
.7

8
0.

35
17

.3
3

51
.4

3
49

.7
8

0.
91

7.
21

G
en

et
ic

A
lg

or
it

hm
75

.4
2

73
.4

2
1.

73
12

.0
9

82
.9

7
79

.5
7

2.
96

19
.1

9
45

.0
0

28
.2

4
14

.5
3

33
.6

9
Si

m
ul

at
ed

A
nn

ea
lin

g
74

.1
7

71
.8

7
1.

41
10

.8
4

76
.8

1
75

.5
1

0.
96

13
.0

3
35

.6
7

21
.1

1
11

.3
9

12
.2

2

Article number 240107

23

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

98.78% and 98.11%, respectively, with a minimal deviation of 0.30. From an operational
efficiency standpoint, Dragonfly Optimization exhibits remarkable swiftness, completing
each iteration in a mere 4.27 seconds, thereby asserting itself as the fastest-performing
algorithm in the context of this study. In conclusion, optimizing k-NN with Symbiotic
Organisms Search Optimization is the most effective approach for detecting the Feature
Envy.

4.2.3. God class

The results for detecting the God Class are meticulously outlined in Table 10. Notably,
Flow Direction Optimization delivers outstanding performance, clinching the maximum
accuracy, best average accuracy, and the highest hike in accuracy, reaching impressive
scores of 97.64%, 97.64% (with zero deviations), and a remarkable 25.83% hike (∆1).
Moreover, the ROC-AUC metric showcases exceptional results, with a maximum ROC-AUC
score of 100% and the most significant hike, reaching 31.75% (∆2). These outstanding
achievements are credited to Arithmetic, Jellyfish Search, Flow Direction, Pathfinder,
Jaya, Crow Search, Multi-Verse, Symbiotic Organisms Search, Flower Pollination, Teaching
Learning Based, Gravitational Search, and Biogeography-Based Optimization. In addition,
Jellyfish Search, Flow Direction, Pathfinder, Multi-Verse, Teaching Learning Based, and
Biogeography-Based Optimization collectively secure a best average ROC-AUC of 100%,
accompanied by zero deviations. Regarding the F -measure, Flow Direction Optimization
stands out with a maximum and average value of 96%, with no deviations. In terms of
operational efficiency, Jaya Optimization demonstrates impressive speed, completing each
iteration in 5.08 seconds. Additionally, it’s worth noting that both Differential Evolution and
Simulated Annealing achieve perfect scores of 100% for both best and average ROC-AUC
values. In conclusion, utilizing k-NN in conjunction with Flow Direction Optimization
is the most effective approach to detecting the God Class despite a slightly slower execution
time.

4.2.4. Long method

Table 11 comprehensively presents the outcomes concerning detecting the Long Method
code. Notably, Biogeography-Based Optimization stands out with the maximum accuracy,
the best average accuracy, and the most significant accuracy hike, attaining remarkable
scores of 96.39%, 96.39%, and 28.33% hike (∆1), respectively. Moreover, the ROC-AUC
metric showcases exceptional results, with a maximum ROC-AUC score of 100% and
the most substantial hike, reaching 34.38% (∆2). These exceptional achievements are
attributed to Jellyfish Search, Student Psychology Based, Sine Cosine, Jaya, Crow Search,
Multi-Verse, Symbiotic Organisms Search, Flower Pollination, Teaching Learning Based,
Gravitational Search, and Biogeography-Based Optimization. Furthermore, Jellyfish Search,
Student Psychology Based, and Symbiotic Organisms Search Optimization collectively
secure the best average ROC-AUC of 100%. Regarding the F -measure, Biogeography-Based
Optimization achieves the maximum value of 94%, while Multi-Verse Optimization secures
the best average F -measure of 88.44%. Dragonfly Optimization is the fastest, completing
each iteration in 5.84 seconds. It’s worth highlighting that the other elementary algorithms
also deliver commendable performance in this context. In summary, when it comes to
detecting the Long Method, using k-NN in conjunction with Biogeography-Based or

24

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Ta
bl

e
10

.
Pe

rf
or

m
an

ce
m

ea
su

re
s

of
k
-N

N
op

tim
iz

ed
w

ith
m

et
a-

he
ur

ist
ic

al
go

rit
hm

s
fo

r
G

od
C

la
ss

Pe
rf

or
m

an
ce

m
ea

su
re

s
A

cc
ur

ac
y

R
O

C
-A

U
C

F
-m

ea
su

re
T

im
e

of
on

e

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s
B

es
t

[%
]

Av
g

[%
]

St
d

∆
1

B
es

t
[%

]
Av

g
[%

]
St

d
∆

2
B

es
t

[%
]

Av
g

[%
]

St
d

it
er

at
io

n
[s

]

A
ri

th
m

et
ic

O
pt

im
iz

at
io

n
93

.8
9

88
.9

9
5.

47
22

.0
8

10
0.

00
99

.8
4

0.
27

31
.7

5
86

.0
0

70
.5

0
15

.1
3

33
.4

6
Je

lly
fis

h
Se

ar
ch

O
pt

im
iz

at
io

n
93

.8
9

93
.8

4
0.

22
22

.0
8

10
0.

00
10

0.
00

0.
00

31
.7

5
87

.6
7

87
.1

9
1.

30
29

.6
7

Fl
ow

D
ir

ec
ti

on
O

pt
im

iz
at

io
n

97
.6

4
97

.6
4

0.
00

25
.8

3
10

0.
00

10
0.

00
0.

00
31

.7
5

96
.0

0
96

.0
0

0.
00

24
0.

65

St
ud

en
t

P
sy

ch
ol

og
y

B
as

ed
O

pt
im

iz
at

io
n

94
.0

3
92

.9
2

1.
24

22
.2

2
98

.6
1

98
.5

1
0.

16
30

.3
6

87
.3

3
85

.0
3

5.
18

47
.8

0

Pa
th

fin
de

r
O

pt
im

iz
at

io
n

92
.9

2
92

.9
2

0.
00

21
.1

1
10

0.
00

10
0.

00
0.

00
31

.7
5

91
.4

3
90

.8
1

0.
60

18
5.

17
Si

ne
C

os
in

e
O

pt
im

iz
at

io
n

90
.6

9
90

.6
9

0.
00

18
.8

8
99

.6
7

99
.2

7
0.

19
31

.4
2

82
.6

7
82

.6
7

0.
00

12
.4

7
Ja

ya
O

pt
im

iz
at

io
n

96
.3

9
94

.9
9

0.
79

24
.5

8
10

0.
00

99
.7

3
0.

29
31

.7
5

90
.0

0
89

.2
7

1.
19

5.
08

C
ro

w
Se

ar
ch

O
pt

im
iz

at
io

n
91

.5
3

87
.5

8
3.

61
19

.7
2

10
0.

00
99

.7
6

0.
31

31
.7

5
81

.0
0

73
.7

1
10

.3
0

17
.6

1
D

ra
go

nfl
y

O
pt

im
iz

at
io

n
92

.9
2

85
.5

4
6.

06
21

.1
1

99
.4

4
98

.6
8

0.
45

31
.1

9
82

.6
7

60
.8

1
22

.0
8

5.
57

K
ri

ll
H

er
d

O
pt

im
iz

at
io

n
72

.3
6

67
.2

3
2.

60
0.

55
85

.2
3

78
.5

9
3.

37
16

.9
8

51
.7

9
40

.3
1

7.
24

10
.9

0
M

ul
ti

-V
er

se
O

pt
im

iz
at

io
n

94
.0

3
93

.5
3

0.
56

22
.2

2
10

0.
00

10
0.

00
0.

00
31

.7
5

91
.2

4
90

.2
5

1.
13

13
.2

7
Sy

m
bi

ot
ic

O
rg

an
is

m
s

Se
ar

ch
O

pt
im

iz
at

io
n

91
.8

1
91

.5
7

0.
43

20
.0

0
10

0.
00

99
.9

9
0.

05
31

.7
5

82
.3

3
79

.5
6

2.
51

62
.2

8

Fl
ow

er
Po

lli
na

ti
on

O
pt

im
iz

at
io

n
93

.8
9

88
.1

2
5.

63
22

.0
8

10
0.

00
99

.6
4

0.
33

31
.7

5
89

.0
0

81
.7

2
7.

94
10

.4
1

Te
ac

hi
ng

Le
ar

n
in

g
B

as
ed

O
pt

im
iz

at
io

n
88

.0
6

86
.8

2
1.

61
16

.2
5

10
0.

00
10

0.
00

0.
00

31
.7

5
80

.7
1

74
.7

3
6.

24
46

.6
8

G
ra

vi
ta

ti
on

al
Se

ar
ch

O
pt

im
iz

at
io

n
95

.4
2

93
.2

0
1.

62
23

.6
1

10
0.

00
99

.9
3

0.
16

31
.7

5
93

.7
1

90
.1

2
4.

46
17

.0
6

B
io

ge
og

ra
ph

y-
B

as
ed

O
pt

im
iz

at
io

n
92

.6
4

87
.3

7
6.

18
20

.8
3

10
0.

00
10

0.
00

0.
00

31
.7

5
79

.3
3

61
.8

5
19

.7
8

66
.8

6

D
iff

er
en

ti
al

E
vo

lu
ti

on
96

.3
9

95
.7

9
0.

94
24

.5
8

10
0.

00
10

0.
00

0.
00

31
.7

5
92

.6
7

90
.7

5
4.

02
10

.0
6

Pa
rt

ic
le

Sw
ar

m
O

pt
im

iz
at

io
n

96
.5

3
96

.5
3

0.
00

24
.7

2
10

0.
00

99
.9

6
0.

11
31

.7
5

92
.6

7
92

.6
7

0.
00

6.
88

G
en

et
ic

A
lg

or
it

hm
96

.3
9

94
.1

7
0.

72
24

.5
8

10
0.

00
99

.7
7

0.
26

31
.7

5
93

.1
4

90
.4

5
2.

29
33

.4
8

Si
m

ul
at

ed
A

nn
ea

lin
g

96
.3

9
93

.4
3

3.
92

24
.5

8
10

0.
00

99
.3

3
1.

33
31

.7
5

93
.0

0
87

.1
5

10
.0

4
15

.0
1

Article number 240107

25

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Ta
bl

e
11

.
Pe

rf
or

m
an

ce
m

ea
su

re
s

of
k
-N

N
op

tim
iz

ed
w

ith
m

et
a-

he
ur

ist
ic

al
go

rit
hm

s
fo

r
Lo

ng
M

et
ho

d

Pe
rf

or
m

an
ce

m
ea

su
re

s
A

cc
ur

ac
y

R
O

C
-A

U
C

F
-m

ea
su

re
T

im
e

of
on

e

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s
B

es
t

[%
]

Av
g

[%
]

St
d

∆
1

B
es

t
[%

]
Av

g
[%

]
St

d
∆

2
B

es
t

[%
]

Av
g

[%
]

St
d

it
er

at
io

n
[s

]

A
ri

th
m

et
ic

O
pt

im
iz

at
io

n
88

.3
3

80
.6

5
4.

68
20

.2
7

99
.6

7
99

.2
5

0.
25

34
.0

5
81

.8
1

69
.8

2
10

.8
6

15
.2

3
Je

lly
fis

h
Se

ar
ch

O
pt

im
iz

at
io

n
90

.6
9

90
.3

6
0.

85
22

.6
3

10
0.

00
10

0.
00

0.
00

34
.3

8
84

.2
4

83
.6

2
1.

29
30

.5
9

Fl
ow

D
ir

ec
ti

on
O

pt
im

iz
at

io
n

84
.4

4
84

.4
4

0.
00

16
.3

8
96

.9
4

96
.7

2
0.

27
31

.3
2

63
.0

0
63

.0
0

0.
00

27
2.

84

St
ud

en
t

P
sy

ch
ol

og
y

B
as

ed
O

pt
im

iz
at

io
n

90
.6

9
89

.5
3

2.
63

22
.6

3
10

0.
00

10
0.

00
0.

00
34

.3
8

84
.9

0
80

.7
2

5.
87

31
.0

0

Pa
th

fin
de

r
O

pt
im

iz
at

io
n

84
.3

1
83

.8
9

0.
66

16
.2

5
99

.6
7

99
.3

9
0.

36
34

.0
5

68
.6

7
68

.6
7

0.
00

20
3.

61
Si

ne
C

os
in

e
O

pt
im

iz
at

io
n

89
.4

4
89

.1
4

0.
53

21
.3

8
10

0.
00

99
.9

2
0.

13
34

.3
8

79
.0

0
78

.4
3

1.
02

28
.4

4
Ja

ya
O

pt
im

iz
at

io
n

84
.8

6
82

.8
6

1.
05

16
.8

0
10

0.
00

99
.2

6
0.

84
34

.3
8

76
.7

1
74

.3
0

1.
86

14
.5

6
C

ro
w

Se
ar

ch
O

pt
im

iz
at

io
n

87
.7

8
81

.3
3

4.
72

19
.7

2
10

0.
00

99
.2

9
0.

47
34

.3
8

70
.3

3
58

.0
2

11
.4

3
27

.8
0

D
ra

go
nfl

y
O

pt
im

iz
at

io
n

88
.0

6
83

.4
7

2.
12

20
.0

0
99

.2
9

98
.1

2
0.

68
33

.6
7

50
.0

0
18

.4
0

13
.6

0
5.

84
K

ri
ll

H
er

d
O

pt
im

iz
at

io
n

89
.1

7
80

.8
9

5.
65

21
.1

1
97

.5
0

92
.9

1
2.

43
31

.8
8

80
.5

7
66

.2
7

10
.4

7
7.

82
M

ul
ti

-V
er

se
O

pt
im

iz
at

io
n

94
.1

7
93

.8
8

0.
42

26
.1

1
10

0.
00

99
.7

3
0.

24
34

.3
8

89
.0

0
88

.4
4

0.
59

31
.8

9
Sy

m
bi

ot
ic

O
rg

an
is

m
s

Se
ar

ch
O

pt
im

iz
at

io
n

90
.4

2
89

.3
8

0.
93

22
.3

6
10

0.
00

10
0.

00
0.

00
34

.3
8

71
.6

7
68

.6
5

2.
76

69
.1

0

Fl
ow

er
Po

lli
na

ti
on

O
pt

im
iz

at
io

n
88

.8
9

83
.8

1
6.

06
20

.8
3

10
0.

00
99

.3
8

0.
30

34
.3

8
76

.5
7

67
.9

1
10

.6
8

28
.7

5

Te
ac

hi
ng

Le
ar

ni
ng

B
as

ed
O

pt
im

iz
at

io
n

91
.6

7
90

.1
6

1.
74

23
.6

1
10

0.
00

99
.9

8
0.

08
34

.3
8

86
.2

4
83

.2
2

4.
89

66
.3

9

G
ra

vi
ta

ti
on

al
Se

ar
ch

O
pt

im
iz

at
io

n
89

.3
1

87
.7

7
1.

31
21

.2
5

10
0.

00
99

.8
2

0.
25

34
.3

8
82

.2
4

75
.1

6
7.

31
35

.4
5

B
io

ge
og

ra
ph

y-
B

as
ed

O
pt

im
iz

at
io

n
96

.3
9

90
.4

3
6.

41
28

.3
3

10
0.

00
99

.6
8

0.
20

34
.3

8
94

.0
0

83
.4

2
12

.6
4

65
.3

5

D
iff

er
en

ti
al

E
vo

lu
ti

on
86

.6
7

84
.1

7
1.

57
18

.6
1

96
.3

3
94

.9
4

0.
91

30
.7

1
69

.0
0

61
.9

1
13

.5
8

11
.0

8
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
87

.0
8

86
.0

6
0.

30
19

.0
2

95
.0

0
93

.7
7

2.
21

29
.3

8
69

.6
7

63
.2

9
3.

58
22

.4
7

G
en

et
ic

A
lg

or
it

hm
86

.9
4

80
.0

1
6.

70
18

.8
8

94
.0

3
91

.6
0

1.
33

28
.4

1
76

.0
0

61
.6

7
19

.0
6

47
.6

3
Si

m
ul

at
ed

A
nn

ea
lin

g
94

.0
3

93
.2

1
0.

98
25

.9
7

98
.1

1
98

.0
4

0.
24

32
.4

9
92

.0
7

91
.0

3
1.

51
31

.6
6

26

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Multi-Verse Optimization emerges as the most effective approach, offering excellent
accuracy and ROC-AUC outcomes.

5. Discussion

The following section addresses the research questions and discusses the important findings
of the research study.

5.1. Does using meta-heuristic algorithms for optimizing machine learning
classifiers boost their performance to detect code smell in complex
software systems?

The described experiment has been executed to address RQ 1, yielding noteworthy ad-
vancements in performance metrics. In the case of Support Vector Machine (SVM), the
highest accuracy is 98.75%, achieved by the Sine Cosine Optimization algorithm when
applied to detect God Class. The Symbiotic Organisms Search elevates the accuracy by
32.22% when deployed for Long Method. Regarding ROC-AUC metrics, a flawless 100% is
reached by Symbiotic Organisms Search across multiple code smell detection, specifically
for Data Class, God Class, and Long Method.

In the case of God Class, the ROC-AUC value of 100% is also secured by Student
Psychology Based, Sine Cosine, and Jaya Optimization methods. Similarly, Flower Pollina-
tion Optimization achieves an impeccable 100% ROC-AUC for Long Method. The average
ROC-AUC stands at 100% and is simultaneously attained by Student Psychology Based,
Sine Cosine, and Jaya Optimization for God Class. For detecting Data Class, Symbiotic
Organisms Search orchestrates a 45.11% hike in ROC-AUC value.

Turning our focus to F -measure, the Sine Cosine Optimization achieved 98.57% to
combat God Class. Dragonfly Optimization is acknowledged as the fastest in algorithmic
velocity, while Pathfinder Optimization is the slowest. Conclusively, the apex of optimization
is occupied by the Sine Cosine Algorithm, demonstrably exemplifying its pre-eminence
by securing the highest scores, both in terms of maximum and average values, across
a spectrum of performance metrics.

For k-Nearest Neighbors (k-NN), a perfect 100% accuracy and 43.89% surge in accuracy
is recorded, executed by the Flower Pollination Optimization method when applied to
detect Data Class. It also scores a perfect 100% F -measure and the best average F -measure
at 96.45%. When applied to detect God Class, the highest average accuracy is 97.64%
attained by the Flow Direction Optimization algorithm.

For ROC-AUC metrics, a flawless 100% is not a solitary accomplishment but a shared
distinction among several optimization methodologies. Specifically, optimizers for Data
Class include Pathfinder, Sine Cosine, Jaya, Crow Search, Multi-Verse, Flower Pollination,
and Teaching Learning Based Optimization, concurrently ascending to this pinnacle. Each
eminent algorithm also accomplishes a 40.83% ROC-AUC increase. Similarly, the God
Class bears witness to the Arithmetic, Jellyfish Search, Flow Direction, Pathfinder, Jaya,
Crow Search, Multi-Verse, Symbiotic Organisms Search, Flower Pollination, Teaching
Learning Based, Gravitational Search, and Biogeography-Based Optimization, all attaining
a flawless 100% ROC-AUC value. The Long Method equally experiences perfection in
ROC-AUC, with Jellyfish Search, Student Psychology Based, Sine Cosine, Jaya, Crow
Search, Multi-Verse, Symbiotic Organisms Search, Flower Pollination, Teaching Learning

Article number 240107

27

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Based, Gravitational Search, and Biogeography-Based Optimization, all registering a 100%
ROC-AUC.

The average ROC-AUC yields a harmonious 100% outcome with no deviations for several
scenarios: Pathfinder and Sine Cosine Optimization for Data Class, Jellyfish Search, Flow
Direction, Pathfinder, Multi-Verse, Teaching Learning Based, and Biogeography-Based
Optimization for God Class, and Jellyfish Search, Student Psychology Based, and Symbiotic
Organisms Search Optimization for Long Method. Regarding the computational time,
Dragonfly Optimization is the fastest, while the Flow Direction Optimization method is
the slowest in its computational stride. The paramount optimizer, defined by maximum
and average performance measures, emerges as the Flower Pollination Optimization,
underscoring its dominance in k-NN optimization.

Summary of RQ 1. Employing swarm-based techniques to optimize the hyperpa-
rameter values of machine learning classifiers is definitely a beneficial process. It not only
improves the performance of a classifier but eliminates the need for an expert, automating
the code smell detection process.

5.2. How significant is the impact of optimization of machine learning
algorithms with meta-heuristic techniques on its overall performance?

To answer RQ 2, we have conducted statistical tests on experiment results to evaluate the
impact of optimization. The Wilcoxon signed-rank test is a non-parametric statistical test
used to assess whether the distribution of paired differences between two related groups is
symmetric about zero [96]. Experimentation data do not follow a normal distribution, have
paired observations, and data can be ranked. Therefore, the Wilcoxon signed-rank test
is the best hypothesis statistical test to measure the impact of employing meta-heuristic
algorithms for optimizing machine learning algorithms.

To perform the test, a null hypothesis (H0) is set up as – the median difference between
paired observations is zero (no difference) and the alternative hypothesis (H1) as the
median difference between paired observations is not zero. Data is gathered for the paired
observations we want to compare, and the differences between paired observations are
calculated. The absolute values of the differences are ranked, and the test statistic (W)
using the ranked differences is calculated. For n pairs, the degree of freedom is n− 1. The
test statistic (p-value) to the critical value from the Wilcoxon signed-rank distribution
table is compared. If the p-value is less than the chosen significance level, reject the null
hypothesis, indicating a significant difference. If the p-value is greater than the significance
level, fail to reject the null hypothesis. The test statistic, degrees of freedom, p-value, and
decision regarding the null hypothesis are reported [97].

Tables 12–15 results depict the value of z, p, and r from the Wilcoxon signed rank sum
test. Values before optimization are paired with best and average values acquired after
optimization. The degree of freedom for this test is 15. The confidence level is 95%, and
the significance level is 0.05. The null hypothesis is rejected if the p-value is less than 0.05,
implying the difference is significant. Based on the results, it can be seen that the p-values
for all five performance measures are below 0.05, indicating a significant difference between
performance measures before and after optimization. r denotes effect size depicting the

magnitude of difference and can be calculated as z√
n

, where n is the number of paired28

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Table 12. Wilcoxon Signed Rank Sum test results for Best Values attained by SVM

Performance
measures Accuracy F -measure ROC-AUC

Code smell z p r z p r z p r

Data class 3.5180 .000435 0.88 3.5168 .000437 0.88 3.5174 .000436 0.88
Feature envy 3.5168 .000437 0.88 3.4651 .000530 0.87 3.3616 .000775 0.84
God class 3.3099 .000933 0.83 2.6983 .006969 0.67 3.2966 .000979 0.82
Long method 3.5168 .000437 0.88 3.5180 .000435 0.88 3.4128 .000643 0.85

Table 13. Wilcoxon Signed Rank Sum test tesults for Average Values attained by SVM

Performance
measures Accuracy F -measure ROC-AUC

Code smell z p r z p r z p r

Data class 3.5162 .000438 0.88 3.5162 .000438 0.88 3.5168 .000437 0.88
Feature envy 3.3611 .000776 0.84 3.4133 .000642 0.85 2.7923 .005234 0.70
God class 2.3786 .017378 0.59 2.6389 .008317 0.66 3.2958 .000982 0.82
Long method 3.5162 .000438 0.88 3.5162 .000438 0.88 2.7923 .005234 0.70

Table 14. Wilcoxon Signed Rank Sum test results for Best Values attained by k-NN

Performance
measures Accuracy F -measure ROC-AUC

Code smell z p r z p r z p r

Data class 3.5197 .000432 0.88 3.4980 .000469 0.87 3.4656 .000529 0.87
Feature envy 3.5174 .000436 0.88 3.5162 .000438 0.88 3.5162 .000438 0.88
God class 3.5197 .000432 0.88 3.6973 .000218 0.92 3.5168 .000437 0.88
Long method 3.5168 .000437 0.88 3.6537 .000258 0.91 3.5162 .000438 0.88

Table 15. Wilcoxon Signed Rank Sum test results for Average Values attained by k-NN

Performance
measures Accuracy F -measure ROC-AUC

Code smell z p r z p r z p r

Data class 3.5168 .000437 0.88 3.4656 .000529 0.87 3.4651 .000530 0.87
Feature envy 3.5162 .000438 0.88 3.5162 .000438 0.88 3.4645 .000531 0.87
God class 3.4651 .000530 0.87 3.5369 .000405 0.88 3.4645 .000531 0.87
Long method 3.5162 .000438 0.88 3.5185 .000434 0.88 3.5162 .000438 0.88

observations. The effect is considered high if r is greater than 0.5 and 0.8 is recorded r
value in the experimentation, yielding promising results.

Summary of RQ 2. Optimizing machine learning algorithms with swarm-intelligent
algorithms significantly impacts their performance.

5.3. Given the meta-heuristic algorithms, which yields the best performance
in optimizing classifiers to detect code smell and why?

To address RQ 3, the experiment’s outcomes are examined and compared to determine the
most effective meta-heuristic techniques for optimizing machine learning algorithms for
code smell detection. It is important to acknowledge that the “No-Free Lunch” theorem
has significantly influenced the landscape of optimization algorithms, driving continuous

Article number 240107

29

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

innovations over the years. This theorem underscores that no single algorithm universally
excels in every problem domain. Instead, their efficacy varies, with each demonstrating
superior performance in specific problem statements [98]. Implementation remains the most
effective means of identifying the optimal technique for a given problem.

The investigation involved systematically applying sixteen meta-heuristic algorithms
for hyperparameter optimization on two distinct machine learning algorithms, enhancing
their performance metrics. A comprehensive evaluation is conducted across three scenar-
ios: instances without optimization, cases employing grid search, and evaluations utilizing
meta-heuristic algorithms. Performance metrics are thoughtfully juxtaposed with other algo-
rithms, ensuring an accurate and effective comparison. These assessments are supplemented
by comparisons with foundational algorithms, namely Genetic Algorithm, Differential
Evolution, Particle Swarm Optimization, and Simulated Annealing. The empirical results
affirm that the foundational algorithms, while competent, do not outshine the implemented
optimizers across the board. Instead, they exhibit comparable proficiency in a few cases.
The comprehensive evaluation of their performance measures, in conjunction with other
algorithms, is methodically documented after the respective tables. Table 16 highlights the
highest-performing optimization algorithms for each case based on experimentation.

Table 16. The best performing optimization algorithm for each code smell

Code Smell SVM k-NN

Data class Symbiotic Organisms Search Optimization Flower Pollination Optimization
Feature envy Dragonfly Optimization Symbiotic Organisms Search Optimization
God class Sine Cosine Optimization Flow Direction Optimization
Long method Symbiotic Organisms Search Optimization Biogeography-Based and Multi-Verse Op-

timization

Finding the most optimized value for hyperparameters of machine learning algorithms
is in the category of non-separable, constrained, and multimodal problems. Non-separable
problems refer to scenarios where the relationships and dependencies within the data are
too intricate to be accurately represented by simple linear decision boundaries [99]. In
classification tasks, linear separability implies that classes can be perfectly distinguished
by a straight line, plane, or hyperplane, but non-separable problems defy such simplicity.
Dealing with non-separable data requires complex decision boundaries, often necessitating
the application of nonlinear models like kernelized support vector machines. Specialized
algorithms like meta-heuristics or evolutionary approaches may be needed to navigate such
landscapes.

Constrained problems refer to scenarios where the solution space of a problem is subject
to certain conditions or limitations [100]. These constraints restrict the set of feasible
solutions and play a critical role in shaping the optimization landscape. Optimization
algorithms designed for constrained problems must navigate the complex interplay between
the objective function and the imposed constraints. Classical optimization methods, like
Lagrange multipliers and penalty methods, are often employed to handle equality and
inequality constraints.

Multimodal problems refer to scenarios where the objective function or fitness landscape
has multiple distinct optimal solutions, known as modes [101]. Each mode represents a set
of parameter values that yield an optimal or near-optimal solution to the problem where
the algorithm can converge. The presence of multiple modes introduces challenges because
traditional optimization methods, which aim to find a single global optimum, may struggle30

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

to explore and exploit the diverse modes. Handling multimodal problems requires specialized
optimization techniques designed to explore and exploit multiple modes efficiently.

Meta-heuristic algorithms are easy to implement and do not require much domain-specific
knowledge. They can optimize both continuous, discrete problems, and multiple objective
problems. The performance of a meta-heuristic algorithm hinges upon some of the pivotal
factors. The first factor is the precise configuration of parameters, encompassing critical
attributes such as the optimal count of search agents, the judicious establishment of
the discovery rate, the velocity of the fitness function, etc. Furthermore, a paramount
significance revolves around the delicate equilibrium between exploration and exploitation
rates. Though they can find the global optima for complex, nonlinear, and non-convex
functions, they are prone to get trapped in local optima if the population size is small and
the search space is vast. Augmenting this complexity, randomness into the search process
emerges as a potent mechanism. By introducing controlled stochasticity, these optimizers
foster heightened performance and enhanced exploration of solution spaces, ultimately
yielding superior results [102]. The Symbiotic Organisms Search Optimization,
Teaching Learning Based Optimization, and Sine Cosine Optimization emerge
as stellar exemplars of detecting code smells, adeptly navigating the intricate terrain of
algorithmic design. They orchestrate a harmonious symphony of parameter tuning, dynamic
mode switching, and controlled randomness infusion, culminating in attaining superlative
outcomes. Conversely, Krill Herd Optimization is the least effective algorithm for code
smell detection.

Summary of RQ 3. The no-free Lunch theorem implies that there is no one-size-fits-all
solution; what works best for one optimization problem might not work for another
problem. So, the best way to find the most optimal techniques is to implement them
and compare their results. Table 16 summarizes the list of best-performing optimization
techniques for each case. They performed better because they balanced exploration and
exploitation well, avoided early convergence, introduced appropriate randomness, and
discovered global optimum solutions required to conquer non-separable, constrained, and
multi-modal problems.

5.4. How does our approach perform compared to existing machine learning
based techniques?

To answer RQ 4, we have compared our work with Fontana et al. [46]. This is the most
extensive study that detects code smells using machine learning and employs the same
datasets, allowing for a fair comparison. They created balanced datasets to detect the four
most common and perilous code smells. They applied 32 variations of machine learning
classifiers, including their boosted versions, for detection. It included pruned, unpruned,
and reduced error pruning techniques of J48, a C4.5 decision tree. JRip, Random Forest,
Naive Bayes, and SMO with RBF and Polynomial kernel were also included. With that, C
and ν SVM were implemented with Linear, Polynomial, RBF, and Sigmoid kernel settings.
Implementation was done in Weka, and machine learning classifiers were treated as black-
box implementations. No pre-processing or feature selection technique was used except
in the case of SVM, where standardization and normalization were done. They employed
10-fold cross-validation techniques and reported average values. Tree-based algorithms like
J48 and random forest performed best, whereas SVMs were the worst performers.

For Data Class, C-SVM with RBF has an accuracy of 96%, F -measure of 97.01%, and
ROC-AUC of 99.15%. Symbiotic Organisms Search Optimization is the best performer

Article number 240107

31

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

in detecting Data Class with SVM and outperformed accuracy and AUC delivered by
Fontana et al., reported accuracy is 97.64%, F -measure is 96%, and ROC-AUC is 100%.
In the case of Feature Envy, results projected by Fontana et al. were far less superior.
The dragonfly optimizer performed best with 96.25% accuracy, 94.29% F -measure, and
99.33% ROC-AUC, whereas Fontana et al. yielded 94.14% accuracy, 95.62% F -measure,
and 98.02% ROC-AUC. For God Class, the Sine Cosine algorithm outperformed all the
above-mentioned meta-heuristic algorithms and results of Fontana et al. Accuracy, F -mea-
sure, and ROC-AUC achieved for God Class in the case of Fontana et al. are 95.76%,
96.87%, and 99.24%, respectively, whereas optimized SVM achieved 98.75% accuracy,
98.57% F -measure, and 100% ROC-AUC, all on the higher side. Symbiotic Organisms
Search Optimization obtained 96.39% accuracy and 100% ROC-AUC for the Long Method,
which is higher compared to the performance measured attained by Fontana et al., i.e.,
96.38% accuracy and 99.15% ROC-AUC. One exception is the F -measure, which is 94.57%
for optimized SVM and 97.22% for the unoptimized version.

Summary of RQ4. Unlike F -measure in two out of four cases, utilizing swarm-based
algorithms for optimizing SVM is a better option as it delivers elevated performance.

6. Threats to validity

In this section, threats to validity are discussed that might arise concerns and how they
are mitigated.

6.1. Threats to internal validity

The assessment of metrics within the datasets [46] is conducted using a proprietary tool
known as Design Features and Metrics for Java (DFMC4J). This tool operates by parsing
Java code through the Eclipse JDT Library; however, it is important to note that the
accuracy of its calculations has not been externally validated, potentially introducing
imprecision in metric computations for source code elements. Moreover, the identification of
code smell candidates is carried out manually by students rather than seasoned professionals,
thereby introducing an inherent margin of error. To mitigate this concern, a comprehensive
training program was administered to the students, and the final decisions were made
following meticulous deliberation. In addition to this, code smell detection tools like iPlasma,
PMD, and Fluid tools were also enlisted to corroborate the presence of code smell instances.

6.2. Threats to external validity

The datasets were meticulously crafted from a collection of 74 open-source Java systems
sourced from the Qualitus Corpus [67]. Nonetheless, it’s imperative to acknowledge that
open-source software might not encompass the entirety of conceivable scenarios, potentially
limiting the generalization of findings to industrial contexts. Extending our investigation to
encompass industrial, commercial, and private projects is a future endeavor. These systems
employ older Java versions and don’t include emerging new Java language constructs [103].
The systems included are from 2003-2011, which might not represent the current scenario.
These issues can be addressed in future work by employing datasets that include the latest
Java constructs, industrial projects, more code smells, severity prospects, etc.32

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

It is important to underscore that this empirical study focuses solely on datasets
originating from Java source code, and its findings may not seamlessly translate to other
programming languages given the distinct nature of metric values and design paradigms
across languages. As part of our ongoing research, we aim to explore additional programming
languages to augment the breadth of our insights. Furthermore, while Fowler [6] delineates
twenty-two distinct code smells, this study delves into the analysis of only four, a limited
subset for generalization. Future investigations could encompass the remaining smells to
yield more comprehensive and conclusive outcomes. Similarly, the utilization of merely two
classifiers in this study warrants consideration, as the implications derived may not be
universally applicable.

6.3. Threats to conclusion validity

The computation of F -measure by certain machine learning algorithms faced limitations,
impacting the derived conclusions concerning F -measure values. This issue is of considerable
significance, warranting both immediate attention and subsequent in-depth investigation.
While maintaining nearly identical parameters, including population size and generations,
across various meta-heuristic algorithms facilitates fair comparisons, it’s worth noting that
these parameters might inadvertently affect certain algorithms due to their diverse search
agent requirements. Additionally, the uniformity of stopping criteria is 50 iterations for
each algorithm might not ensure fairness, given the inherent variability in convergence
rates among different algorithms.

7. Conclusions and future work

Our investigation delves into the merits of diverse meta-heuristic algorithms as tools
for optimizing supervised machine learning techniques. Additionally, we have conducted
a comparative analysis of results between machine learning classifiers, both pre and post
optimization. The findings from our study are summarized as follows:
1. The top-performing meta-heuristic algorithm is Symbiotic Organisms Search Optimiza-

tion. Conversely, Krill Herd Optimization exhibited the lowest performance in the
context of code smell detection.

2. In the case of Support Vector Machine, the apex metrics include an accuracy rate of
98.75%, a perfect ROC-AUC score of 100%, and an F -measure of 98.57%. The maximum
improvement in accuracy and ROC-AUC observed is 32.22% and 45.11%, respectively.

3. The best k-Nearest Neighbor, outcomes are marked by a flawless accuracy rate,
ROC-AUC, and F -measure value of 100%. The accuracy and ROC-AUC surged by
43.89% and 40.83%, respectively, through applying optimization algorithms.

4. SVM showcased its optimum performance when coupled with Sine Cosine Optimiza-
tion, whereas k-NN exhibited superior results when joined with Flower Pollination
Optimization.

5. A Rigorous statistical test underscores the profound impact of meta-heuristic algorithms
in fine-tuning hyperparameters of machine learning algorithms, thereby enhancing their
overall performance.

6. SVM excels in detecting God Class and k-NN masters in identifying Data Class
instances, all achieved through optimizing machine learning classifiers via meta-heuristic
algorithms.

Article number 240107

33

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

Here are the prospective avenues for further research stemming from this study:
1. Future work could utilize improved versions of meta-heuristic algorithms, characterized

by improved convergence speed, exploration capabilities, and diminished sensitivity to
hyperparameters.

2. Exploring multi-objective, binary, hybrid, chaotic and alternative variants of meta-
heuristic techniques hold the premise for achieving heightened efficiency, adaptability
and flexibility in optimization processes.

3. An extensive array of over two hundred meta-heuristic algorithms exist, whereas our
study has selectively implemented specific types. Future research endeavors could extend
to comparative assessments with a broader spectrum of optimization algorithms.

4. The implementation and evaluation of novel optimization algorithms, including but not
limited to Central Force Optimization, Vortex Search Algorithm, Thermal Exchange
Optimization, and Artificial Electric Field Algorithm, offer intriguing prospects for
further inquiry.

5. Expanding the scope to optimize various other machine learning classifiers such as
Random Forest, Decision Tree, JRip, and Naive Bayes, among others, holds potential
for diversifying the application domains of these techniques.

6. The drive to optimize machine learning classifiers for detecting various other code smells
or anti-patterns presents an engaging research avenue.

7. Investigating code smells in programming languages beyond Java constitutes a com-
pelling direction for future research, broadening the applicability of the findings.

8. The exploration of feature engineering and selection methodologies utilizing meta-
heuristic algorithms emerges as an avenue with the potential to augment the performance
of machine learning classifiers.

References

[1] I. Ozkaya, “The next frontier in software development: AI-augmented software development
processes,” IEEE Software, Vol. 40, No. 4, 2023, pp. 4–9.

[2] H.J. Christanto and Y.A. Singgalen, “Analysis and design of student guidance information
system through software development life cycle (SDLC) and waterfall model,” Journal of
Information Systems and Informatics, Vol. 5, No. 1, 2023, pp. 259–270.

[3] M. Almashhadani, A. Mishra, A. Yazici, and M. Younas, “Challenges in agile software mainte-
nance for local and global development: An empirical assessment,” Information, Vol. 14, No. 5,
2023, p. 261.

[4] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta et al., “When and why your
code starts to smell bad,” in International Conference on Software Engineering, Vol. 1. IEEE,
2015, pp. 403–414.

[5] S.M. Olbrich, D.S. Cruzes, and D.I. Sjøberg, “Are all code smells harmful? A study of god
classes and brain classes in the evolution of three open source systems,” in International
Conference on Software Maintenance. IEEE, 2010, pp. 1–10.

[6] M. Fowler, Refactoring: Improving the design of existing code. Addison-Wesley Professional,
2018.

[7] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis of quality for large-scale
software systems,” in Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, 2005, pp. 214–223.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., “The WEKA data mining
software: An update,” ACM SIGKDD Explorations Newsletter, Vol. 11, No. 1, 2009, pp. 10–18.

[9] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,” in 20th
International Conference on Software Maintenance. IEEE, 2004, pp. 350–359.34

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

[10] G. Travassos, F. Shull, M. Fredericks, and V.R. Basili, “Detecting defects in object-oriented
designs: using reading techniques to increase software quality,” ACM Sigplan Notices, Vol. 34,
No. 10, 1999, pp. 47–56.

[11] G. Ganea, I. Verebi, and R. Marinescu, “Continuous quality assessment with inCode,” Science
of Computer Programming, Vol. 134, 2017, pp. 19–36.

[12] H. Li and S. Thompson, “Let’s make refactoring tools user-extensible!” in Proceedings of the
Fifth Workshop on Refactoring Tools, 2012, pp. 32–39.

[13] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A review-based comparative
study of bad smell detection tools,” in Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, 2016, pp. 1–12.

[14] M.V. Mäntylä and C. Lassenius, “Subjective evaluation of software evolvability using code
smells: An empirical study,” Empirical Software Engineering, Vol. 11, No. 3, 2006, pp. 395–431.

[15] E. Alpaydin, Introduction to machine learning. MIT Press, 2020.
[16] S. Jain and A. Saha, “Improving performance by genetically optimizing support vector machine

to detect code smells,” in Proceedings of the International Conference on Smart Data Intelligence
(ICSMDI 2021), 2021.

[17] G.A. Pradipta, R. Wardoyo, A. Musdholifah, I.N.H. Sanjaya, and M. Ismail, “SMOTE for
handling imbalanced data problem: A review,” in Sixth International Conference on Informatics
and Computing (ICIC). IEEE, 2021, pp. 1–8.

[18] H. Gupta, S. Misra, L. Kumar, and N. Murthy, “An empirical study to investigate data sam-
pling techniques for improving code-smell prediction using imbalanced data,” in International
Conference on Information and Communication Technology and Applications. Springer, 2020,
pp. 220–233.

[19] S. Jain and A. Saha, “Improving performance with hybrid feature selection and ensemble
machine learning techniques for code smell detection,” Science of Computer Programming,
Vol. 212, 2021, p. 102713.

[20] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, Vol. 1. New
York: Springer Series in Statistics, 2001.

[21] I. Syarif, A. Prugel-Bennett, and G. Wills, “SVM parameter optimization using grid search and
genetic algorithm to improve classification performance,” TELKOMNIKA (Telecommunication
Computing Electronics and Control), Vol. 14, No. 4, 2016, pp. 1502–1509.

[22] D.M. Belete and M.D. Huchaiah, “Grid search in hyperparameter optimization of machine
learning models for prediction of hiv/aids test results,” International Journal of Computers
and Applications, Vol. 44, No. 9, 2022, pp. 875–886.

[23] M. Karimi-Mamaghan, M. Mohammadi, P. Meyer, A.M. Karimi-Mamaghan, and E.G. Talbi,
“Machine learning at the service of meta-heuristics for solving combinatorial optimization
problems: A state-of-the-art,” European Journal of Operational Research, Vol. 296, No. 2,
2022, pp. 393–422.

[24] V. Chandra S.S. and H.S. Anand, “Nature inspired meta heuristic algorithms for optimization
problems,” Computing, Vol. 104, No. 2, 2022, pp. 251–269.

[25] E. Osaba, E. Villar-Rodriguez, J. Del Ser, A.J. Nebro, D. Molina et al., “A tutorial on the
design, experimentation and application of metaheuristic algorithms to real-world optimization
problems,” Swarm and Evolutionary Computation, Vol. 64, 2021, p. 100888.

[26] J. McDermott, “When and why metaheuristics researchers can ignore “No Free Lunch”
theorems,” SN Computer Science, Vol. 1, No. 1, 2020, p. 60.

[27] V.W. Porto, “Evolutionary programming,” in Evolutionary Computation. CRC Press, 2018,
pp. 127–140.

[28] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm – A literature review,” in
International Conference on Machine Learning, Big Data, Cloud and Parallel Computing
(COMITCon). IEEE, 2019, pp. 380–384.

[29] M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham et al., “Differential Evolution: A review
of more than two decades of research,” Engineering Applications of Artificial Intelligence,
Vol. 90, 2020, p. 103479.

Article number 240107

35

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

[30] M.G.P. de Lacerda, L.F. de Araujo Pessoa, F.B. de Lima Neto, T.B. Ludermir, and H. Kuchen,
“A systematic literature review on general parameter control for evolutionary and swarm-based
algorithms,” Swarm and Evolutionary Computation, Vol. 60, 2021, p. 100777.

[31] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95
International Conference on Neural Networks, Vol. 4. IEEE, 1995, pp. 1942–1948.

[32] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Computational
Intelligence Magazine, Vol. 1, No. 4, 2006, pp. 28–39.

[33] S. Chattopadhyay, A. Marik, and R. Pramanik, “A brief overview of physics-inspired meta-
heuristic optimization techniques,” arXiv preprint arXiv:2201.12810, 2022.

[34] K. Karthikeyan and P. Dhal, “Multi verse optimization (MVO) technique based voltage
stability analysis through continuation power flow in IEEE 57 bus,” Energy Procedia, Vol. 117,
2017, pp. 583–591.

[35] Z. Wei, C. Huang, X. Wang, T. Han, and Y. Li, “Nuclear reaction optimization: A novel
and powerful physics-based algorithm for global optimization,” IEEE Access, Vol. 7, 2019,
pp. 66 084–66 109.

[36] S. Cheng, Q. Qin, J. Chen, and Y. Shi, “Brain storm optimization algorithm: a review,”
Artificial Intelligence Review, Vol. 46, 2016, pp. 445–458.

[37] T. Rahkar Farshi, “Battle royale optimization algorithm,” Neural Computing and Applications,
Vol. 33, No. 4, 2021, pp. 1139–1157.

[38] M.D. Li, H. Zhao, X.W. Weng, and T. Han, “A novel nature-inspired algorithm for optimiza-
tion: Virus colony search,” Advances in Engineering Software, Vol. 92, 2016, pp. 65–88.

[39] G.G. Wang, S. Deb, and L.D.S. Coelho, “Earthworm optimisation algorithm: A bio-inspired
metaheuristic algorithm for global optimisation problems,” International Journal of Bio-Inspired
Computation, Vol. 12, No. 1, 2018, pp. 1–22.

[40] S. Chinnasamy, M. Ramachandran, M. Amudha, and K. Ramu, “A review on hill climbing
optimization methodology,” Recent Trends in Management and Commerce, Vol. 3, No. 1,
2022.

[41] A.I. Hafez, H.M. Zawbaa, E. Emary, and A.E. Hassanien, “Sine cosine optimization algorithm
for feature selection,” in International Symposium on Innovations in Intelligent Systems and
Applications (INISTA). IEEE, 2016, pp. 1–5.

[42] S. Hassaine, F. Khomh, Y.G. Guéhéneuc, and S. Hamel, “IDS: An immune-inspired approach
for the detection of software design smells,” in Seventh International Conference on the
Quality of Information and Communications Technology. IEEE, 2010, pp. 343–348.

[43] N. Moha, Y.G. Guéhéneuc, L. Duchien, and A.F. Le Meur, “Decor: A method for the
specification and detection of code and design smells,” IEEE Transactions on Software
Engineering, Vol. 36, No. 1, 2009, pp. 20–36.

[44] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.G. Guéhéneuc et al., “Smurf: A SVM-based
incremental anti-pattern detection approach,” in 19th Working conference on reverse engi-
neering. IEEE, 2012, pp. 466–475.

[45] F. Khomh, S. Vaucher, Y.G. Guéhéneuc, and H. Sahraoui, “BDTEX: A GQM-based Bayesian
approach for the detection of antipatterns,” Journal of Systems and Software, Vol. 84, No. 4,
2011, pp. 559–572.

[46] F.A. Fontana, M.V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting
machine learning techniques for code smell detection,” Empirical Software Engineering, Vol. 21,
No. 3, 2016, pp. 1143–1191.

[47] M. Kessentini and A. Ouni, “Detecting android smells using multi-objective genetic program-
ming,” in International Conference on Mobile Software Engineering and Systems (MOBILE-
Soft). IEEE, 2017, pp. 122–132.

[48] A. Kaur, S. Jain, and S. Goel, “SP-J48: A novel optimization and machine-learning-based
approach for solving complex problems: special application in software engineering for detecting
code smells,” Neural Computing and Applications, Vol. 32, No. 11, 2020, pp. 7009–7027.

[49] S. Jain and A. Saha, “Rank-based univariate feature selection methods on machine learning
classifiers for code smell detection,” Evolutionary Intelligence, Vol. 15, No. 1, 2022, pp. 609–638.

36

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

[50] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and S. Ben Chikha, “Competitive
coevolutionary code-smells detection,” in Search Based Software Engineering: 5th International
Symposium, SSBSE 2013, St. Petersburg, Russia, August 24–26, 2013. Proceedings 5. Springer,
2013, pp. 50–65.

[51] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni, “A cooperative parallel
search-based software engineering approach for code-smells detection,” IEEE Transactions on
Software Engineering, Vol. 40, No. 9, 2014, pp. 841–861.

[52] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell detection as a bilevel problem,”
ACM Transactions on Software Engineering and Methodology (TOSEM), Vol. 24, No. 1, 2014,
pp. 1–44.

[53] U. Mansoor, M. Kessentini, B.R. Maxim, and K. Deb, “Multi-objective code-smells detection
using good and bad design examples,” Software Quality Journal, Vol. 25, No. 2, 2017,
pp. 529–552.

[54] G. Saranya, H.K. Nehemiah, A. Kannan, and V. Nithya, “Model level code smell detection
using egapso based on similarity measures,” Alexandria Engineering Journal, Vol. 57, No. 3,
2018, pp. 1631–1642.

[55] G. Saranya, H.K. Nehemiah, and A. Kannan, “Hybrid particle swarm optimisation with
mutation for code smell detection,” International Journal of Bio-Inspired Computation,
Vol. 12, No. 3, 2018, pp. 186–195.

[56] M.M. Draz, M.S. Farhan, S.N. Abdulkader, and M. Gafar, “Code smell detection using whale
optimization algorithm,” CMC-Computers Materials and Continua, Vol. 68, No. 2, 2021,
pp. 1919–1935.

[57] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L.B. Said, “On the use of machine learning
and search-based software engineering for ill-defined fitness function: a case study on software
refactoring,” in International Symposium on Search Based Software Engineering. Springer,
2014, pp. 31–45.

[58] A. Ghannem, G.E. Boussaidi, and M. Kessentini, “Model refactoring using interactive genetic
algorithm,” in International Symposium on Search Based Software Engineering. Springer,
2013, pp. 96–110.

[59] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “JDeodorant: identification
and application of extract class refactorings,” in 33rd International Conference on Software
Engineering (ICSE). IEEE, 2011, pp. 1037–1039.

[60] T.J. Dea, M. Kessentini, W.I. Grosky, and K. Deb, “Software refactoring using cooperative
parallel evolutionary algorithms,” 2016.

[61] G. Saranya, H. Nehemiah, A. Kannan, and V. Pavithra, “Prioritizing code smell correction
task using strength pareto evolutionary algorithm,” Indian Journal of Science and Technology,
Vol. 11, No. 20, 2018, pp. 1–12.

[62] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui, “Prioritizing code-smells correction
tasks using chemical reaction optimization,” Software Quality Journal, Vol. 23, No. 2, 2015,
pp. 323–361.

[63] A. Kaur, S. Jain, and S. Goel, “Sandpiper optimization algorithm: a novel approach for
solving real-life engineering problems,” Applied Intelligence, Vol. 50, No. 2, 2020, pp. 582–619.

[64] G. Lacerda, F. Petrillo, M. Pimenta, and Y.G. Guéhéneuc, “Code smells and refactoring:
A tertiary systematic review of challenges and observations,” Journal of Systems and Software,
Vol. 167, 2020, p. 110610.

[65] R.S. Menshawy, A.H. Yousef, and A. Salem, “Code smells and detection techniques: A survey,”
in International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). IEEE,
2021, pp. 78–83.

[66] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: A review of current knowledge,”
Journal of Software Maintenance and Evolution: Research and Practice, Vol. 23, No. 3, 2011,
pp. 179–202.

[67] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li et al., “The Qualitas Corpus: A curated
collection of Java code for empirical studies,” in Asia Pacific Software Engineering Conference.
IEEE, 2010, pp. 336–345.

Article number 240107

37

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

[68] G. Van Rossum and F.L. Drake, Jr., Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

[69] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–2830.

[70] S.B. Kotsiantis, D. Kanellopoulos, and P.E. Pintelas, “Data preprocessing for supervised
leaning,” International Journal of Computer Science, Vol. 1, No. 2, 2006, pp. 111–117.

[71] C.V.G. Zelaya, “Towards explaining the effects of data preprocessing on machine learning,”
in 35th international conference on data engineering (ICDE). IEEE, 2019, pp. 2086–2090.

[72] M. Mehmood, N. Alshammari, S.A. Alanazi, and F. Ahmad, “Systematic framework to
predict early-stage liver carcinoma using hybrid of feature selection techniques and regression
techniques,” Complexity, Vol. 2022, 2022, pp. 1–11.

[73] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise
Reduction in Speech Processing. Springer, 2009, pp. 1–4.

[74] T.T. Wong and P.Y. Yeh, “Reliable accuracy estimates from k-fold cross validation,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 32, No. 8, 2019, pp. 1586–1594.

[75] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A.H. Gandomi, “The arithmetic
optimization algorithm,” Computer Methods in Applied Mechanics and Engineering, Vol. 376,
2021, p. 113609.

[76] J.S. Chou and D.N. Truong, “A novel metaheuristic optimizer inspired by behavior of jellyfish
in ocean,” Applied Mathematics and Computation, Vol. 389, 2021, p. 125535.

[77] H. Karami, M.V. Anaraki, S. Farzin, and S. Mirjalili, “Flow direction algorithm (FDA):
A novel optimization approach for solving optimization problems,” Computers and Industrial
Engineering, Vol. 156, 2021, p. 107224.

[78] B. Das, V. Mukherjee, and D. Das, “Student psychology based optimization algorithm: A new
population based optimization algorithm for solving optimization problems,” Advances in
Engineering software, Vol. 146, 2020, p. 102804.

[79] H. Yapici and N. Cetinkaya, “A new meta-heuristic optimizer: Pathfinder algorithm,” Applied
Soft Computing, Vol. 78, 2019, pp. 545–568.

[80] S. Mirjalili, “SCA: A sine cosine algorithm for solving optimization problems,”
Knowledge-Based Systems, Vol. 96, 2016, pp. 120–133.

[81] R. Rao, “Jaya: A simple and new optimization algorithm for solving constrained and uncon-
strained optimization problems,” International Journal of Industrial Engineering Computa-
tions, Vol. 7, No. 1, 2016, pp. 19–34.

[82] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering opti-
mization problems: Crow search algorithm,” Computers and Structures, Vol. 169, 2016,
pp. 1–12.

[83] S. Mirjalili, “Dragonfly algorithm: A new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems,” Neural Computing and Applications,
Vol. 27, 2016, pp. 1053–1073.

[84] A.H. Gandomi and A.H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,”
Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 12, 2012,
pp. 4831–4845.

[85] S. Mirjalili, S.M. Mirjalili, and A. Hatamlou, “Multi-verse optimizer: a nature-inspired
algorithm for global optimization,” Neural Computing and Applications, Vol. 27, No. 2, 2016,
pp. 495–513.

[86] M.Y. Cheng and D. Prayogo, “Symbiotic organisms search: A new metaheuristic optimization
algorithm,” Computers and Structures, Vol. 139, 2014, pp. 98–112.

[87] X.S. Yang, “Flower pollination algorithm for global optimization,” in International Conference
on Unconventional Computing and Natural Computation. Springer, 2012, pp. 240–249.

[88] R.V. Rao, V.J. Savsani, and D. Vakharia, “Teaching–learning-based optimization: a novel
method for constrained mechanical design optimization problems,” Computer-Aided Design,
Vol. 43, No. 3, 2011, pp. 303–315.

[89] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: A gravitational search algorithm,”
Information Sciences, Vol. 179, No. 13, 2009, pp. 2232–2248.38

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

[90] D. Simon, “Biogeography-based optimization,” IEEE Transactions on Evolutionary Compu-
tation, Vol. 12, No. 6, 2008, pp. 702–713.

[91] W.S. Noble, “What is a support vector machine?” Nature Biotechnology, Vol. 24, No. 12,
2006, pp. 1565–1567.

[92] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in classification,”
in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM
Confederated International Conferences. Springer, 2003, pp. 986–996.

[93] M.N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, “A comprehensive review of swarm
optimization algorithms,” PloS One, Vol. 10, No. 5, 2015, p. e0122827.

[94] T.A. Jumani, M.W. Mustafa, A.S. Alghamdi, M.M. Rasid, A. Alamgir et al., “Swarm
intelligence-based optimization techniques for dynamic response and power quality enhance-
ment of AC microgrids: A comprehensive review,” IEEE Access, Vol. 8, 2020, pp. 75 986–76 001.

[95] V. López, A. Fernández, and F. Herrera, “On the importance of the validation technique
for classification with imbalanced datasets: Addressing covariate shift when data is skewed,”
Information Sciences, Vol. 257, 2014, pp. 1–13.

[96] R.F. Woolson, “Wilcoxon signed-rank test,” Wiley Encyclopedia of Clinical Trials, 2007,
pp. 1–3.

[97] T. Harris and J.W. Hardin, “Exact Wilcoxon signed-rank and Wilcoxon Mann–Whitney
ranksum tests,” The Stata Journal, Vol. 13, No. 2, 2013, pp. 337–343.

[98] D.H. Wolpert and W.G. Macready, “No free lunch theorems for optimization,” IEEE Trans-
actions on Evolutionary Computation, Vol. 1, No. 1, 1997, pp. 67–82.

[99] M. Meselhi, R. Sarker, D. Essam, and S. Elsayed, “A decomposition approach for large-scale
non-separable optimization problems,” Applied Soft Computing, Vol. 115, 2022, p. 108168.

[100] Z. Yang, H. Qiu, L. Gao, D. Xu, and Y. Liu, “A general framework of surrogate-assisted
evolutionary algorithms for solving computationally expensive constrained optimization
problems,” Information Sciences, Vol. 619, 2023, pp. 491–508.

[101] W. Li, T. Zhang, R. Wang, S. Huang, and J. Liang, “Multimodal multi-objective optimization:
Comparative study of the state-of-the-art,” Swarm and Evolutionary Computation, 2023,
p. 101253.

[102] Z. Beheshti and S.M.H. Shamsuddin, “A review of population-based meta-heuristic algo-
rithms,” International Journal of Advances in Soft Computing and its Applic, Vol. 5, No. 1,
2013, pp. 1–35.

[103] H. Grodzicka, A. Ziobrowski, Z. Łakomiak, M. Kawa, and L. Madeyski, “Code smell prediction
employing machine learning meets emerging Java language constructs,” Data-Centric Business
and Applications: Towards Software Development, Vol. 4, 2020, pp. 137–167.

[104] S. Suthaharan, “Support vector machine,” in Machine learning models and algorithms for big
data classification. Springer, 2016, pp. 207–235.

[105] O. Kramer, “k-nearest neighbors,” in Dimensionality reduction with unsupervised nearest
neighbors. Springer, 2013, pp. 13–23.

[106] J. Han, J. Pei, and M. Kamber, Data mining: Concepts and techniques. Elsevier, 2011.
[107] J.F. O’Callaghan and D.M. Mark, “The extraction of drainage networks from digital elevation

data,” Computer Vision, Graphics, and Image Processing, Vol. 28, No. 3, 1984, pp. 323–344.

Appendix A. Machine learning algorithms used

Code smell detection exploits classification methodology as output is binary, that is, if
the class/method is affected by a particular smell or not. We have implemented SVM and
k-NN binary classifiers.

Article number 240107

39

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

A.1. Support Vector Machine (SVM)

SVM is one of the most versatile machine learning algorithms for classification and regression
problems. It assumes that two adjacent instances in input space must have the same output
value [91]. It calculates an optimal hyperplane that separates classes in multi-dimensional
space. The class of a new instance is marked by its position on which side of the hyperplane.
Let’s take N training samples A = {a1, a2, . . . , aN} where ai means i-th training sample
and has f features. It is associated with one of the two classes bi ∈ {0, 1}. So, complete
training set is {(a1, b1), (a2, b2), . . . , (aN , bN)} where ai training sample belongs to class bi.
The equation of hyperplane to be optimized is:

LP = 1
2 ||w||

2 + C
N∑

i=1
εi −

N∑
i=1

αi

(
bi(wT ai + y)− 1 + εi

)
(A.1.1)

where w is the weight vector, normal to the hyperplane, y is the threshold, and a is the
input data point in d dimensional space. The algorithm aims to select the best values
for threshold and weight such that the hyperplane is as far as possible from the closest
data points. εi is the slack variable greater than equal to 0, and it is to be minimised.
Each εi represents the distance between the i-th data point and the corresponding margin
hyperplane. C is the regularization parameter that controls the trade-off between the slack
variable penalty and the size of the margin. αi ≥ 0 and i = 1, 2, . . . , N . αi are the Lagrange
multipliers, and each αi corresponds to one data point (ai, bi) and LP becomes the primal
equation that is to be optimized [104].

A.2. k-Nearest Neighbors

k-NN is one of the most popular machine learning algorithm and is known for its simplicity.
It can be executed for both classification and regression problems. It analyses the parametric
estimation of unknown probabilities, which are otherwise difficult to predict. The main
idea behind this algorithm is that the class of a new data point is decided by its majority
of k-neighbors. k-NN considers k nearest instances to determine the class of query instance
and selects one with the highest frequency [105]. The distance metric is used to calculate
the relative distance between instances in n-dimensional space, where n is the number of
features. Minkowski distance is calculated as:

p

√√√√ n∑
i=1
|xi − yi|p

It is a generalized distance metric. For Manhattan distance, p is equal to 1. For Euclidean
distance, p is equal to 0, and for Chebyshev distance, p → ∞ [106]. Meta-heuristic
algorithms are used to retrieve the best values for k and p.

Appendix B. Meta-heuristic algorithms used

Meta-heuristic algorithms are general-purpose algorithms that do not rely on specific
problem structures but search the solution space using heuristic rules inspired by natural40

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

phenomena, such as evolution, swarm intelligence, or physics. The current study uses the
following meta-heuristic techniques to optimize machine learning algorithms.

B.1. Arithmetic optimization [75]

B.1.1. Behavior

Basic math operations like Addition (+), Subtraction (−), Multiplication (·) and Divi-
sion (÷).

B.1.2. Phase changing variable

The algorithm strikes a balance between the exploration and exploitation phases using the
MOA (Math Optimizer Accelerated) operator, which is calculated using the formula below:

MOA(Ct) = Min + Ct

(Max −Min
Mt

)
(B.1.1)

where Ct is t-th or current iteration and its value is between 1 and the maximum number
of iterations, Mt, Max and Min are an accelerated function’s maximum and minimum
values, respectively. If the random number r1 is less than MOA, the exploration phase
begins; otherwise, the algorithm proceeds with the exploitation phase.

B.1.3. Exploration equations

Exploration is done using either a division or multiplication search strategy due to their
high dispersion property. The next position in exploration phase is determined using the
following equations and conditions:

MOP(Ct) = 1− Ct
1/α

Mt
1/α

(B.1.2)

xi,j(Ct + 1) =
{

best(xj)/(MOP + esp)((UBj − LBj)µ + LBj) if r2 < 0.5
best(xj) ·MOP((UBj − LBj)µ + LBj) otherwise

(B.1.3)

where MOP means Math Optimizer Probability, r2 = random number that decides operator,
Ct = current iteration, Mt = maximum iteration, MOP (Ct) = value of the coefficient at
t-th iteration, α = 5 is sensitive parameter that defines the exploitation accuracy over the
iterations, xi(Ct + 1) = i-th solution of the next iteration, xi,j(Ct) is i-th solution in the
j-th position for the current iteration, best(xj) is best-obtained solution so far in the j-th
position, esp = small integer number, LBj and UBj are the lower bound and upper bound
of the j-th position, respectively, µ = 0.5 is a controlling parameter that adjusts the search
process.

B.1.4. Exploitation equations

Subtraction and addition operators can quickly converge to a result in specific number of
iterations due to their low dispersion property, thus perfect for exploitation.The random

Article number 240107

41

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

number r3 is employed to select operator. The next position in the exploitation phase is
determined using the following equations and conditions:

xi,j(Ct + 1) =
{

best(xj)−MOP((UBj − LBj)µ + LBj) if r3 < 0.5
best(xj) + MOP((UBj − LBj)µ + LBj) otherwise

(B.1.4)

Exploitation search operators, addition and subtraction, try to avoid plunging in local
optima, and the stochastic nature of µ always allows exploration till the last iteration,
introducing diversity in solutions.

B.2. Jellyfish search optimization [76]

B.2.1. Behavior

Swarming behaviour of jellyfish for foraging purposes. The solution is represented by area
and its corresponding objective function depicting the quantity of food in that location.

B.2.2. Initialization

The population is initialized using a logistic map, Xi+1 = ρXi(1−Xi) where 0 ≤ X0 ≤ 1.
Xi is the chaotic logistic value of the i-th jellyfish’s location and X0 is a randomly generated
location. X0, Xi ∈ [0, 1], X0 /∈ {0.0, 0.25, 0.5, 0.75, 1.0}, and ρ = 4. If a jellyfish exceeds
the boundaries of the search space, it will be relocated within the boundaries using the
following equation:

X ′
i,d =

{
(Xi,d − Ub,d) + Lb(d) if Xi,d > Ubd

(Xi,d − Lb,d) + Ub(d) if Xi,d < Lbd

(B.2.1)

where Xi,d = location of the i-th jellyfish in d-dimensional search space, X ′
i,d = updated

location after checking boundary constraints, Lbd and Ubd are the lower and upper bounds
of search space. Jellyfish are attracted to places that have more nutrients or food. The new
updated position of jellyfish can be evaluated using the following equations:

Xi(t + 1) = Xi(t) + r1 ·
−−−→trend (B.2.2)

−−−→trend = X∗ − β · r2 · µ (B.2.3)

where (β > 0) = distribution coefficient related to the length of the
−−−→trend,

−−−→trend = direction
of ocean currents evaluated by averaging all the vectors from each jellyfish in the ocean to
the jellyfish currently in the best location, X∗ = jellyfish currently with the best location
in the swarm, ec = β · r2 is the attraction factor, µ = mean location of all the jellyfishes,
t = current iteration, r1, r2 = random numbers between [0, 1].42

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

B.2.3. Exploration equations

The new position in passive motion is determined using the following equation:

Xi(t + 1) = Xi(t) + η · rand(0, 1) · (Ub − Lb) (B.2.4)

where Lb and Ub are the lower and upper bounds of the search space, η = motion coefficient,
related to the length of motion around each jellyfish’s location.

B.2.4. Exploitation equations

The active motion of i-th jellyfish is determined by the relative position of randomly
selected j-th jellyfish. The following equations depict their movements:

Xi(t + 1) = Xi(t) + r3 ·
−−−−−−→Direction (B.2.5)

−−−−−−→Direction =
{

Xi(t)−Xj(t) if f(Xi) < f(Xj)
Xj(t)−Xi(t) if f(Xi) ≥ f(Xj)

(B.2.6)

where f(Xi), f(Xj) = objective function values of i-th and j-th jellyfish, respectively,
−−−−−−→Direction = vector of the active motion, r3 = random number between [0, 1], t = current
iteration.

B.2.5. Phase changing variable

Time control function c(t) is employed to decide the active and passive motion of jellyfish
inside the bloom and also their movements toward ocean currents. It is calculated using
the following formulae:

c(t) =
∣∣∣∣(1− t

tmax

)
· (2 · r4 − 1)

∣∣∣∣ (B.2.7)

where t = current iteration, tmax = maximum iterations, r4 ∈ [0, 1] = random number.
The control function c(t) fluctuates between 0 and 1 and decreases as iteration progresses.
If the value of (c(t) > C0), the jellyfish follows the ocean current, otherwise, the jellyfish
moves inside the jellyfish bloom. To determine the movement of jellyfish inside the swarm,
the function [1− c(t)] is employed. If (r4 > [1− c(t)]), passive motion is favored otherwise,
active motion is favored. That is how the algorithm converges to find an optimal solution
and stops when the end criteria are met.

B.3. Flow direction optimization [77]

B.3.1. Behavior

The drainage basin system.

Article number 240107

43

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

B.3.2. Initialization

It uses the D8 algorithm [107] to determine the flow direction of direct runoff (amount of
water remaining on the ground surface after precipitation and mislaying such as interception,
evapotranspiration, and infiltration). Direct runoff can be calculated using the formula:

rd =
M∑

m=1
(Rm − φδt) (B.3.1)

where φ = average amount of water loss during rainfall, Rm = rainfall, δt = time interval,
M = total number of time steps.

Flows are population in drainage basin/search space with height as its objective function.
Each flow, flows in a direction towards the lowest altitude with velocity V . The most
optimal objective function is the basin’s outlet point. Each flow with β neighbors has
a neighborhood radius of δ and total population members are α. The initial position of
flow is calculated using the following formula:

Flow_X(i) = lb + rand · (ub− lb) (B.3.2)

where ub and lb are upper and lower limits of the decision variables and rand is a random
number between [0, 1] with uniform distribution. The position of the neighboring j-th flow
can be determined using the following relation:

Nghbr_X(j) = Flow_X(i) + randn · δ (B.3.3)

where randn is a random value with a normal distribution, a mean of zero, and a standard
deviation of 1.

B.3.3. Phase changing variable

δ determines the phase of the algorithm. The small value of δ means exploitation, and
the large value means exploration. δ starts with a significant value and is reduced over
the iterations to support finding global solution and avoiding trapping in local optima.
Randomness is introduced for that.

δ = (rand ·Xrand − rand · Flow_X(i)) · ||Best_X − Flow_X(i)|| ·W (B.3.4)

where rand = random number, Xrand = random position calculated using (B.3.1), W =
non-linear weight with a random number from zero to infinity and is calculated using the
following relation:

W =
((

1− iter
Maxiter

)2·randn
)
·
(

rand · iter
Maxiter

)
· rand (B.3.5)

where rand is a random vector with uniform distribution.44

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

B.3.4. Learning equations

Over the iteration, W has large variation, Flow_X(i) is closer to Best_X, and the Euclidian
distance between Best_X and Flow_X(i) is reduced to zero, bringing us closer to optimal
solution. Each flow with V velocity moves towards the best neighbor. If the best neighbor
has a better fitness value than that of a current flow, the flow velocity vector is updated
using formula:

V = randn · S0 (B.3.6)

where S0 is the slope vector between the neighbor and the current position of the flow.
Random number randn reinforces exploration. The slope between neighbors i and j can be
evaluated using the following calculation:

S0(i, j, d) = Flow_ fit(i)−Nghbr_ fit(j)
||Flow_x(i, d)−Nghbr_x(j, d)|| (B.3.7)

where d is dimension of the problem. The new position can be calculated using following
equation:

NewFX(i) = Flow_X(i) + V · Flow_X(i)−Nghbr_X(j)
||Flow_x(i)−Nghbr_x(j)|| (B.3.8)

It is also possible that the fitness function of all neighbors is not less than the current
flow, and then the algorithm randomly chooses another flow. The following relation shows
how to simulate the flow direction under these conditions:

NewF_X(i) =

Flow_X(i) + randn · (Flow_X(r)− Flow_X(i))

if Flow_ fit(r) < Flow_ fit(i)
Flow_X(i) + 2randn · (Best_X − Flow_X(i))

otherwise

(B.3.9)

where r and randn are random integers.

B.4. Student psychology Based Optimization [78]

B.4.1. Behavior

The psychology of students making genuine efforts to improve their marks.

B.4.2. Learning equations

Students’ overall marks are enhanced if the marks in each subject they are offered improves.
Depending on their interest in a subject, the student may give more effort to improve
overall marks. Students are categorized into four types based on their psychology:

(i) Best Student. The student who has the maximum overall marks is said to be the
best student. They will try to maintain their position by putting in more effort than
any randomly chosen student. Improvement of the best student can be evaluated
using following equation:

Xbestnew = Xbest + (−1)k · rand · (Xbest −Xj) (B.4.1)

Article number 240107

45

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

where Xbest = marks obtained by best student, Xj = marks of randomly selected
j-th student, rand ∈ [0, 1] = random number, k = 1 or 2.

(ii) Good Student. The student who will try to give more effort in the subject of their
interest to improve overall performance is a good student. They are subject-wise
good students and are random because psychologies differ for each student.

Xnew i = Xbest + rand · (Xbest −Xi) (B.4.2)
Xnew i = Xi + rand · (Xbest −Xi) + rand · (Xi −Xmean) (B.4.3)

where Xi = marks of i-th student in that subject, Xmean = average marks of the
class in that subject, If the student tries to give more or a similar effort to that of
the best student, its improvement can be calculated using Eq (B.4.2). If the student
gives more effort than an average student and the effort provided by the best student,
their marks can be evaluated using Eq (B.4.3).

(iii) Average Student. While giving average effort to the subject, they will provide
more effort to other exciting subjects. Their improvement can be calculated using
the below formulae:

Xnew i = Xi + rand · (Xmean −Xi) (B.4.4)

(iv) Students trying randomly to improve. They give random efforts to the subject
irrespective of the students mentioned above. Their performance can be evaluated
using the following formulae:

Xnew i = Xmin + rand · (Xmax −Xmin) (B.4.5)

where Xmax and Xmin are the upper and lower bound on marks of the subject,
respectively.

B.5. Pathfinder optimization [79]

B.5.1. Behavior

Swarms for foraging, breeding, and hunting purposes.

B.5.2. Learning equations

Each individual is a candidate solution in a d-dimensional space having a position vector
as the fitness function. The algorithm is modeled to find prey as follows:

xt+1
i = xt

i + R1 · (xt
j − xt

i) + R2 · (xt
p − xt

i) + η, i ≥ 2 (B.5.1)

where t = current iteration, xi = position vector of the i-th search agent, xj = position
vector of the j-th search agent, xp = position of pathfinder (leader), R1 = αr1 and R2 = βr2,
r1, r2 ∈ [0, 1] = random numbers, α and β are randomly selected in the range of [1, 2], α =
coefficient of interaction that decides the magnitude of movement between two neighbors,
β = coefficient of attraction that decides the movement of the herd with the leader, η is
the vibration, which can be calculated using the following formulae:

η =
(

1− t

tmax

)
· u1 ·Dij , Dij = ||xi − xj || (B.5.2)46

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

where u1 ∈ [−1, 1] = random vector, Dij = distance between two members, tmax =
maximum iteration. The position of the pathfinder is updated according to the following
equation:

xt+1
p = xt

p + 2r3 · (xt
p − xt−1

p) + A (B.5.3)

where u2 and r3 are random vectors between [−1, 1] and [0, 1], respectively.

B.5.3. Phase Changing Variable

A is fluctuation factor, responsible for switching in the exploration and exploitation phases.
It is calculated as follows:

A = u2 · e
−2t

tmax (B.5.4)

The position of the pathfinder provides the global optimum solution and converges
with increasing iterations.

B.6. Sine Cosine Optimization [80]

B.6.1. Behavior

Sine and cosine functions.

B.6.2. Learning equations

The following equation decides the improved position and phase in Sine Cosine Optimization:

Xt+1
i =

{
Xt

i + r1 · sin(r2) · |r3P t
i −Xt

i |, r4 < 0.5
Xt

i + r1 · cos(r2) · |r3P t
i −Xt

ii|, r4 ≥ 0.5
(B.6.1)

and

r1 = a− t
a

T
(B.6.2)

where Xt
i = position of the current solution in the i-th dimension at the t-th iteration,

P t
i = position of the destination point in the i-th dimension, r1, r2, r3 and r4 are random

numbers, The r1 is adaptive change calculated using Eq. (B.6.2), which is responsible for
selecting the next search area; higher the value of r1, the greater is the search area, t =
current iteration, T = maximum number of iterations, a is a constant value, r2 parameter
decides the extent of the movement towards or away from the target and is in range [0, 2π].
r3 is in the range [−2, 2] and is a random weight score for the target that randomly asserts
(r3 > 1) or refutes (r3 < 1) the influence of the target in determining the distance. r4 is
used to switch between the sine and cosine functions and lies between [0, 1]. The algorithm
explores the search space when the sine and cosine functions range in (1, 2] and [−2,−1).
However, exploits when the range is in the interval of [−1, 1].

Article number 240107

47

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

B.7. Jaya Optimization [81]

B.7.1. Behavior

The value of function f(x), trying to get closer to f(x)best, the best value and avoid
f(x)worst, the worst value of function to be optimized.

B.7.2. Learning equations

If n is the number of candidate solutions (k = 1, 2, . . . , n) and m is number of design
variables (j = 1, 2, . . . , m), then Xj,k,i is the value of j-th variable for the k-th candidate
during i-th iteration. It is updated based on the following equation:

X ′
j,k,i = Xj,k,i + r1,j,i(Xj,b,i − |Xj,k,i|)− r2,j,i(Xj,w,i − |Xj,k,i|) (B.7.1)

where Xj,b,i and Xj,w,i is the best and worst value for j-th variable. r1,j,i and r2,j,i is the
random number between [0, 1]. If updated solution is better, it is accepted and becomes
input for next iteration.

B.8. Crow Search Optimization[82]

B.8.1. Behavior

Crow’s mindful and intelligent behavior of stealing and hiding food.

B.8.2. Learning equations

Crows live in flocks and remember the hiding place of their food. They follow each other
to steal the food and change their hiding places to avoid theft using probability. To begin
with, positions of N crows are randomly initialized in d-dimensional search space. With
iteration t, crow i will have memory of its hiding place, mi,t. This is the best position that
crow i has obtained so far.

Crows follow each other to search for the other food sources. Two cases arises, that is,
if crow knows it is being followed or not. If crow j doesn’t know that it is being followed
by crow i, crow i will change its position according to first case. If crow j knows it is being
followed by crow i, then random position is assigned. Following are the modeled equations:

xi,t+1 =
{

xi,t + ri · fli,t · (mj,t − xi,t) ri ≥ APj,t

random position otherwise
(B.8.1)

where ri ∈ [0, 1] is a random number and fli,t is the flight length of i-th crow at t-th iteration.
If value of fl is small, local search is favored otherwise global search is supported. APj,t

and mj,t is the awareness probability and memory of j-th crow at iteration t, respectively.
AP helps in switching phases as high value of AP helps in exploration, while small value
of AP guides toward exploitation. Memory function is updated as follows:

mi,t+1 =
{

F (xi,t+1) F (xi,t+1) < F (mi,t)
mi,k otherwise

(B.8.2)

where F (·) represents the objective function.48

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

B.9. Dragonfly optimization [83]

B.9.1. Behavior

Swarming behavior of dragonflies – hunting (static swarm) and migration (dynamic swarm).

B.9.2. Learning equations

Position of each search agent is updated with two vectors, step (∆X) and position (X).
Step vector represents direction of the movement of dragonflies and is calculated by adding
all the properties:

∆Xt+1 = sSi + aAi + cCi + fFi + eEi + w∆Xt (B.9.1)

where s, a, c, f, and e are the weights associated with Separation

Si = −
N∑

j=1
(X −Xj)

,

Alignment

Ai =
N∑

j=1
Vj

/
N

, Cohesion

Ci =
N∑

j=1
Xj

/
N −X

, Attraction
(
Fi = X+ −X

)
,

and Distraction (Ei = X− + X) of i-th search agent, N = total number of neighboring
agents, X = current agent, Xj = position of the j-th neighbor, Vj = velocity of the j-th
neighbor, X+ = position of the food, X− = position of the enemy, w = inertia weight, t =
iteration count. Position vector, Xt+1 = Xt + ∆Xt+1 is calculated next.

Swarming weights (s, a, c, f, e, and w) are tuned adaptively and the radii of neigh-
borhoods are increased proportional to the number of iterations to strike the balance
between exploration and exploitation. To add to the randomness and exploration of the
dragonflies movement, Lévy flight is being introduced in the new position as follows:
Xt+1 = Xt + LF ·Xt.

B.10. Krill herd optimization [84]

B.10.1. Behavior

Swarming and foraging behaviour of krills.

B.10.2. Learning equations

The position of a krill is dependent on three crucial factors – movement induced by other
krills (Ni), foraging motion (Fi), and random diffusion (Di). This is modeled by the
following equation:

dxi

dt
= Ni + Fi + Di (B.10.1)

Article number 240107

49

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

(i) Motion induced by other krills. The direction of motion induced for the i-th
krill is:

Nnew
i = Nmaxαi + ωnNold

i (B.10.2)

where Nmax = maximum speed induced, ωn = inertia weight of motion induced in
the range [0, 1], Nold

i = last motion induced, αi = αlocal
i + αtarget

i , αlocal
i = local effect

provided by the neighbors, αtarget
i = target direction effect provided by the best krill.

The impact of the neighboring krills in a krill movement is evaluated as follows:

αlocal
i =

n∑
j=1

K̂i,j x̂i,j (B.10.3)

where K̂i,j = normalized value of the similarity vector of the i-th krill, x̂i,j =
normalized value of related positions for the i-th krill, n = total number of neighboring
krills. K̂i,j is evaluated as:

K̂i,j = Ki −Kj

Kworst −Kbest (B.10.4)

where Ki and Kj are the fitness value of i-th and j-th neighboring krill, Kworst and
Kbest are the worst and best value of fitness for a krill so far, respectively, x̂i,j is
evaluated as:

x̂i,j = xj − xi

||xj − xi||+ ε
(B.10.5)

where xi and xj are the positions of i-th krill and neighboring j-th krill, ||xj − xi||
is the distance between j-th and i-th krill, ε is a small positive number added to
avoid singularities. A sensing distance (ds) is evaluated for each krill using formulae:

dsi = 1
5N

n∑
j=1
||xi − xj || (B.10.6)

wher dsi = sensing distance for the i-th krill, N = number of krills. Factor 5 is
empirically obtained. If the distance of two krills is less than the defined sensing
distance, they are neighbors. αtarget

i is the effect of a krill with the best fitness on
the i-th krill and leads to global optima. It is evaluated as follows:

αtarget
i = CbestK̂i,bestx̂i,best (B.10.7)

where K̂i,best = best objective function value of the i-th krill, x̂i,best = best position
value of the i-th krill, Cbest is the effective coefficient of the krill with the best fitness
to the i-th krill and is evaluated as:

Cbest = 2
(

rand + I

Imax

)
(B.10.8)

where rand ∈ [0, 1] = random number, I = current iteration, Imax = maximum
number of iterations.50

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

(ii) Foraging motion. The foraging motion of the i-th krill is a factor of two parameters,
first is the food location, and the second is the previous experience with the food
location and is calculated as:

Fi = Vf βi + wf F old
i (B.10.9)

where where Vf = parameter for tuning the foraging speed, βi = centroid location
of the i-th krill, wf = inertia weight of the foraging speed in the range [0, 1], F old

i =
last foraging motion value for the i-th krill. The centroid location of the i-th krill is
evaluated as follows:

βi = βfood
i + βbest

i (B.10.10)

where βbest
i = best objective function value for the i-th individual, βfood

i is centroid
attractive of the i-th krill and is determined as follows:

βfood
i = C foodK̂i,foodx̂i,food (B.10.11)

C food = 2
(

1− I

Imax

)
(B.10.12)

where K̂i,food and x̂i,food is the normalized value of the objective function and the
normalized value of the i-th centroid. The center of the individual’s food for each
iteration is calculated as:

xfood =

n∑
i=1

1
Ki

xi

n∑
i=1

1
Ki

(B.10.13)

The effect of the best objective function value of the i-th krill is evaluated as:

βbest
i = K̂i,ibestx̂i,ibest (B.10.14)

where K̂i,ibest and x̂i,ibest is the best previous objective function value, and the best
previously visited centroid of the i-th krill. The movement induced by other krills
and forging movement decrease with increasing iterations.

(iii) Physical diffusion. Physical diffusion is the net movement of each krill from
high-density to low-density regions. Physical diffusion for the i-th krill is determined
as:

Di = Dmax

(
1− I

Imax

)
ρ (B.10.15)

where Dmax = parameter for tuning the diffusion speed, ρ refers to an array containing
random values between [1, 1].

(iv) Updating the krills. The motion is induced by other krills, foraging motion, and
physical diffusion change each krill’s position toward the best objective function
using the following equation:

xi(I + 1) = xi(I) + ∆t
dxi

dt
(B.10.16)

Article number 240107

51

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

∆t = Ct

n∑
i=1

(UBi − LBi) (B.10.17)

where ∆t = sensitive constant, n = total krills, LBi and UBi are the lower and upper
bounds of the i-th individual, Ct = constant value between [0, 2] used as a scale
factor of the speed vector.

B.11. Multi-verse optimization [85]

B.11.1. Behavior

The multi-verse theory, which implies that multiple universes have their own physical laws
and an inflation rate that causes their expansion in space.

B.11.2. Learning equations

Universes interact through white holes, black holes, and wormholes. White holes play
a significant role in the birth of the universe and have a high inflation rate. Black holes
have a colossal gravitational force that gulps everything inside, even light. Wormholes are
tunnels through which objects can travel among universes or galaxies. The fitness function
of each universe/solution is proportional to the inflation rate. Initially, universes are sorted
according to their inflation rates and one is selected randomly through the roulette wheel
mechanism to be a white hole. This is done by the following equation:

xj
i =

{
xj

k r1 < NI (Ui)
xj

i r1 ≥ NI (Ui)
(B.11.1)

where U [n, d] = matrix represents the complete universe with all elements, d = total
number of parameters, n = number of universes, xj

i = j-th parameter in the i-th universe,

NI is normalized inflation rate of the i-th universe, r1 ∈ [0, 1] = random number, xj
k =

j-th parameter of the k-th universe chosen by roulette wheel. This allows universes to
exchange objects and improve inflation rates. Things are also randomly exchanged between
universes through wormholes, and it is assumed that wormholes are established between
others and the best universe formed yet. This mechanism can be formulated as follows:

xj
i =

{

Xj + TDR · ((ubj − lbj) · r4 + lbj) r3 < 0.5
Xj − TDR · ((ubj − lbj) · r4 + lbj) r3 ≥ 0.5

r2 < WEP

xj
i r2 ≥WEP

(B.11.2)

where Xj is the j-th parameter of the best universe obtained so far, ubj and lbj are the

upper and lower bound values of the j-th variable, xj
i is the j-th parameter of the i-th

universe, and r2, r3, r4 are random numbers between [0, 1], WEP and TDR are coefficients
used in the equation and can be calculated using the formula:

WEP = min + l ·
(max −min

L

)
(B.11.3)52

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

TDR = 1− l1/p

L1/p
(B.11.4)

where WEP (Wormhole Existence Probability) increases linearly over iterations to support
exploitation, L = maximum number of iteration, l = current iteration, max and min are 1
and 0.2 by default, TDR (Traveling Distance Rate) defines the distance rate by which an
object can be transferred to the best universe obtained yet, p = 6 is exploitation precision,
the higher its value, the faster the exploitation.

B.12. Symbiotic organisms search [86]

B.12.1. Behavior

The symbiotic relationships that exist between paired organisms to survive in the ecosystem.

B.12.2. Learning equations

Each organism in an algorithm is a solution in the d-dimensional search space, and they
are refined through three phases applied serially. The three phases are explained as follows:

(i) Mutualism. Mutualism relationship benefits both the interacting organisms. Let
Xi is an organism in search space, and Xj is a random candidate interacting with
i-th organism to increase mutual survival advantage. Their positions are updated
according to the following equations:

X∗
i = Xi + rand(0, 1) · (Xbest −Mutual Vector ·BF1) (B.12.1)

X∗
j = Xj + rand(0, 1) · (Xbest −Mutual Vector ·BF2) (B.12.2)

Mutual Vector = Xi + Xj

2 (B.12.3)

where rand is a random function that produces a number between 0 and 1, Xbest is
the best position searched by all organisms yet or best fitness value, BF1 and BF2 are
the benefit factor of i-th and j-th organism, respectively. Their values are either 1 or 2.

(ii) Commensalism. Commensalism only benefits one organism, and the other one
remains unaffected. The interaction between Xi and Xj is updated as follows:

X∗
i = Xi + rand(−1, 1) · (Xbest −Xj) (B.12.4)

where only Xi is benefited from the interaction while Xj neither benefits nor gets
harmed from it. (Xbest −Xj) represents that benefit.

(iii) Parasitism. In this phase, only one candidate benefits and the relationship harms
the other candidate. Parasite Vector is created in search space by copying Xi to
interact with host Xj . Parasite Vector replaces Xj if it has better fitness value;
otherwise, Xj survives.

Xj =
{

PV if f(PV) > f(Xj)
Xj if f(PV) ≤ f(Xj)

(B.12.5)

where PV is a parasite vector and f(·) represents fitness function.

Article number 240107

53

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

B.13. Flower pollination optimization [87]

B.13.1. Behavior

The reproduction mechanism of flowers through pollination in nature.

B.13.2. Exploration equations

When pollinators such as bees that can fly far and may portray Lévy flight behavior,
contributes to cross-pollination and are considered global pollination. For single objective
problems, it can be assumed that each plant has only one flower, and each flower has only
one pollen, referred to as a solution xi. Global pollination ensures the reproduction of the
most fittest flowers and can be represented as g∗. Consistency of a flower is its reproduction
probability and can be calculated using the following formula:

xt+1
i = xt

i + L(xt
i − g∗) (B.13.1)

where xt
i is the solution vector at iteration t for pollen i and g∗ is the best solution found

yet. L is the step size drawn from Lévy flight distribution, it can be evaluated as:

L ∼
λΓ(λ) sin(πλ/2)

π

1
s1+λ

, (s� s0 > 0) (B.13.2)

where Γ(λ) is the standard gamma function with an index λ. This distribution works for
large step sizes, s > 0.

B.13.3. Exploitation equations

Local pollination is when self-pollination happens through abiotic means. For local pollina-
tion, flower consistency is calculated as follows:

xt+1
i = xt

i + ε(xt
j − xt

k) (B.13.3)

where xt
j and xt

k are pollens from the different flowers of the same plant species. If xt
j and

xt
k are selected from the same population and ε is from a uniform distribution in [0, 1],

this equation will represent the local random walk. The switch between local and global
pollination is controlled by parameter p which ranges between [0, 1].

B.14. Teaching learning based optimization [88]

B.14.1. Behavior

The traditional teaching-learning phenomenon of a classroom.54

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

B.14.2. Learning equations

The teacher tries to train learners in the best way possible to increase their level of
knowledge. All the learners are the population and the teacher is the best solution. Design
variables are different subjects taught in the class, and the result is analogous to the fitness
value. Teaching is done in two phases:

(i) Teacher Phase. Learners learn from best learner, i.e., teacher. Teacher tries to
elevate the mean of class, best to his abilities. Let, Mi be the mean of class result
and Ti be the teacher at any iteration i. Ti will try to improve Mi to Mnew. So, new
solution is updated according to the following equation:

Xnew,i = Xold,i + ri(Mnew − TF Mi) (B.14.1)

where ri ∈ [0, 1] = random number, TF is a teaching factor that can have value
either 1 or 2. It is a heuristic step and decided randomly with equal probability as
TF = round(1 + rand(0, 1){2− 1}).

(ii) Learner Phase. Learners learn from teachers or among themselves through pre-
sentations, discussions or formal communication. A learner will gain knowledge
if another learner has more knowledge than him. For leaner Xi in the class, the
updating mechanism is as follows:

newXi =
{

Xi + rand · (Xi −Xk) f(Xi) < f(Xk)
Xi + rand · (Xk −Xi) otherwise

(B.14.2)

where newXi = new positions of the i-th learner Xi, Xk = random learner from the
class, f(Xi) = fitness values of the learner Xi, f(Xk) = fitness values of the learner
Xk, rand ∈ [0, 1] = random number.

B.15. Gravitational search optimization [89]

B.15.1. Behavior

Newton’s law of gravity and the second law of motion.

B.15.2. Learning equations

Each agent has its Position X, Active Gravitational Mass (Ma), Passive Gravitational
Mass (Mp), and Inertial Mass (Mi). The position is the solution of the problem and masses
are evaluated using the fitness function. Gravitational force applies to all agents; thus
global movement of all agents is forced towards heavier masses supporting exploitation
and an optimum solution in the search space. The system of N agents with their initial
positions is defined as follows:

Xi = (x1
i , x2

i , . . . , xd
i , . . . , xn

i) for i = 1, 2, . . . , N. (B.15.1)

where xd
i is the position of the i-th search agent in the d-th dimension. At any given time

t, the gravitational force acting between agent i and agent j is:

F d
ij(t) = G(t)Mpi(t) ·Maj(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)) (B.15.2)

Article number 240107

55

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

where Mpi = passive gravitational mass of the i-th object, Maj = active gravitational mass
of the j-th agent, ε is a constant, G(t) = gravitational constant at time t, Rij(t) is the
Euclidean distance between two agents i and j, can be calculated as:

Rij(t) =

√√√√ n∑
k=1

(Xik(t)−Xjk(t))2 (B.15.3)

To support exploration, a random factor is added to the total force acting on an agent.
It can be represented as:

F d
i (t) =

N∑
j=1,j 6=i

randj F d
ij(t) (B.15.4)

where randj is a random number between [0, 1]. According to the law of motion, acceleration
of the i-th agent in the d-th dimension at time t is:

ad
i (t) = F d

i (t)
Mii(t)

(B.15.5)

where Mii is the inertial mass of the i-th agent. The next velocity and position of i-th
agent can be updated using following formulas:

vd
i (t + 1) = randi · vd

i (t) + ad
i (t) (B.15.6)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (B.15.7)

where randi is a uniform random number in between [0, 1]. The gravitational constant will
be reduced over time to control the search accuracy. If it is assumed that gravitational and
inertial masses are equal, they can be updated as follows using the map of fitness:

Mai = Mpi = Mii = Mi, i = 1, 2, . . . , N. (B.15.8)

Mi(t) = mi(t)
N∑

j=1
mj(t)

(B.15.9)

mi(t) = fiti(t)− worst(t)
best(t)− worst(t) (B.15.10)

best(t) = min
j∈{1,2,...,N}

fitj(t) (B.15.11)

worst(t) = max
j∈{1,2,...,N}

fitj(t) (B.15.12)

where fiti(t) is the fitness value of the i-th agent at time t. The number of agents over
iteration reduces to maintain a robust balance between exploration and exploitation, so
only heavy mass agents apply their force on other agents stored as Kbest. It is the function
of time, and has an initial value of K0 which decreases with time. Initially, all search agents56

Article number 240107

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

Shivani Jain, Anju Saha e-Informatica Software Engineering Journal, 18 (2024), 240107

apply the force, and with each iteration, Kbest is linearly reduced and in the end, there
will be just one agent applying force to the others. Therefore, force is updated as:

F d
i (t) =

∑
j∈Kbest,j 6=i

randj F d
ij(t) (B.15.13)

where Kbest is the set of first K agents with the best fitness value and biggest mass.

B.16. Biogeography-based optimization [90]

B.16.1. Behavior

The migration of species between islands.

B.16.2. Learning equations

Habitats with good and favorable living conditions have high Habitat Suitability Index
(HSI), represents good solutions and have high emigration rate and low immigration rate.
Islands with low HSI represent poor solutions but have a high immigration rate due to their
sparse species count and low emigration rate. Immigration and emigration rates are fitness
functions of a habitat. The factors influencing HSI are called Suitability Index Variables
(SIVs) and are considered to be the independent variables of the habitat. The algorithm
has two main steps, migration and mutation.

(i) Migration. It is a probabilistic operator that improves a habitat Hi. Each habitat’s
migration rate is used to share features between habitats. For each habitat Hi, its
immigration rate (λi) is used to decide whether or not to immigrate. If immigration
is selected, the emigrating habitat Hj is selected probabilistically based on the
emigration rate (µi). Rates and Migration are defined as follows:

µi = Ei

N
(B.16.1)

λi = I

(
1− i

N

)
(B.16.2)

Hi(SIV)← Hj(SIV) (B.16.3)

where N is the total population size.
(ii) Mutation. It is a probabilistic operator that randomly modifies a habitat’s SIV

based on the habitat’s a priori species count probability. The purpose of mutation
tends to increase diversity among the population. For low HSI solutions, mutation
gives them a chance to enhance the quality of solutions, and for high HSI solutions,
the mutation can improve them even more than they already have.

Article number 240107

57

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-7/

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240108, DOI: 10.37190/e-Inf240108

Automated Code Reviewer Recommendation
for Pull Requests

Mina-Sadat Moosareza∗ , Abbas Heydarnoori∗∗

∗Independent Researcher
∗∗Department of Computer Science, Bowling Green State University

m.s.moosareza@gmail.com, aheydar@bgsu.edu

Abstract
minu.15em Background: With the advent of distributed software development based
on pull requests, it is possible to review code changes by a third party before integrating
them into the master program in an informal and tool-based process called Modern Code
Review (MCR). Effectively performing MCR can facilitate the software evolution phase
by reducing post-release defects. MCR allows developers to invite appropriate reviewers
to inspect their code once a pull request has been submitted. In many projects, selecting
the right reviewer is time-consuming and challenging due to the high requests volume and
potential reviewers. Various recommender systems have been proposed in the past that
use heuristics, machine learning, or social networks to automatically suggest reviewers.
Many previous approaches focus on a narrow set of features of candidate reviewers, in-
cluding their reviewing expertise, and some have been evaluated on small datasets that
do not provide generalizability. Additionally, it is common for them not to meet the
desired accuracy, precision, or recall standards.
Aim: Our aim is to increase the accuracy of code reviewer recommendations by calcu-
lating scores relatively and considering the importance of the recency of activities in an
optimal way.
Method: Our work presents a heuristic approach that takes into account both candidate
reviewers’ expertise in reviewing and committing, as well as their social relations to
automatically recommend code reviewers. During the development of the approach, we
will examine how each of the reviewers’ features contributes to their suitability to review
the new request.
Results: We evaluated our algorithm on five open-source projects from GitHub. Results
indicate that, based on top-1 accuracy, top-3 accuracy, and mean reciprocal rank, our pro-
posed approach achieves 46%, 75%, and 62% values respectively, outperforming previous
related works.
Conclusion: These results indicate that combining different features of reviewers, in-
cluding their expertise level and previous collaboration history, can lead to better code
reviewer recommendations, as demonstrated by the achieved improvements over previous
related works.
Keywords: Automated code reviewer recommendation, Modern code review,
Heuristic algorithms.

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 20 Dec. 2023; Revised: 24 Mar. 2024; Accepted: 5 May 2024; Available online: 31 Jul. 2024

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0007-3933-2810
https://orcid.org/0000-0001-9785-2880

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

1. Introduction

The process of code review previously involved third parties inspecting code in face-to-face
meetings before integrating code into the master branch to find and fix any problems.
Due to its potential to significantly impact post-release quality, it has drawn considerable
attention in the software industry. It is becoming more common to observe software systems,
especially open-source ones, being developed by programmers from different geographic
locations. There are powerful tools, such as GitHub, supporting this process by the means
of pull requests. A pull request is an event where a contributor develops a code change
and requests owners to merge it with the main program. This new program development
method requires a different style of code review, called Modern Code Review (MCR). The
process of MCR is tool-based and informal, where the developer invites the appropriate
reviewer to inspect the code for integration after sending a pull request.

The code review process is costly because the reviewer must read, understand, and
critique the code. For this reason, the author is recommended to select programmers
knowledgeable about and capable of analyzing the modified sections. This is difficult
and time-consuming as the pull requests volume of many projects is high. Furthermore,
determining who is the most appropriate reviewer for a new pull request is more challenging
in MCR since project participants’ capabilities are unknown. Study [1] found that 4% to
30% of code reviews have problems assigning reviewers, in which case it takes 12 additional
days for changes to be approved. Meanwhile, [2] suggests that reviewing new code changes
can reduce post-release defects of software and thus improve its quality. Therefore, assign-
ing code reviewers is a major problem in software engineering, and automated reviewer
recommendations could be very useful.

There have been a variety of approaches (e.g., [2–4]) proposed to automatically suggest
appropriate reviewers in order to resolve the above issue. The following factors are primarily
considered for this purpose: reviewer expertise in terms of her previous reviews or commits
on changed files (e.g., [3, 5]), number of reviewer collaborations with the new pull request
author in the project (e.g., [6, 7]), reviewer activity based on the number of previous reviews
and commits the reviewer has made on all project files (e.g., [8]), and workload based on the
number of open reviews assigned to her (e.g., [9]). The majority of previous studies have
focused on just one or two of the features mentioned above. Our experimental evaluations
did indicate, however, that combining these features would allow us to recommend more
appropriate reviewers.

This observation led us to develop a heuristic-based approach to recommending reviewers.
Our algorithm calculates three different scores for each candidate reviewer: review expertise,
commit expertise, and collaboration history. Then, we combine them using a weighted sum.
Our experiments determine the relative importance of each feature in selecting an appropriate
reviewer based on these weights. Previous approaches also sometimes are evaluated on small
datasets, which negatively impacts the generalizability of the results. To mitigate this issue,
we evaluate our proposed algorithm on a large dataset of five GitHub projects [10]. We show
that our proposed approach achieves 46%, 85%, and 92% in terms of top-1 accuracy, top-3
accuracy, and mean reciprocal rank, respectively. In summary, this paper has the following
contributions:
– Introducing a new heuristics-based approach to automate reviewer recommendations for

pull requests.
– Taking into account all three feature categories of review expertise, commit expertise,

and collaboration.2

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

– Quantitatively evaluating the proposed approach and indicating that it outperforms
existing approaches.
This paper is organized as follows. In Section 2, we explain our new algorithm for code

reviewer recommendation. Section 3 shows the evaluation setup, qualitative and quantitative
results, and threats to validity. In Section 4, we discuss the pros and cons of our proposed
approach. Section 5 reviews related work, and a conclusion and upcoming direction are
presented in Section 6.

2. Proposed approach

Figure 1 illustrates the overall process of our heuristic solution. The previous review
recommenders considered a variety of features when selecting candidates. Our approach
takes expertise and collaboration into account, and we will report that the activity feature

calculation of the final
score of each candidate

project
records
dataset

new pull-request
information (including

author, time and
changed files)

extraction of candidate
reviewers

extraction of pull-request
information of any previous

review (including author, time
and path of changed files)

extraction of previous
reviews information

(including reviewer, time
and path of changed files)

extraction of previous
commits information

(including the commiter, time
and path of changed files)

a) initial data preparation

calculation of each
candidate's commit

score

extraction of all
previous commits on
the new pull-request's

last-level packages

extraction of all
previous commits on
the new pull-request's

penultimate level
packages

extraction of all
previous reviews on
pull-requests of the

new pull-request
author

calculation of each
candidate's

collaboration score

calculation of each
candidate's review

score

extraction of all
previous reviews on
new request's files

extraction of all
previous reviews on

the new pull-request's
last-level packages

b) calculation of commit scorec) calculation of
collaboration scored) calculation of review score

sort people by scores in
descending order

sorted list of most
relevant reviewers

e) ranking

Figure 1. Overview of the proposed approach

Article number 240108

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

was excluded from our algorithm as it had not provided any significant improvements.
Initially, the primitive data needed for subsequent steps are extracted from the existing
dataset as shown in section (a). Following this, each person’s score is calculated in three
parallel processes (b), (c), and (d) considering their experience of commitment, review, and
collaboration. The final score of each candidate is determined by combining all these scores
in section (e). Afterward, the output will be a list of candidates sorted by their final scores.

We had to examine the effect of each change on the original formula during the
development of our heuristic algorithm. These intermediate evaluations were conducted
using the dataset provided by [10], which includes five GitHub projects. Details of this
dataset are provided in Section 3.

2.1. Scores definition

This study focuses on three categories of features; collaboration, activity, and expertise,
including experience of review and commitment, which will be briefly described below:
– Review score. Most reviewer recommendation methods take into account the reviewer’s

experience, and its importance has always been emphasized. In [11], the authors provide
a review ownership criterion. They demonstrated that if developers participate actively in
reviews, they could specialize in related code snippets. Several reviewer recommendation
systems, such as those presented in [3, 5, 12], are based on review experience, and its
importance has been highlighted in articles [13–15].

– Commit score. The authors of [16] indicated that developers who make plenty of
changes to portions of a program code should be considered owners of those parts. The
findings of [17] suggest that individuals are more likely to review changes they have
experience with. As part of their proposed approaches, some previous automated reviewer
recommendation systems, such as [5, 8, 9], have also considered commit experience.
Also, in [15] it is mentioned that the level of the reviewer’s commit experience impacts
the usefulness of the review.

– Collaboration score. Collaboration score refers to a candidate reviewer’s involvement
with previous pull requests made by the new request’s author. In some articles in the
reviewer’s recommendation area, including [17, 18], the importance of relationships
between the candidate reviewer and the pull request author is emphasized in addition
to expertise. Some of the previous automated reviewer recommendation approaches,
such as the articles [6, 7, 9] approaches, have also benefited from collaboration score in
addition to expertise. As a result, some previously automated reviewer recommendation
approaches, such as [6, 7, 9], included collaboration scores along with expertise scores.

– Activity score. Lastly, some articles, such as [8] which proposed a way to recommend
code reviewers, introduced a score that can be called activity. Level of activity indicates
how actively a candidate participated in review processes throughout the project.

2.2. Initial formulation of scores

The first step was to calculate each score based on a relation introduced in previous articles.
We then made appropriate changes to these relationships to improve them gradually during
the steps described in the following subsections. In this research, the relationships presented4

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

in [5] are used to calculate the initial score of review and commit based on (1) and (2),
respectively:

ReviewScore(r) =
∑
f∈F

nreview(r, f) 1
treview(r, f) +

∑
d∈D

nreview(r, d) 1
treview(r, d) (1)

CommitScore(r) =
∑
f∈F

nchange(r, f) 1
tchange(r, f) +

∑
d∈D

nchange(r, d) 1
tchange(r, d) (2)

assuming F is the set of files changed in the new pull request, while D represents the set
of last-level parent directories. nreview(r, f) and nchange(r, f) indicate how many reviews
and commits were done by reviewer r for file f , whereas nreview(r, d) and nchange(r, d) refer
to the number of previous reviews and commits that r performed on the files in directory
d, respectively. Furthermore, treview(r, f) and tchange(r, f) reflect the time elapsed since
reviewer r last reviewed and committed file f , while treview(r, d) and tchange(r, d) represent
how long has passed since the last review and commit on directory d by reviewer r,
respectively. In the fractions of the final score, these time coefficients appear at the
denominators, so that as time passes since a review or commit, its effect decreases.

To calculate the initial score of collaboration, we used the relation presented in [6],
which is calculated according to the (3):

CollaborationScore(r) = ncollaboration(r, a) (3)

where a refers to the author of the new pull request, and ncollaboration(r, a) is the number
of collaborations between a and reviewer r, i.e., the number of pull requests authored by a,
and reviewed by r.

To calculate the initial activity score, we used the relation presented in [8], which is
calculated according to the (4):

ActivityScore(r) =
∑

t<360
nreview(r, t) (4)

where
∑

t<360
nreview(r, t) means the number of times which r has reviewed a pull request of

the whole project in the past year.

2.3. Relative formulation of reviews and commit scores

Assume there are two cases in which reviewer r reviewed file f twice and last reviewed it
one day ago, but in one case, the file has already been reviewed twice in total, while in the

other, it has been reviewed a hundred times. In both cases the value of nreview(r, f)
treview(r, f) will

be equal to 2. However, we know that the level of expertise of the reviewer r on the file
f relative to all project reviewers is much higher in the first case than in the second one.
Because in the first case, 100% of the review history of f belongs to r, but in the second,
this value is only two percent, and there may be people with more experience on f in the
project. Therefore, like [3, 8], we decided to calculate the review and commit experience

Article number 240108

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

score in relative terms as (5) and (6), respectively:

ReviewScore(r) =
∑
f∈F

nreview(r, f)
σr′∈Rnreview(r′, f) · 1

treview(r, f)+

+
∑
d∈D

nreview(r, d)
σr′∈Rnreview(r′, d) · 1

treview(r, d) (5)

CommitScore(r) =
∑
f∈F

nchange(r, f)
σr′∈Rnchange(r′, f) · 1

tchange(r, f)+

+
∑
d∈D

nchange(r, d)
σr′∈Rnchange(r′, d) · 1

tchange(r, d) (6)

where R is the list of all people who have provided reviews for the project, and σr′∈Rnreview(r′, f)
and σr′∈Rnreview(r′, d), respectively, denote all reviews on file f and directory d. Also,
σr′∈Rnchange(r′, f) and σr′∈Rnchange(r′, d) indicate how many commits are done on file f
and directory d, respectively. We examined both absolute and relative formulas separately
on our dataset to test the validity of our hypothesis regarding the importance of the relative
review experience of candidates. The observations showed an improvement in the results of
the review and commit scores in the relative state. Relative calculation of collaboration and
activity scores is meaningless because they are calculated regardless of the files under review.

2.4. Applying the impact of time factor

We have already seen that the time factor is at the denominator of the fractions in the
initial review score formula, to reduce the impact of older reviews. However, the relationship
between the time elapsed since candidates’ last review and their expertise is not always
linear. After reviewing a file, at first, a person’s level of expertise in the file decreases
dramatically with each passing day, as a result of him slowly forgetting the contents of the
file, and on the other hand, the content of the file altered by others over time. However, if
a person has not reviewed a file for a long time, such as a year, the daily passage of time
does not have a significant impact on his or her level of expertise because he or she has
probably forgotten most of its contents and the file has changed more frequently.

Therefore, instead of using a linear relationship to calculate the effect of time in the
denominator of fractions, we can use a relationship whose slope is initially high and then
gradually decreases. This can be accomplished by considering relations like logarithms or
second or higher roots for the time at the denominator. This explanation holds for the scores
for collaboration, commitment, and activity, as well. We used our dataset to test the scoring
formula by substituting different time coefficients since it has only been considered linearly
in previous articles. For all scores, we found that the presence of the third root of the time
in the denominator provided the best results. There is an average accuracy deduction with
higher roots. Therefore, the formulas for calculating review, commit, collaboration, and
activity scores are modified as (7), (8), (9) and (10), respectively:

ReviewScore(r) =
∑
f∈F

nreview(r, f)
σr′∈Rnreview(r′, f) · 1

3
√

treview(r, f)
+

6

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

+
∑
d∈D

nreview(r, d)
σr′∈Rnreview(r′, d) · 1

3
√

treview(r, d)
(7)

CommitScore(r) =
∑
f∈F

nchange(r, f)
σr′∈Rnchange(r′, f) · 1

3
√

tchange(r, f)
+

+
∑
d∈D

nchange(r, d)
σr′∈Rnchange(r′, d) · 1

3
√

tchange(r, d)
(8)

CollaborationScore(r) = ncollaboration(r, a) · 1
3
√

tcollaboration(r, a)
(9)

ActivityScore(r) = (
∑

t<360
nreview(r, t) · 1

3
√

treview(r)
(10)

In which tcollaboration(r, a) and treview(r) refer to the time elapsed since the last review
of r on the pull requests of the author of the new request and the project as a whole,
respectively.

2.5. Examining reviews and commit scores for directories of previous levels

Using the track record of candidates committing and reviewing on the last-level directo-
ries, [5] encouraged us to test the effect on earlier-level directories as well. Considering
review scores for directories at earlier levels did not improve the results, according to our
experimental findings. On the other hand, the penultimate and last-level directories yielded
the best results for the commit score.

The following may be the reason for the better results of commit experience on
penultimate level directories over files. In a development environment, it is common for
developers to repeatedly make changes to the same file once they have committed to it
and familiarized themselves with its content. So, in many cases, the person who has the
most experience committing on the file is the modifier of the pull request and should not
be chosen as a reviewer. Additionally, files in the same path as a file usually contain similar
content. The committers of these files may therefore have become acquainted with the file
content during their committing. So, we changed the calculation formula for the commit
score to be as (11):

CommitScore(r) =
∑

d1∈D1

nchange(r, d1)
σr′∈Rnchange(r′, d1) · 1

3
√

tchange(r, d1)
+

+
∑

d2∈D2

nchange(r, d2)
σr′∈Rnchange(r′, d2) · 1

3
√

tchange(r, d2)
(11)

where D1 refers to the last-level directories of files that changed in the new pull request.
As well, D2 means the set of changed files’ parent directories in the level preceding the last
level.

Article number 240108

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

2.6. Determining Optimal Coefficients

The work presented in [5] and other articles which combine different scores by adding values,
such as [3, 9], assume the same coefficients for all sentences. However, this assumption
is not necessarily correct. Thus, we performed multiple experiments to obtain relative
coefficients for each of the scores while combining them to optimize the results. We derived
the coefficients through iterative experimentation, selecting those that yielded the most
favorable experimental outcomes. AT first, we assigned a coefficient of one to the commit
score, as among the various scores calculated, it exhibited the weakest correlation with
reviewer suitability for new request reviews. Subsequently, we explored different coefficients
for the review score, evaluating the list of recommended reviewers and their Mean Reciprocal
Rank (MRR) in each instance. Accordingly, we calculated the appropriate coefficients for
the two-sentence scores of review and commit, resulting in (12) and (13), respectively.

ReviewScore(r) = 1.25 ·
∑
f∈F

nreview(r, f)
σr′∈Rnreview(r′, f) · 1

3
√

treview(r, f)
+

+
∑
d∈D

nreview(r, d)
σr′∈Rnreview(r′, d) · 1

3
√

treview(r, d)
(12)

CommitScore(r) =
∑

d1∈D1

nchange(r, d1)
σr′∈Rnchange(r′, d1) · 1

3
√

tchange(r, d1)
+

+ 1.25 ·
∑

d2∈D2

nchange(r, d2)
σr′∈Rnchange(r′, d2) · 1

3
√

tchange(r, d2)
(13)

Next, we employed a similar approach to determine the coefficient for the collaboration
score. We combined the review and commit scores, then combined them with the scores
of collaboration and activity, determining the optimal coefficient for each. As for the
activity score, we found that the best result was achieved with a coefficient of about 0.002.
Therefore, the impact of the activity score is very small compared with the combination
of the commit, review, and collaboration scores. Additionally, adding the activity score
improved the results in only three out of five projects. With these observations, we can
discard activity score when formulating heuristic relation and rely on the scores of expertise,
including review and commitment, as well as collaboration. This is especially true when
we observe that the average improvement of the result is only about 0.001, which is very
small. Finally, the following relation (14) is our proposed heuristic relation:

ReviewerScore(r) = 7.7344 ·
∑
f∈F

nreview(r, f)
σr′∈Rnreview(r′, f) · 1

3
√

treview(r, f)

+ 6.1875 ·
∑

d1∈D1

nreview(r, d1)
σr′∈Rnreview(r′, d1) · 1

3
√

treview(r, d1)

+ 2.25 ·
∑

d1∈D1

nchange(r, d1)
σr′∈Rnchange(r′, d1) · 1

3
√

tchange(r, d1)8

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

+ 2.8125 ·
∑

d2∈D2

nchange(r, d2)
σr′∈Rnchange(r′, d2) · 1

3
√

tchange(r, d2)

+ ncollaboration(r, a) · 1
3
√

tcollaboration(r, a)
(14)

3. Evaluations

In this section, we present our approach evaluation setup and report the results. We then
compare it to previous related works and find that the proposed approach performs better.

3.1. Evaluations questions

We evaluated our approach to answer the following research questions:
1. What is the accuracy, precision, and recall of our code reviewer’s recommendations?
2. Regarding the MRR of our approach, how is the quality of code reviewers ranking?
3. Is our algorithm superior to previous related works in terms of functionality and results?

3.2. Evaluations setup

The first step toward evaluating our approach is to submit a new pull request to our
system as input. Having calculated the scores, the system produces the ranked list of
reviewers as the output. Afterward, we evaluate the results using a set of criteria derived
from the literature. The more actual reviewers there are on our suggested list, the better
the algorithm functions.

We have written a code that completely automates our evaluations. Therefore, the
personal opinions of evaluators do not affect the evaluation results. Furthermore, we
compare our heuristic algorithm’s results with those of previous related work to better
judge its effectiveness. We will present the dataset, the evaluation criteria, and the previous
work we chose to compare with our method results in the following subsections.

3.2.1. Dataset

Our analysis and evaluation of the proposed solution is based on the publicly available
data presented in [10]. Due to its comprehensiveness and the fact that it covers a long
period, the dataset is reliable and usable. The entire dataset is derived from nine projects
on GitHub and Gerrit. The dataset we used for our research is only from its GitHub
projects. There are records of five projects starting with their first pull request up until
early 2020 in our dataset. As a result of the different sizes and languages used in these
projects, the dataset has a favorable generality. There are only about 1 200 pull requests in
the Zookeeper project, for instance. Meanwhile, there are more than 27 000 pull requests
in the Spark project. In addition, on average, selected projects on GitHub have around
sixteen thousand stars and more than ten thousand forks, which indicates high credibility
and popularity.

This dataset contains no review date. Using the GitHub Rest API, we compiled the
review dates for all five projects’ pull requests. Our final dataset includes the author name,

Article number 240108

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

Table 1. Specification of dataset used for evaluation

Project name Number of total Number of test Number of candidate
pull requests pull requests reviewers

Zookeeper 780 156 194
Kafka 5 492 549 877
Beam 6 966 697 761
Flink 5 928 593 925
Spark 16 977 1 698 2 369

Table 2. Minimum, maximum, mean and median number of reviewers for pull requests

Project name Minimum number Maximum number Mean number Median number
of reviewers of reviewers of reviewers of reviewers

Zookeeper 1 6 1.98 2
Kafka 1 17 1.84 2
Beam 1 11 1.37 1
Flink 1 9 1.44 1
Spark 1 14 1.98 2

creation date, and path of modified files in each pull request, the author name, the modified
files, and the commit date for each commit, as well as the reviewer name, review date, and
pull request number for each review. All individuals who reviewed or committed to the
project before the new pull request was made, were considered candidates for review.

First, we set aside pull requests that have not been reviewed; because a recommended
reviewer must have actually reviewed the pull request for the recommendation to be correct.
Therefore, we cannot use these requests in the evaluation process since their correct answer
is unknown. As in previous articles, such as [1, 3], we selected some late pull requests for
each project and implemented our proposed solution to anticipate who would be the best
reviewers for these requests. Data from previous pull requests were also used to calculate
candidates’ records. In Table 1, we present the number of pull requests selected, and the
number of candidate reviewers. For more information, in Table 2, we provide the values for
the minimum, maximum, mean and median number of reviewers for pull requests used in
experiments.

3.2.2. Evaluation criteria

As defined in previous works, such as [1, 5, 6, 10] the proposed reviewer of a recommendation
system is valid when that reviewer has actually reviewed the new pull request. We leveraged
the criteria used in the previous automated reviewer recommendation studies as correct
and valid criteria that measure the accuracy of the approaches. Many previous works, such
as [3, 5–7], have used precision@m, recall@m, and f_score@m to evaluate their solutions.
In precision@m, we can see what proportion of the candidates we proposed in the final list
of reviewers have actually reviewed the pull request. Recall@m shows what proportion of
real reviewers is on our suggested list. The f_score@m also combines precision and recall
and assigns a final score to the list of recommended reviewers for each pull request. The
methods of calculating these criteria are given in the (15), (16), and (17), respectively.

precision@m = |RR(p) ∩ AR(p)|
|RR(p)| (15)10

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

recall@m = |RR(p) ∩ AR(p)|
|AR(p)| (16)

f_score@m = 2 · precision@m · recall@m
precision@m + recall@m

(17)

where p, RR(p), and AR(p) refer to the new pull request, the recommended reviewers set
for it and its actual reviewers set, respectively. m also indicates the number of reviewers at
the beginning of the list for whom we computed the criterion. As an example, if m = 3,
the values of these criteria will be calculated for the first three individuals on the list. To
match all previous work, such as [3, 6, 7], we set the value of m in our evaluations equal
to 1, 2, 3, 5, and 10. Articles of the other group, such as [1, 10, 19], have used the top-k
accuracy criterion to measure their solutions. Top-k accuracy indicates for what proportion
of the pull requests the first k reviewers in the proposed list included at least one actual
reviewer. This criterion is calculated according to (18):

top-k accuracy(P) =

∑
p∈P

isCorrect(p, top-k)

|P |
(18)

where P is the set of pull requests and k is the number of proposed reviewers we have
considered in the calculation. Following previous works, such as [1, 10, 19], we considered
the values of k in our evaluations to be 1, 3, 5, and 10, respectively. The Mean Reciprocal
Rank (MRR) is also widely used in this area. The mean reviewer rank is calculated as the
average of the inverse of the first rank of the reviewers who actually reviewed the new pull
request. Based on this criterion, we determine how much we have to scroll down the list of
recommended reviewers to locate the first reviewer who is suitable. It is calculated as (19):

MRR = 1
|n|

|n|∑
i=1

1
ranki

(19)

where n is the total number of pull requests and ranki is the rank of the first correct
answer in the proposed reviewers list for the i-th pull request. We have used these criteria
to evaluate our approach.

3.2.3. Comparison with Related Works

Previous reviewer recommenders are not easy to judge and it is not easy to conclude that
one method always achieves the highest accuracy. According to the experimental studies
of [20], each of these methods is most effective for a particular dataset. To evaluate our
approach, we selected the WhoDo reviewer recommender to compare our approach results
with. WhoDo is a more recent approach with better results compared to more popular
rivals such as Revfinder and CHRev, and the most similar heuristic method to ours. It
is published in the proceedings of a well-known, high-rank conference. WhoDo has two
versions: The first version only considers the expertise score of the candidates based on
their commitment and review records, whereas the second version also takes into account
the workload score to balance the different reviewers’ workloads. It is pointed out in this
work that the system may recommend reviewers who have not reviewed the pull request if
the workload is taken into account. Developers tend to choose reviewers based primarily

Article number 240108

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

on their level of expertise since they do not know the workload of candidates. Therefore,
naturally, the precision and recall of the second version of WhoDo are less than those of
its first version. Hence, to demonstrate its functionality fairly, we need to compare our
algorithm with WhoDo’s first version since we did not consider workload. To do so, we
reimplemented WhoDo first version heuristic approach according to authors explanations
and using provided formulas.

The WhoDo developers showed that the second version is comparable to CHRev’s
introduced in [3] in terms of precision and recall. Furthermore, the authors of [3] found their
system to be superior to previous methods in evaluations. Hence, by demonstrating the
superiority of our approach over WhoDo’s first version, we are showing that our approach
is better than most previous efforts. Moreover, WhoDo was introduced in 2019 and is
thus newer than many other approaches. These were the reasons why we chose WhoDo to
compare our approach with.

3.3. Evaluations results

3.3.1. Quantitative results

Following the reimplementing of WhoDo, we calculated the precision@m, recall@m, and
f_score@m introduced in the previous section for our algorithm and the first version of
WhoDo, the results of which can be found in Table 3. Due to the fact that we utilize the
Review, Commit, and Collaboration scores to find the appropriate reviewer, RCC-Finder is
the name we gave our approach. RCC-Finder’s precision and recall are shown by Table 3,
answering the research question RQ1.

Here it is appropriate to see the raw values of Table 3 in a visual graph to see the
resulting improvements more clearly. This was done by calculating precision@m, recall@m,
and f_score@m for WhoDo and RCC-Finder across all five projects for integers ranging

Table 3. Comparison of Precision@m, Recall@m and F_score@m for Whodo and RCC-Finder

Project name Zookeeper Kafka Beam Flink Spark Average

Approach W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

Precision@1 0.44 0.56 0.35 0.41 0.27 0.39 0.41 0.56 0.47 0.51 0.37 0.46
Recall@1 0.24 0.29 0.20 0.24 0.19 0.31 0.24 0.29 0.24 0.27 0.22 0.28

F_score@1 0.30 0.37 0.23 0.29 0.22 0.33 0.29 0.37 0.30 0.33 0.26 0.33
Precision@2 0.40 0.50 0.31 0.37 0.24 0.29 0.37 0.50 0.39 0.42 0.33 0.39

Recall@2 0.42 0.53 0.35 0.43 0.36 0.44 0.43 0.53 0.39 0.43 0.39 0.47
F_score@2 0.39 0.49 0.31 0.37 0.28 0.33 0.37 0.49 0.37 0.40 0.34 0.40
Precision@3 0.35 0.42 0.28 0.31 0.21 0.23 0.31 0.42 0.34 0.37 0.29 0.33

Recall@3 0.55 0.67 0.46 0.53 0.46 0.53 0.53 0.67 0.50 0.55 0.50 0.57
F_score@3 0.41 0.49 0.33 0.37 0.28 0.31 0.37 0.49 0.38 0.42 0.34 0.39
Precision@5 0.29 0.31 0.23 0.25 0.16 0.18 0.25 0.31 0.28 0.30 0.23 0.25

Recall@5 0.75 0.80 0.62 0.68 0.59 0.64 0.68 0.80 0.67 0.71 0.66 0.71
F_score@5 0.40 0.43 0.32 0.34 0.24 0.27 0.34 0.43 0.37 0.39 0.32 0.35

Precision@10 0.18 0.18 0.15 0.15 0.10 0.11 0.15 0.18 0.18 0.18 0.15 0.15
Recall@10 0.91 0.90 0.79 0.82 0.75 0.79 0.82 0.90 0.84 0.85 0.82 0.84

F_score@10 0.29 0.29 0.24 0.24 0.18 0.19 0.24 0.29 0.28 0.29 0.24 0.2512

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

p
re

ci
si

o
n

number of recommended reviewers

RCC-finder WhoDo

Figure 2. Comparison of the Precision@m
of WhoDo with RCC-Finder
for integer values of 1 to 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

re
ca

ll

number of recommended reviewers

RCC-finder WhoDo

Figure 3. Comparison of the Recall@m
of RCC-Finder with WhoDo
for integer values of 1 to 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

f_
sc

o
re

number of recommended reviewers

RCC-finder WhoDo

Figure 4. Comparison of the F_score@m
of RCC-Finder with WhoDo
for integer values of 1 to 10

from 1 to 10. Figure 2 shows the precision@m values, Figure 3 represents the recall@m
values, and Figure 4 illustrates the f_score@m values for RCC-Finder compared to WhoDo.

To complete the evaluation, we calculated top-k accuracy and MRR for the two approaches
along with the three criteria examined by WhoDo’s developers. The results can be seen
in Table 4. It shows us the quality of code reviewers’ ranking in RCC-Finder in terms of
MRR, providing the answer for the research question RQ2.

As visual observation transmits information better and faster, we calculated the top-k
accuracy of RCC-Finder and WhoDo for all integers from 1 to 10 and provided the results
in Figure 5.

Whether this improvement in the mean state reflects in the results of all projects is
another question to consider. In other words, the problem is that our approach works
better only in certain types of projects, which improves results in the average state or
shows better performance across all projects. It’s apparent from Table 4 that each project
has improved, but to provide an intuitive comparison, the MRR values of RCC-Finder
versus WhoDo for different projects are plotted in Figure 6.

As we know, in the WhoDo algorithm, all sentences have the same coefficient of one.
While in our proposed approach, we considered the optimal coefficient for each sentence.
Therefore, we have once again compared WhoDo to our approach while equalizing the

Article number 240108

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

Table 4. Comparison of top-k accuracy and MRR for WhoDo and RCC-Finder

Project name Zookeeper Kafka Beam Flink Spark Average

Approach W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

W
ho

do

R
C

C
-F

in
de

r

top-1 0.44 0.56 0.35 0.41 0.27 0.39 0.34 0.43 0.47 0.51 0.37 0.46
top-3 0.80 0.88 0.65 0.72 0.56 0.63 0.62 0.72 0.75 0.80 0.67 0.75
top-5 0.92 0.94 0.76 0.83 0.69 0.74 0.71 0.82 0.88 0.90 0.79 0.85
top-10 0.98 0.96 0.89 0.91 0.83 0.85 0.82 0.91 0.96 0.96 0.90 0.92
MRR 0.64 0.72 0.52 0.59 0.44 0.53 0.50 0.59 0.64 0.67 0.55 0.62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ac
cu

ra
cy

number of recommended reviewers

RCC-finder WhoDo

Figure 5. Comparison of the top-k accuracy
of RCC-Finder with WhoDo for integer

values of 1 to 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Zookeeper Kafka Beam Flink Spark

M
R

R

project name

RCC-finder WhoDo

Figure 6. Comparison of the MRR
of RCC-Finder with WhoDo

by different projects

coefficients of all RCC-Finder sentences, so that we can assure fairness of the comparison.
The results of this comparison in terms of the precision@m and recall@m for the integer
values of 1 to 10 can be seen in Figure 7 and Figure 8, respectively.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

p
re

ci
si

o
n

number of recommended reviewers

RCC-finder WhoDo

Figure 7. Comparison of the Precision@m
of RCC-Finder with WhoDo with equalized

coefficients for integer values of 1 to 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

re
ca

ll

number of recommended reviewers

RCC-finder WhoDo

Figure 8. Comparison of the Recall@m
of RCC-Finder with WhoDo with equalized

coefficients for integer values of 1 to 10

14

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

3.3.2. Qualitative results

Now, according to the provided comparative charts, we can answer the research question
RQ3. In all five projects, our algorithm has a higher value for almost all metrics than WhoDo.
We only have slightly lower recall@10 and top-10 accuracy than WhoDo for the Zookeeper
project. Therefore our approach outperforms WhoDo. As expected, our algorithm improves
the automated reviewer recommendation for pull requests.

It appears from Figure 2 that the precision for the first recommendation has the highest
value and has the most improvement compared to WhoDo, which is about nine percent. This
amount of precision improvement is significant. Having more recommendations decreases
precision since the precision formula’s denominator is the recommendations number. In the
numerator of this fraction, there is a subscription of recommended and actual reviewers.
It’s often the case that the actual reviewers of pull requests are a few, on average about
two, and therefore they have little in common with the recommended reviewers. As a result,
by increasing the number of reviewers recommended, the fraction denominator will grow
much faster than the numerator, which leads to a decrease in precision. The precision
does not improve as much in case of more recommendations since WhoDo can identify all
the real reviewers for more pull requests. Therefore, the number of incorrectly answered
requests in WhoDo decreases. So, the improvement we can make in these situations is
less. The low precision can be partly attributed to developers not correctly selecting the
actual reviewers. There are times in practice when candidates with less expertise and
appropriateness are selected for review due to greater availability, individual contrasts,
or to familiarize newcomers with the project. Moreover, the number of recommended
reviewers in the denominator is much greater than the number of actual reviewers and
their subscriptions with the recommended reviewers, which is in the numerator.

In Figure 3, the recall has the highest value for the top ten recommendations, and
the top two recommendations have the most recall improvement over WhoDo, which is
about eight percent. This amount of enhancement in the recall is desirable. There has been
a general trend of increasing recall values and decreasing improvement with the increase in
recommendations. For more suggestions, the recall value increased because the denominator
of the recall formula is the number of actual reviewers, which remains constant regardless
of the number of recommendations. A subscription of actual reviewers and recommended
reviewers is in the numerator of this fraction, which increases with more recommendations.
Therefore, as the number of recommended reviewers increases, the recall get higher due to
the growth in the numerator and stability of the denominator. For more recommendations,
for the same reason we have stated about precision, there has been low improvement in
the recall. Also, the value of recall for more suggestions in WhoDo is very high and about
90%, so it is less likely to improve.

Figure 5 shows accuracy has the highest value for top-10 recommendations, whereas
top-1 recommendations yield the highest accuracy improvement over WhoDo, which is
about nine percent. An improvement of this magnitude in accuracy is highly desirable.
More recommendations increase the probability of getting at least one correct answer,
which is the reason for increased accuracy. There is less improvement in accuracy for
more recommendations. This decrease has the same explanation as decreases in recall and
precision.

As shown in the Figure 6, the MRR value and consequently the quality of our candidate
rankings in all projects is better than WhoDo. A 7% improvement in this criterion in the
average condition is significant.

Article number 240108

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

3.4. Threats to validity

The validity of this research is threatened by four types of threats: internal, external,
construct, and reliability.
– Internal validity. This category of threats relates to the analysis and design of the

approach and to factors that affect accuracy. According to [10], there are two internal
threats to the data we used. A person’s different user accounts are treated as distinct
individuals. In addition, a robot may sometimes make automatic changes to the files of
a pull request. Here, the robot is regarded as a committer.

– External validity. Contains threats that hinder the generalization of results to
a variety of datasets. The results of our approach were evaluated using five popular and
authoritative GitHub projects. With a wide range of project sizes and programming
languages used, the dataset possesses acceptable generality. However, based on the
evaluation of such a limited dataset, we cannot claim that our approach will yield good
results for all possible projects.

– Construct validity. Our approach was evaluated by considering real reviewers as
the best candidates, but this assumption is not always accurate. However, as far as
we know, all previous works have evaluated their approach with such an assumption.
Furthermore, we sought to predict the score of each person’s expertise and collaboration
using the formulas we presented. Nevertheless, there is no proof that our algorithm
works better than all other formulas. Furthermore, we are not certain how efficient our
proposed reviewers will be in practice. However, pull request authors can scroll through
the list of top ten recommendations and choose the most suitable candidates at their
discretion.

– Reliability. The reliability of an approach determines the possibility of repeating the
evaluation process on the same inputs and receiving the same output. Our algorithm
has a fixed formula. Therefore, all results are definite and there are no probabilistic
parts in it, so if the evaluation process is repeated with the same data, the results will
surely be the same. Furthermore, all the source codes and dataset of RCC-Finder are
available online at https://github.com/ISE-Research/RCC-Finder. Therefore, we do
not recognize any threats to the reliability of our approach.

4. Discussion

As compared to previous studies, our proposed approach has some strengths and advantages.
Our scores are according to a comprehensive set of candidate features, including review
experience, commit experience, collaboration records, and activity history. Previously,
studies that show a combination of all three categories, expertise, collaboration, and activity
were rare. Previous researchers considered a linear coefficient of time when calculating the
latency. This is the first study to examine the various nonlinear coefficients of time and to
use the best case, which is the third root. Also, by determining the optimal coefficients
within the formula, we quantified the relative importance of each score. Based on our
algorithm, we conclude, for instance, that individuals’ review history is the most effective
feature among those we considered. In addition, our algorithm, based on the evaluations,
also recommends suitable reviewers with the desired accuracy, outperforming the previous
method. Further, our database included five GitHub projects that varied widely in both
project size and programming language. This makes our findings relatively generalizable.16

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/
https://github.com/ISE-Research/RCC-Finder

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

On the other hand, this study has some shortcomings and weaknesses. During this
study, as in previous ones, the criteria used compare the proposed reviewers of our approach
with the actual reviewers of the new pull request. There are times, however, when actual
reviewers are not the best people to review. Furthermore, we have good results from our
algorithm, yet in practice, most reviews may be carried out by a small group of expert
reviewers, creating an unbalanced workload for developers. Moreover, like previous methods,
we recommend each pull request suitable reviewers once upon its creation. While it is not
uncommon for a request to remain open for months and the level of collaboration and
expertise of the project members during this time can greatly vary. As a final note, despite
the high generality of our dataset, only five projects from a single review platform cannot
demonstrate the algorithm’s superiority in all situations.

5. Related work

In this section, we review the related work on automated code reviewer recommendation
in four categories: heuristics-based approaches, machine learning-based approaches, social
network-based approaches, and hybrid approaches. In general, all the features of code
reviewers used in previous works fall into one of the following four categories:
– Expertise: includes features that demonstrate the level of reviewer knowledge about

new pull request changed files, such as the number of or delay of reviews or commits
on these files.

– Collaboration: contains items about friendship or relationships between the reviewer
and the author of the new pull request, such as the number and delay of the previous
reviews on author pull requests by the reviewer.

– Activity: includes items that indicate the amount of time and effort the reviewer spends
on the project as a whole, such as the total number of reviews and commits on all pull
requests of the project.

– Workload: contains features that demonstrate how busy a reviewer is and so how likely
it is that he or she reviews the new pull request, such as the number of his or her open
review requests.
In heuristics-based approaches, historical data is used to calculate a score for each

candidate reviewer through heuristical algorithms, and then the candidates are sorted by
their score value to determine the most relevant reviewers. For instance, Thongtanunam
et al. [1] introduced RevFinder. Its heuristic is that files in the same paths are similar
and can be reviewed by the same expert code reviewers. In another work [3], Bahrami
Zanjani et al. proposed an approach called CHRev in which frequency, workdays, and
recency of prior code reviews are calculated. Mirsaeedi and Rigby [8] have developed Sofia,
which combines CHRev’s advanced reviewer recommendation engine with TurnOverRec’s
learning and retention recommendation engine. Sofia distributes knowledge when files under
review are at risk of turnover, but suggests experts otherwise. Asthana et al. [5] proposed
WhoDo. They use a heuristic algorithm to recommend reviewers based on the history of
commits and reviews, which considers the reviewers’ workload to reduce the impact of
unbalanced recommendations. Rebai et al. [6] devised a multi-objective search algorithm
to find a trade-off between expertise, availability, and collaboration history By analyzing
current content and resources. Chouchen et al. [21] introduced WhoReview which finds
reviewers with the most experience with code changes under review while taking account
of their current workload using an Indicator-Based Evolutionary Algorithm (IBEA). Sülün

Article number 240108

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

et al. in [22] calculate reviewers’ scores based on the fact that an individual’s knowledge of
an artifact is directly correlated with the number of paths linking the individual with the
artifact in a software artifact traceability graph, while inversely is proportional to the length
of those paths. Then, in [23], they further developed that work by taking into account links
latency. In [9] Al-Zubaidi et al. proposed a multi-objective search-oriented approach that
utilized the NSGA-II algorithm to employ five criteria: code ownership, review experience,
familiarity with the request author, review participation rate, and review workload. By
using the NSGA-II algorithm, Chouchen et al. in [7] attempted to maximize expertise and
collaboration while minimizing reviewers’ workload. The previous heuristic approaches
usually limited their algorithms to features from one or two categories. Especially most
of them concentrated on review expertise. Also, when combining different scores through
addition, all of them presumed the weight of all features equally, although their influence
may differ. In our heuristic algorithm, we tried to consider features from three categories;
expertise of review and commitment, collaboration, and activity. Then, we try to identify
each feature’s relative importance by finding the best coefficient for each sentence in the
algorithm’s weighted sum.

Implementing machine learning-based approaches involves building a model based on
training data. Then, the performance of this model is evaluated in the prediction phase on
the test data. For example, Xia et al. [24] proposed an approach called TIE that combines
two learning models. One is a text-mining model that has been developed based on the
textual content of the description section, the file paths, and the time of upload. In the
other model, the similarities between a new review and previous reviews are calculated
using a time-aware, file location-based similarity model. Sadman et al. in [25] used natural
language processing techniques, a genetic algorithm, and a neural network. A variety of
data is measured, including responsiveness (server logins), experience (developers’ profiles
and reviews previously submitted), and acquaintanceship (developers’ associations with
modified code blocks). Ye et al. in [26] proposed a multi-instance-based deep neural network
model using CNN and LSTM networks. To recommend reviewers for pull requests, they
consider three attributes, namely the title of the pull request, the commit message, and the
changes made to the code. Based on a socio-technical graph, Zhang et al. in [27] proposed
Coral, a new graph-based machine learning model. The graph contains a variety of entities
(developers, files, pull requests, etc.) and relationships among them in modern source code
management systems. They trained a graph convolutional neural network (GCN) on this
graph. Chueshv et al. in [10] introduced a form of collaborative filtering, and more precisely,
matrix factorization that enables the recommendation of both regular reviewers and new
reviewers. In terms of precision, recall, and accuracy, most previous works in this category
have delivered unsatisfactory results. Some others, like TIE, only consider features about
expertise. Utilizing a broader range of feature categories, we tried to develop an algorithm
that yields acceptable results.

Utilizing multiple social networks, social network-based approaches can identify the
relationships between developers and their similarities, which can be used to select reviewers
for new pull requests. Yu et al. [28] use cosine similarity to measure semantic similarity
between pull requests based on their title and description and predict developers’ scores
based on how many comments they have written for similar pull requests. Moreover, they
calculate collaboration scores by building a comment network between developers. Afterward,
using machine learning, data retrieval, and location of files, Yu et al. [19] implemented
three common approaches for assigning reviewers to pull requests. In addition, they created
a Comment Network and combined it with traditional approaches. They found that hybrid18

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

approaches’ overall efficiency is more stable than using different approaches separately. As
a pull request may have multiple reviewers and potential influence between them, Rong
et al. [29] adapted the hypergraph technique to model these high-order relationships and
introduced the HGRec. Modeling of more elements is possible with HGRec, thanks to
its flexible and natural model architecture. The approaches from this category typically
emphasize collaboration and sometimes expertise in reviewing and have a low recall rate.
Our approach considering a wide range of feature categories, such as committing expertise,
led to a higher recall rate for reviewer recommendations. It means our recommended list
covers more correct answers among candidate reviewers.

A hybrid approach uses a combination of different approaches explained previously to
determine who should review the new pull requests. Yang et al. [30] combined an expert-based
approach with data retrieval methods available in RevFinder. With the addition of a support
vector classifier, dividing reviewers into technical and managerial types, they proposed
a two-tier code reviewer recommendation model called RevRec. Liao et al. [31] introduced
TiRR that automatically generates the topics distribution related to each reviewer, creates
a reviewer-request network and a reviewers’ interest network, and determines the influence
weight of reviewers by analyzing these networks. Then it calculates the probability of the
new pull request topic and recommends top-k reviewers. Xia et al. [32] organized the data
of previous reviews into a matrix to use collaborative filtering. To capture implicit relations
between reviewers and pull requests, the authors used a hybrid approach combining latent
factor modeling and neighborhood methods. Pandya et al. [33] proposed CORMS, which
calculates the similarity between file paths, projects/subprojects, and author information
using similarity analysis. It leverages machine learning-based predictive models for reviewer
recommendations based on change topics. Assavakamhaenghan et al. [34] used ChatBots
along with recommendation systems to create an interactive experience for suggestions.
They suggest how using a ChatBot might improve the solution, to provide more accurate
and realistic reviewer recommendations. Kong et al. [35] proposed CAMP to suit the context
of proprietary software development. It considers collaboration by creating a network of all
participants. Using an identifier splitting algorithm, CAMP extracts common information
from pull request text and file paths to account for expertise. Some previous hybrid approaches,
like RevRec, evaluated their algorithm with the data of just one or two projects, which is
a small dataset, resulting in unreliable results. We tried to use more data in our approach
evaluation. Some others have undesirable results in terms of accuracy, precision, or recall,
like RevRec, TIRR, and [32]. Another weakness among all previous works and different
approaches is their attitude to the influence of latency. Our approach to considering latency
in historic records importance optimally, compares different coefficients of elapsed time,
while previous works either ignored it or divided scores by a simple factor of elapsed time.

6. Conclusions and future work

The review of code changes by a third party is highly beneficial before they are incorporated
into the master program. Today’s distributed environments make it challenging to choose the
right reviewers for new pull requests. Several studies have previously proposed automated
approaches for reviewer recommendation. It is important to note, however, that most
of them focus on a limited set of features of candidate reviewers. Combining different
features led to better results in our experiments. As a result, we proposed in this research
a heuristics-based algorithm that ranks review candidates based on their expertise level

Article number 240108

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

and previous collaboration history. This effort was evaluated using the dataset presented
in [10], which consists of five GitHub projects with various characteristics. In terms of top-1
accuracy, top-3 accuracy, and mean reciprocal rank, our approach achieved 46%, 75%, and
62% values, respectively.

Our future research plans are to consider other features, such as the candidates’ areas
of interest and the hours of the day they are usually available to review, to recommend
a reviewer. Additionally, instead of recommending reviewers only once upon the creation
of a pull request, it may be better to update the list of reviewers whenever a new commit
or review related to the pull request files is made.

Acknowledgments

The authors did not receive support from any organizations for the submitted work.

References

[1] P. Thongtanunam, C. Tantithamthavorn, R.G. Kula, N. Yoshida, H. Iida et al., “Who should
review my code? A file location-based code-reviewer recommendation approach for modern
code review,” in 22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering, 2015, pp. 141–150.

[2] S. McIntosh, Y. Kamei, B. Adams, and A.E. Hassan, “An empirical study of the impact of
modern code review practices on software quality,” Empirical Software Engineering, Vol. 5,
No. 21, 2016, pp. 2146–2189.

[3] M. Bahrami Zanjani, H. Kagdi, and C. Bird, “Automatically recommending peer reviewers
in modern code review,” IEEE Transactions on Software Engineering, Vol. 42, No. 6, 2016,
pp. 530–543.

[4] J. Lipcak and B. Rossi, “A large-scale study on source code reviewer recommendation,” in 44th
Euromicro Conference on Software Engineering and Advanced Applications, 2018, pp. 378–387.

[5] S. Asthana, R. Kumar, R. Bhagwan, C. Bird, C. Bansal et al., “WhoDo: automating reviewer
suggestions at scale,” in 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp. 937–945.

[6] S. Rebai, S. Molaei, A. Amich, M. Kessentini, and R. Kazman, “Multi-objective code reviewer
recommendations: Balancing expertise, availability and collaborations,” Automated Software
Engineering, Vol. 27, No. 3, 2020, pp. 301–328.

[7] M. Chouchen, A. Ouni, M.W. Mkaouer, R.G. Kula, and K. Inoue, “Recommending peer
reviewers in modern code review: A multi-objective search-based approach,” in Genetic and
Evolutionary Computation Conference Companion, 2020, pp. 307–308.

[8] E. Mirsaeedi and P.C. Rigby, “Mitigating turnover with code review recommendation: Balancing
expertise, workload, and knowledge distribution,” in 42nd ACM/IEEE International Conference
on Software Engineering, 2020, pp. 1183–1195.

[9] W.H.A. Al-Zubaidi, P. Thongtanunam, H.K. Dam, C. Tantithamthavorn, and A. Ghose,
“Workload-aware reviewer recommendation using a multi-objective search-based approach,”
in 16th ACM International Conference on Predictive Models and Data Analytics in Software
Engineering, 2020, pp. 21–30.

[10] A. Chueshev, J. Lawall, R. Bendraou, and T. Ziadi, “Expanding the number of reviewers
in open-source projects by recommending appropriate developers,” in IEEE International
Conference on Software Maintenance and Evolution, 2020, pp. 499–510.

[11] P. Thongtanunam, S. McIntosh, A.E. Hassan, and H. Iida, “Revisiting code ownership and its
relationship with software quality in thescope of modern code review,” in 38th International
Conference on Software Engineering, 2016, pp. 1039–1050.20

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

[12] A. Ouni, R.G. Kula, and K. Inoue, “Search-based peerreviewers recommendation in modern
code review,” in IEEE International Conference on Software Maintenance and Evolution, 2016,
pp. 367–377.

[13] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M.W. Godfrey, “Investigating code review
quality: Do people and participation matter?” in IEEE International Conference on Software
Maintenance and Evolution, 2015, pp. 111–120.

[14] O. Baysal, O. Kononenko, R. Holmes, and M.W. Godfrey, “The influence of non-technical
factors on code review,” in 20th Working Conference on Reverse Engineering, 2013, pp. 122–131.

[15] M.M. Rahman, C.K. Roy, and R.G. Kula, “Predicting usefulness of code review commentsusing
textual features and developer experience,” in 14th IEEE/ACM International Conference on
Mining Software Repositories, 2017, pp. 215–226.

[16] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch my code!: Examining
the effects ofownership on software quality,” in 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of Software Engineering, 2011, pp. 4–14.

[17] S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Matsumoto, “The impact of human factors on
the participation decision of reviewers in modern code review,” Empirical Software Engineering,
Vol. 24, No. 2, 2019, pp. 1016–2019.

[18] A. Bosu, J.C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process aspects and social
dynamics of contemporary code review: Insights from Open Source development and industrial
practice at Microsoft,” IEEE Transactions on Software Engineering, Vol. 43, No. 1, 2016,
pp. 56–75.

[19] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for pull-requests in GitHub:
What can welearn from code review and bug assignment?” Information and Software Technology,
Vol. 74, 2016, pp. 204–218.

[20] Y. Hu, J. Wang, J. Hou, S. Li, and Q. Wang, “Is there a “golden” rule for code reviewer
recommendation? – An experimental evaluation,” in 20th IEEE International Conference on
Software Quality, Reliability and Security, 2020, pp. 497–508.

[21] M. Chouchen, A. Ouni, M.W. Mkaouer, R.G. Kula, and K. Inoue, “WhoReview: A multi-objective
search-based approach for code reviewers recommendation in modern code review,” Applied
Soft Computing, Vol. 100, No. 106908, 2021.

[22] E. Sülün, E. Tüzün, and U. Doğrusöz, “Reviewer recommendation using software artifact
traceability graphs,” in 15th International Conference on Predictive Models and Data Analytics
in Software Engineering, 2019, pp. 66–75.

[23] E. Sülün, E. Tüzün, and U. Doğrusöz, “RSTrace+: Reviewer suggestion using software artifact
traceability graphs,” Information and Software Technology, Vol. 130, 2021.

[24] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this change? Putting text and
file location analyses together for more accurate recommendations,” in IEEE International
Conference on Software Maintenance and Evolution, 2015, pp. 261–270.

[25] N. Sadman, M.M. Ahsan, and M.A.P. Mahmud, “ADCR: An adaptive TOOL to select Appropriate
Developer for Code Review based on code context,” in 11th IEEE Annual Ubiquitous Computing,
Electronics and Mobile Communication Conference, 2020, pp. 583–591.

[26] X. Ye, Y. Zheng, W. Aljedaani, and M.W. Mkaouer, “Recommending pull request reviewers
based on code changes,” Soft Computing, Vol. 25, No. 7, 2021, pp. 5619–5632.

[27] J. Zhang, C. Maddila, R. Bairi, C. Bird, U. Raizada et al., “Using large-scale heteroge-
neous graph representation learning for code review recommendations at Microsoft,” in 45th
IEEE/ACM International Conference on Software Engineering: Software Engineering in
Practice, 2023, pp. 162–172.

[28] Y. Yu, H. Wang, G. Yin, and C.X. Ling, “Reviewer recommender of pull-requests in GitHub,”
in IEEE International Conference on Software Maintenance and Evolution, 2014, pp. 609–612.

[29] G. Rong, Y. Zhang, L. Yang, F. Zhang, H. Kuang et al., “Modeling review history for reviewer
recommendation: A hypergraph approach,” in 44th ACM International Conference on Software
Engineering, 2022, pp. 1381–1392.

Article number 240108

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

M. Moosareza, A. Heydarnoori e-Informatica Software Engineering Journal, 18 (2024), 240108

[30] C. Yang, X.h. Zhang, L.b. Zeng, Q. Fan, T. Wang et al., “RevRec: A two-layer reviewer
recommendation algorithm in pull-based development mode,” Central South University, Vol. 25,
No. 5, 2018, pp. 1129–1143.

[31] L. Zhifang, W. Zexuan, W. Jinsong, Z. Yan, L. Junyi et al., “TIRR: A code reviewer recommen-
dation algorithm with topic model and reviewer influence,” in IEEE Global Communications
Conference, 2019, pp. 1–6.

[32] Z. Xia, H. Sun, J. Jiang, X. Wang, and X. Liu, “A hybrid approach to code reviewer recom-
mendation with collaborative filtering,” in 6th International Workshop on Software Mining,
2017, pp. 24–31.

[33] P. Pandya and S. Tiwari, “CORMS: A GitHub and gerrit based hybrid code reviewer rec-
ommendation approach for modern code review,” in 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, 2022,
pp. 546–557.

[34] N. Assavakamhaenghan, R. Gaikovina, and K. Matsumoto, “Interactive chatbots for software
engineering: A case study of code reviewer recommendation,” in 22nd IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, 2021, pp. 262–266.

[35] D. Kong, Q. Chen, L. Bao, C. Sun, X. Xia et al., “Recommending code reviewers for proprietary
software projects: A large scale study,” in IEEE International Conference on Software Analysis,
Evolution and Reengineering, 2022, pp. 630–640.

22

Article number 240108

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-8/

e-Informatica Software Engineering Journal, Volume 18, Issue 1, 2024, pages: 240109, DOI: 10.37190/e-Inf240109

An N -Way Model Merging Approach Based
on Artificial Bee Colony Algorithm

Tong Ye∗ , Gongzhe Qiao∗∗

∗College of Computer and Software, Nanjing Vocational University of Industry Technology
∗∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics

yetong@nuaa.edu.cn, qgz@nuaa.edu.cn

Abstract
Background: In N -way model merging, model matching plays an important role. However,
the N -way model matching problem has been recognized as NP-hard.
Aim: To search the optimal or near-optimal matching solution efficiently, this paper
proposes an N -way model matching algorithm based on the Artificial Bee Colony (ABC)
algorithm.
Method: This algorithm combines global heuristic search and local search to deal with the
complexity of N -way model matching. We evaluated the proposed N -way model merging
approach through case studies and we evaluated the proposed ABCMatch algorithm by
comparing it with Genetic Algorithm (GA) and Elephant Herding Optimization (EHO).
Results: The experimental results show that ABCMatch can obtain more accurate
model matching solutions in a shorter time, and the average model matching accuracy of
ABCMatch is 2.7725% higher than GA and 1.8804% higher than EHO.
Conclusion: Results demonstrate that our method provides an effective way for software
engineers to merge UML models in collaborative modeling scenarios.

Keywords: Model driven development, Tools for software researchers or practi-
tioners, Project management

1. Introduction

Model-Driven Software Engineering (MDSE) is an important direction of Software En-
gineering. It refers to the systematic use of models as first-class entities throughout the
software engineering life cycle [1]. Models are less bound to the underlying implementation
technology and are much closer to the problem domain. They accelerate the development
process of complex systems by improving the abstraction level of software development.
With the increasing complexity of software systems, it is almost impossible to model complex
systems by a single user. The efficiency of software development can be greatly improved
by adopting the Collaborative MDSE approach [2] where multiple stakeholders manage,
collaborate, and are aware of each other’s work on a set of shared models. Since UML
(Unified Modeling Language) class diagram [3] is one of the most commonly used models for
software modeling, this paper focuses on collaborative modeling using UML class diagrams.

Generally, collaborative modeling are divided into online (real-time) collaboration and
offline collaboration. Our approach is proposed to support offline collaboration where
users modify their models locally and push the changes later. In the process of offline

© 2024 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 7 Nov. 2023; Revised: 21 Jun. 2024; Accepted: 22 Jun. 2024; Available online: 31 Jul. 2024

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3812-3105

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Figure 1. Comparison of collaborative modeling using existing version control systems
and the N -way model merging tool

collaborative modeling, any modification will lead to different branches of the model. So it
is important to merge different versions and branches periodically to obtain an integrated
single model. Collaborative teams often use version control systems such as EMFStore [4]
and CDO model repositor [5]. However, these tools [4, 5] only support two-way or three-way
model merging. To make the motivation clear, Figure 1 gives an example of the model
merging process of a five-member team, circles of each color represent the models submitted
by each member. As shown in Figure 1a, using the existing version control system, each
member needs to wait for others to deal with the conflicts immediately, and only after
resolving the conflicts can the next merge be carried out. To save the extra waiting time,
we propose a practical N -way model merging approach to merge N models at a time. As
shown in Figure 1b, this approach not only reduces the number of negotiations but also
saves time for submitting one by one.

In N -way model merging, the first challenge is that it is hard to well examine the overall
search space effectively because N -way model matching is known as NP-hard as it requires
to cope with a huge search space of possible element combinations [6]. How to efficiently
check the entire search space to obtain more accurate N -way model matching solutions is
a complex optimization problem. Optimization is one of the most important hot topics
in scientific and technical areas [7]. Solving complex optimization problems in real life is
considered to be a huge challenge. In recent years, numerous researchers have made efforts
to solve optimization problems [8–11]. Some researchers use classical methods such as
gradients, Lagrange, and linear mathematical to solve optimization problems [7]. However,
due to the complex mathematical processes and nonlinear objective functions, classical
optimization algorithms are unable to solve complex optimization problems efficiently [7].
In contrast, meta-heuristic algorithms based on group and cooperation are very effective in
solving NP-hard problems [7].2

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Meta-heuristic methods search the optimal and near-optimal solutions by simulating
natural behaviors or events [8, 12, 13]. At present, the meta-heuristic method has been
listed as one of the most promising methods to solve optimization problems. Widely used
meta-heuristic algorithms include Artificial Bee Colony (ABC) [14], Genetic Algorithm
(GA) [15], Grey Wolf Optimizer (GWO) [16], Symbiotic Organisms Search (SOS) [17],
Whale Optimization Algorithm (WOA) [18], Farmland Fertility Algorithm (FFA) [19],
Elephant Herding Optimization (EHO) [20], Sparrow Search Algorithm (SSA) [21], Tunicate
Swarm Algorithm (TSA) [22], Honey Badger Algorithm (HBA) [23], Northern Goshawk
Optimization (NGO) [24]. Compared with traditional optimization methods, meta-heuristic
algorithms have the advantages of simplicity, fewer parameters, avoiding local optimization
and strong flexibility [25]. Because of these advantages, meta-heuristic methods have been
widely used to solve various complex and difficult optimization problems.

Although most of the existing meta-heuristic algorithms have the above advantages,
different meta-heuristic algorithms also have different weaknesses when facing different
optimization issues [7]. With the change of the problem set, different optimization algorithms
may show different performances [7]. Therefore, in order to solve complex optimization
problems, an effective optimization method should consider all aspects of the problem. And
it is necessary to select the most appropriate optimization algorithm according to the type
of problem and search space [7].

The Artificial Bee Colony (ABC) algorithm [14] searches for the optimal solution through
the random and objective evolution of candidate solution sets. In this algorithm, each food
source represents a feasible solution to the problem to be solved, and the nectar quantity
of the food source represents the fitness of the feasible solution. Bees are divided into three
roles: employed bees, onlookers, and scouts. Through the cooperation of these three types
of bees, the optimal solution or near-optimal solution can be obtained efficiently. ABC
has good performance in searching possible solutions quickly and globally. At present, the
ABC algorithm has been successfully applied in many areas including software engineering,
medical image processing, economics, financial analysis, and network communication.
Existing research has proved that the ABC algorithm is very suitable for solving complex
and difficult combination problems [26]. Since the N -way model matching problem needs to
search the model matching solution with the highest matching degree from the combinations
of a large number of model elements, which is a complex combination problem, this paper
selects ABC and improved it to solve the N -way model matching problem.

The second challenge is that models are complex structures connected with model
relationships, so it is necessary to merge not only model elements but also their related
nodes. Existing N -way model merging approaches [6, 27, 28] focus mainly on matching
model elements. These approaches [6, 27, 28] ignore relationships in the model and break the
chain into pieces rather than reshuffling chained elements. Unlike these methods [6, 27, 28],
the proposed approach supports merging chained elements.

Conflict resolution is also an important challenge in model merging [29, 30]. Existing
approaches [29, 30] transfer the responsibility of resolving conflicts to users and it is
not applicable in complex merging situations where numerous conflicts lead to too many
decisions to make. To prevent conflicts automatically, we present the matching model
which is an intermediate form between the model matching results (generated by the
proposed ABCMatch algorithm) and the merged model. Each model element in the
matching model is assigned a priority number which is the same as the priority number of
the model. When conflicts occur, the model element with the highest priority is picked
automatically.

Article number 240109

3

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

This paper makes the following contributions:
– We propose a new model matching algorithm ABCMatch which combines global heuristic

search and local search together to deal with the complexity of N -way model matching.
– We propose a new N -way model merging approach based on the ABCMatch algorithm

to merge UML class diagrams of different versions.
– We evaluated ABCMatch by comparing it with GA and EHO. The results show that

ABCMatch performs better than GA and EHO in N -way model matching. The average
model matching accuracy of ABCMatch is 2.7725% higher than GA and 1.8804% higher
than EHO.

– We implemented the N -way model merging approach in Java and evaluated it by
comparing it with EMFStore through case studies. The results show that the proposed
approach performs better than EMFStore when a large number of models are required
to be merged at one time in collaborative modeling.
The rest of the paper is structured as follows. Section 2 discusses related works. Section 3

presents the overview of the proposed approach. Section 4 introduces the model comparison
method. Section 5 describes the ABCMatch algorithm. Section 6 presents the model
merging method. Section 7 evaluates the proposed approach. Finally, Section 8 concludes
this paper.

2. Related work

2.1. Two-way and three-way model merging

Model merging is a problem that has been studied for a long time in the area of collaborative
modeling. In the aspect of two-way model merging, Buneman et al. propose a model merging
algorithm named BDK [31], which creates the duplicate free union of two models based
on the name equality of model elements. However, BDK can only identify one-type conflict
as the proposed meta-meta-model contains only two relationships, Is-a and Has-a, where
Has-a must obey one-type restriction. Pottinger and Bernstein improve BDK by defining the
operator Merge and take mapping as its input [32]. However, this approach does not scale well
since the manual definition of each mapping is a labor-intensive and time-consuming process.

Other studies [33–36] apply the three-way model merging technique that performs model
merging on two models derived from the same ancestor model. Sharbaf et al. [33] present
a novel three-way model merging approach which uses pattern-based method to detect and
resolve conflicts in the merging process. Thao and Munson propose a three-way merging
algorithm [34] based on LCS (Longest Common Subsequence) algorithm. Debreceni et al.
propose a three-way operation-based merging algorithm [35]. However, they define only
two change annotations “must” and “may”. When two changes are both annotated by
“must” or “may”, the algorithm cannot determine which one to choose automatically. Our
approach defines different priorities for each model thus avoiding this problem. Schwagerl et
al. implement a three-way merging tool [36] for models in the Eclipse Modeling Framework
(EMF). It is more general than the EMF Compare match meta-model but still fails to
handle relationships as they omit the graph-like structure in the model. In this paper, we
consider not only model elements but also their relationships.4

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

2.2. N-way model merging

Due to the problem of selection order in two-way and three-way model merging, some
approaches [6, 27, 28, 37–41] have been proposed to generate merged models from N existing
variants. Schultheiÿ et al. [37] propose a heuristic N -way model matching algorithm named
RaQuN, which uses multi-dimensional search trees to find suitable match candidates.
Kasaei et al. [38] present a formalism for specifying N -way model merging rules. They
implemented a syntax-aware editor and a parser to promote N -way merging rules for
EMF-based models. Boubakir et al. [39] propose a pairwise approach for model merging,
which improves the quality of the results by considering the order of combining the set
of input models. Rubin et al. present the NwM algorithm [6] for the N -way merging of
model variants. Assuncao et al. propose a search-based merge method [27] for UML model
variants. However, these methods [6, 27] ignore relationships in the model. As models are
complex structures connected with model relationships, it is necessary to merge not only
model elements but also their related nodes. In this paper, we consider all input relationship
chains and reshuffle elements from distinct chains by extracting the prior element link and
storing it in matching models.

Jiang et al. propose an entropy-based merging tool [40] to help merge models generated
by different modelers. However, it requires users to model in the way specified by the tool
and cannot support merging models built with existing widely used UML modeling tools.
In this paper, the proposed approach supports merging models built in the famous Papyrus
modeling environment [42].

Martinez et al. present a generic framework [41] for constructing merged models from
a set of model variants. But they assume that the variants are not independently generated
out of the same family of models and do not target to address the problem of model
similarity analysis. In addition, Reuling et al. [28] claim that Martinez et al. fail to support
imprecise matching. They propose a precise N -way model merging method [28] by encoding
the variability information using language-specific variability-encoding operators. However,
in this method, the new class contains all duplicated class properties which require further
manual handling. Our method merges duplicated model elements automatically rather
than simply enumerating them.

N -way model matching plays an important role in N -way model merging. The N -way
model matching problem is a complex optimization problem that requires to use optimiza-
tion methods to efficiently search the optimal or near-optimal model matching solution in
the huge search space. Approximate methods for solving optimization problems are divided
into heuristic methods and meta-heuristic methods [43]. Heuristic algorithms usually search
the optimal solution in a reasonable computing time. However, heuristic algorithms cannot
guarantee the optimal solutions and are easy to fall into local optimums [43]. Due to
the weaknesses of heuristic algorithms, many existing research studies have proposed
meta-heuristic algorithms to solve complex optimization problems.

Meta-heuristic algorithms are inspired by natural behavior or events. The existing
meta-heuristic algorithms can be divided into three categories: evolution-based algorithms,
physics-based algorithms, and population-based algorithms[43]. Evolution-based algorithms
mainly simulate the evolution process in nature to realize the overall progress of the
population. Physics-based algorithms usually imitate physical rules to achieve optimization.
Because of the strong flexibility and high performance, population-based algorithms have
attracted more attention in recent years. In this type of algorithm, each population is

Article number 240109

5

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

a biological population. Population-based algorithms search the global optimal solution
through the cooperative behavior among individuals in the population.

Common population-based optimization algorithms are Artificial Bee Colony (ABC) [14],
Grey Wolf Optimizer (GWO) [16], Symbiotic Organisms Search (SOS) [17], Whale Op-
timization Algorithm (WOA) [18], Elephant Herding Optimization (EHO) [20], Sparrow
Search Algorithm (SSA) [21], Tunicate Swarm Algorithm (TSA) [22], etc. These algorithms
and their variants have been widely used to find the optimal values of functions, solve
multi-machine scheduling problems, multi-objective optimization problems, and so on. For
example, Mohammadzadeh et al. [8] proposed the BMAMH algorithm combined with multi-
ple swarm intelligence optimization algorithms to detect spam e-mail. Gharehchopogh [44]
improved the tunicate swarm algorithm and proposed the QLGCTSA algorithm with higher
performance to solve complex optimization problems. Abdollahzadeh1 et al. [45] proposed
three effective binary methods based on symbiotic biological search (SOS) algorithm to
solve the feature selection problem in information preprocessing. Bonab et al. 10� proposed
a new hybrid method based on fruit fly algorithm (FFA) and ant optimization algorithm
(ALO) to improve the performance of intrusion detection system.

Among existing population-based optimization algorithms, the ABC algorithm and
its variants avoid local optimal solution by using global and local search, which has the
advantages of high performance and strong flexibility. In recent years, more and more
researchers choose to use the ABC algorithm and its variants to solve complex optimization
problems in various fields. Öztürk et al. studied the role of the ABC algorithm and its
variants in the field of medical image processing [46]. The ABC algorithm maintains a good
balance between global search and local search. It can not only be used for medical image
enhancement, including improving contrast, edge, artifact elimination, intelligent noise
reduction, but also has played an important role in medical image segmentation, such as
tumor detection, classifying image pixels into anatomical regions [46].Existing research
has confirmed that the ABC algorithm has better performance than other meta-heuristic
algorithms in solving various complex combination problems [26]. Because the N -way
model matching problem needs to search the model combination with the best matching
degree from the combinations of a large number of model elements, which is a complex
combination problem, we chose the ABC algorithm and improved it to solve the N -way
model matching problem.

2.3. Operation-based merging approach

Operation-based merging tries to solve the merge problem by merging operation sequences.
Mansoor et al. propose an operation-based model merging method [47]. They consider
merging different model versions as a multi-objective optimization problem. But the
importance score of each composite option is determined by different developers. It is hard
for them to compare importance scores of operations with each other while developing
as they are not sure what scores others might set and this might cause their important
operations disabled. In this paper, we define different priorities for input models from
a global perspective thus avoiding this problem.

Some existing approaches [48–50] apply rule-based methods in operation-based model
merging. Anwar et al. propose a formal approach [48] for model composition. RuCORD [49]
is a rule-based composite operation detection and recovery framework for merging models in
Eclipse. Chong et al. propose an operation-based approach [50] to merge different versions
of UML models. However, these methods [48–50] are not applicable in large-scale projects6

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

as they require identifying corresponding model elements and defining formal composition
rules for each model element manually in the matching step. In addition, the detection and
recovery processes are supposed to be guided by users which are not applicable when there
are too many operations. To solve these problems, in this paper, we identify groups of
corresponding input model elements automatically by the ABCMatch algorithm and handle
conflicts by identifying the prior model. Furthermore, we consider N models simultaneously
which is more suitable for large-scale model merging.

2.4. Conflicts resolving

Koegel et al. present an approach [29] to make conflicts part of the model and represent
them as first-level entities based on issue modeling. However, this approach transfers the
responsibility of resolving conflicts to users and it is not applicable in complex merging
situations where numerous conflicts lead to too many decisions to make. Dam et al. propose
an approach [30] to automatically resolve all inconsistencies that arise during the merging
of model versions. They create a validation tree to evaluate constraint instances and build
a repair tree based on the validation tree which gives repair suggestions and checks if
a repair causes other inconsistencies. However, they fail to consider the situation where
repair suggestions form a cycle. This method is not applicable when merging large-scale
models as it may cause many cycle errors which cannot be solved automatically.

To summarize, in two-way and three-way model merging [31, 32, 34–36], results are
influenced by the order to pick input model elements. Among existing N -way model
merging methods [6, 27, 28, 40, 41], Rubin et al. [6], Assuncao et al. [27] and Reuling
et al. [28] ignore relationships in models, Jiang et al. [40] merge UML models which are
modeled in a specified way using their tool rather than common UML models, Martinez
et al. [41] fail to address the problem of model similarity analysis, and Reuling et al. [28]
fail to handle duplicated class properties. Among existing operation-based model merging
methods [47–50], Mansoor et al. [47], fail to define the priority from a global view which
might lead to important operations being disabled, and rule-based methods [48–50] require
much user interaction and fail to resolve conflicts automatically. In addition, existing
conflicts resolving methods [29, 30] are not applicable in N -way model merging where
numerous conflicts lead to too many decisions for users to make.

To address these problems and fill the research gap, we propose an N -way model
merging approach based on the ABC (Artificial Bee Colony) algorithm [14]. We identify
the prior model element and prior element link to generate the merged model from the
matching model. In this way, inconsistencies are avoided automatically. To solve the
matching problem of N -way model merging, we propose the ABCMatch algorithm which
can explore the search space and obtain the optimal matching solution efficiently.

3. Overview of the proposed approach

Existing studies [6, 48, 51] suggest that model merging can be divided into three steps: model
comparison, model matching, and model combination. In the comparison step, similarity
degrees between elements are calculated by comparing their corresponding sub-elements
and weighing the results using empirically determined weights. These weights represent the
contribution of model sub-elements to the overall similarity of their owning elements. In the
matching step, pairs of elements from the input models as well as their similarity degrees

Article number 240109

7

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

are taken as inputs, and the outputs are groups of model elements that are considered
similar. In the model combination step, a new duplicate-free model that combines groups
of matched elements is generated.

In this paper, we propose a novel N -way model merging approach following the above-
mentioned three steps. The overview of the proposed approach is given in Figure 2.

Figure 2. Overview of the proposed approach

Model comparison. The similarity degree between two classes can be calculated as
a weighted sum of the similarity degrees of their names, properties, and methods. Although
numerous auto or semi-auto methods have been proposed to calculate similarity degrees,
gaps still exist when applying to N -way model merging. This is because, in N -way model
merging, multiple input models are considered at the same time. So model comparison
needs to calculate the similarity of a group of model elements rather than only two model
elements in two-way or three-way model merging. To solve this problem, we propose
a model comparison approach that can calculate the similarity of a group of model elements
(see details in Section 4). As shown in Figure 2, models to be merged are denoted as
M1, M2, . . . , Mn. Each model Mi contains mi model elements denoted as ei1, ei2, . . . , eimn .
We define a group of models with different versions of common elements as a matching path,
which is denoted as Gi in Figure 2. Multiple matching paths without common elements
constitute a model matching solution. To distinguish similarity degrees of a group of
model elements and a pair of elements, the sum of similarity degrees of model elements in
a matching path/solution is called the matching degree. In our approach, similarity degrees
between two classes are calculated based on the Jaccard similarity coefficient [52] which is
an index to measure the similarity between two sets. We calculate the matching degrees of
the matching paths from two dimensions: the class name and properties/methods. Both
metrics are complementary and assess two different aspects of the matching path: the first
one compares the string of a group of model elements while the second one focuses on
the number of properties/methods in common. A matching solution is a set of disjoint8

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

matching paths, so the matching degree can be obtained by simply adding the matching
degrees of all matching paths.

Model matching. The goal of this step is to find the optimal matching solution with
the highest matching degree. The challenge is that it requires coping with a huge search
space of possible element combinations [6]. To solve this problem, we propose an N -way
model matching algorithm ABCMatch (see details in Section 5). First, the model matching
problem is transformed into the weighted maximum matching problem of graph theory.
Second, a two-dimensional integer array coding scheme of the food source is proposed by
improving the food source encoding in the original ABC algorithm. Third, the strategy
for generating candidate solutions is given. Then, all the feasible solutions (food sources)
are exploited by employed bees, onlookers, and scouts. Finally, the best matching solution
{G1, G2, . . . , Gn} with the highest matching degree is obtained which is used in the next
step to generate the matching model.

Model combination. In this step, a single global merged model is generated by combining
matched model elements. There exist two challenges in model combination. The first one is
that existing approaches [6, 28, 40, 41] ignore relationships in the model and break the chain
into pieces rather than reshuffling chained elements, while for model elements connected with
relationships, it is necessary to merge not only model elements but also their related nodes. The
second one is that N -way model merging is too complex for users to handle conflicts manually,
conflicts should be resolved automatically. To solve these problems, we propose a novel
approach to reshuffle elements from distinct chains (see details in Section 6). We present the
matching model which is an intermediate form between the model matching results (generated
by the ABCMatch algorithm) and the merged model. Relevant information needed for conflict
resolving and structural merging is represented in the matching model. We present the meta
matching model which consists of the type definitions for the objects of the matching model. As
shown in Figure 2, we build a temporary matching model based on the proposed meta matching
model and the best solution {G1, G2, . . . , Gn} obtained in the model matching step. Based on
groups of matched model elements obtained by ABCMatch, matching model elements are gen-
erated. And for the relationships in input models, we extract the prior element links and store
them in the matching model to memorize the related nodes as well as relationships between
them in original models. Finally, we transform the matching model to the merged model.

4. Model comparison

The proposed matching algorithm is for UML class diagrams. We compare model elements
from two dimensions: (1) name and (2) properties/methods. Assuming that the vocabulary
used for naming model elements, properties, and methods are from corresponding domain
terminology, then we can determine whether two elements are similar by checking if they use
a similar vocabulary. This section gives the calculation method of similarity degree between
any two model elements, based on which, we present equations for calculating matching
degrees of matching paths and matching solutions. To make the idea more concrete, an
example is given to describe the process of model comparison.

4.1. Calculation of model matching degree

Jaccard similarity coefficient [52] is an index to measure the similarity between two sets. It
is widely used to compare the similarity between sample sets of limited sizes. It calculates

Article number 240109

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

the similarity of sets from multiple dimensions. In each dimension, the value is usually
between [0, 1]. For example, given two sets A and B, the Jaccard coefficient is defined as
the ratio of the size of the intersection of A and B to the size of the union of A and B.
In this paper, we use the Jaccard similarity coefficient to calculate the similarity between
two model elements. For each pair of elements e1 and e2, the similarity degree Si(e1, e2) is
defined as the average value of the similarity degrees of their names and properties/methods.
String comparison is used in the calculation of the name dimension, where the number of
characters in the overlapping sub-string is divided by the total number of characters. For
the property/method dimension, the similarity degree is calculated by dividing the number
of common properties/methods of input elements by the number of properties/methods in
the union set of these two elements.

In the following, we extend the above-mentioned calculation method for two elements
to support the comparison of multiple elements in a matching path.

The matching path d = {e}d is composed of a set of model elements, and the matching
degree Pi(d) of d is the similarity among all model elements in set {e}d. Similar to the
above-mentioned method, the calculation of Pi(d) also contains the same two dimensions.
The first dimension of name is calculated by Equation (1), where |

⋂
cd| represents the

number of characters in the overlapping sub-string of names of all model elements in {e}d

and
∑

|cd| − |
⋂

cd| is the number of the characters in the union set of all names.

Similarity_c_mul({e}d) = |
⋂

cd|∑
|cd| − |

⋂
cd|

(1)

Suppose that there are N model elements in the matching path d = ed. The similarity
degree of properties/methods in d is calculated by Equation (2).

Similarity_pm_mul ({e}d) =

∑
ei,j∈{e}d,i 6=j

Similarity_pm(ei, ej)

N(N − 1)/2 (2)

In Equation (2), the numerator represents the sum of the similarity degrees between any
two different model elements in set d = {e}d. Normalization of the result is implemented
by dividing the total cases of taking any two model elements from N model elements in
matching path d.

SiD({d}D) =
∑

di∈{d}D

Pi(di) (3)

The matching solution D = {di}(1 ≤ i ≤ n) contains multiple disjoint matching paths.
As shown in Equation (3), SiD is the matching degree of D which can be obtained by
simply calculating the sum of the matching degrees of all matching paths. With the help
of the proposed equations, we can calculate the matching degree of any given matching
path/solution.

4.2. An example of model comparison

In collaborative modeling, suppose that there are k models Mi (1 ≤ i ≤ k), and each
model Mi has mi (mi ≥ 1) model elements, which are denoted as eij (1 ≤ j ≤ mi).
First, we calculate similarity degrees by pairs. Then, model elements from different models
whose similarity degrees are larger than the predefined threshold are put into a matching10

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

path d. Multiple matching paths without intersection constitute a matching solution D.
The predefined threshold is supposed to be set by users according to actual needs. In this
paper, we use eij − emn(se) to indicate that the model element eij is similar to emn and
the similarity degree is se. A case is given to illustrate the calculation process of model
comparison.

Figure 3. Three models of a “login” function in a medical system software

Figure 3 shows three models of a “login” function in a medical system software. The
input models to be merged are in three colors: deep blue (M1), light blue (M2) and green
(M3). In the three models, the classes e11, e21 and e31 describe the login function, the
classes e12, e22 and e32 describe the doctor login function and the classes e13, e23 and
e33 describe the nurse login function, which are supposed to be merged. Calculated by
the proposed model comparison method, the similarity degrees of each pair of model
elements are: e11 − e21 (0.8750), e11 − e22 (0.5983), e11 − e31 (0.8333), e11 − e32 (0.3125),
e12 − e21 (0.3846), e12 − e22 (0.4211), e12 − e31 (0.3846), e12 − e32 (0.7179), e21 − e31 (0.94),
e21 − e32 (0.3125), e22 − e31 (0.4875), and e22 − e32 (0.5).

In this example, the predefined threshold is set to 0.5. A matching solution consists
of multiple matching paths without intersection. For example, da1 = {e11, e21, e31}, da2 =
{e12, e22, e32} and da3 = {e13, e23, e33} are three valid matching paths. The three matching

Article number 240109

11

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

paths form a matching solutions D = {da1, da2, da3}. According to Equation (1) and
Equation (2), the the model matching degrees of three follows: Pi(da1) = 0.8462, Pi(da2) =
0.6875, Pi(da3) = 0.9444. Substituting Pi(da1), Pi(da2), and Pi(da3) into Equation (3),
we can obtain the model matching degree of D is SiD(D) = 2.4781. The details of the
generation of matching paths and matching solutions are described in Section 5.

5. The ABCMatch algorithm

In N -way model matching, it requires coping with a huge search space of possible element
combinations to find the optimal matching solution. In this section, first, the model
matching problem is transformed into the weighted maximum matching problem of graph
theory. Second, a search-based matching approach based on the ABC algorithm [14] is
proposed. Then, a two-dimensional integer array coding scheme of the food source is
proposed by improving the food source encoding in the original ABC algorithm [14] and
the strategy for generating candidate solutions is given. Finally, all the feasible solutions
are exploited by employed bees, onlookers, and scouts. By searching for the best model
matching solution through the bee colony’s exploration of food sources, this approach can
find the optimal matching solution with high efficiency.

5.1. The problem of model matching

In an undirected graph G, the points covered by an edge are defined as the endpoints of
the edge. The maximum matching problem is to find the largest edge set S that contains
the most edges where any endpoint in this graph is covered by only one edge. For weighted
graphs, the maximum matching problem is to find an edge set S with the maximum sum
of weights.

In this paper, the model elements to be matched are regarded as endpoints in the graph,
the matching path containing multiple elements is regarded as the edge of the graph. And
the matching degree of the matching path is regarded as the weight of the edge. The goal
is to find the optimal matching solution with the highest matching degree. Suppose that
G = (V, E) is an undirected graph and endpoint set V = V1 ∪ V2 ∪ . . . ∪ Vn is composed
of n disjoint subsets, where each subset Vi (1 ≤ i ≤ n) denotes the set of model elements
in the i-th model Mi. The edge E(i, j) represents the matching correspondence between
element ei of Mi and model element ej of Mj . Assuming that there is an edge Eik between
ek and ei, and ek does not belong to model Mi or Mj , then the edges E(i, j) and E(i, k)
can form a matching path E(i, j, k). The goal to search for the best matching solution is
to find a group of matching paths with the maximum weight sum, where endpoints of each
path do not intersect with each other.

Suppose that there are k models and the i-th model Mi contains mi model elements.
If no more than one model element is selected from each model to participate in model

matching, there will be a total of
k∏

i=1
(mi + 1) matching paths. After excluding the situation

of empty set or the situation of only one model element, the number of paths p reduces

to
k∏

i=1
(mi + 1) − 1 −

k∑
i=1

mi. The set of matching solutions is the power set of all paths12

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

minus the empty set, so there are 2p − 1 matching solutions. The optimal solution cannot
be obtained in linear time using enumeration methods and it is easy to miss the global
optimal solution using greedy algorithms. This paper improved the original ABC (Artificial
Bee Colony) algorithm [14] and proposes a search-based N -way model matching algorithm
ABCMatch.

5.2. Encoding

In the original ABC algorithm [14], each food source represents a feasible solution of the
problem to be solved, and the nectar quantity of the food source represents the fitness of
the feasible solution. Bees are divided into three roles: employed bees, onlookers, and scouts.
Through the cooperation of these three types of bees, the optimal solution or approximate
optimal solution is obtained with high efficiency. In this section, we propose the ABCMatch
algorithm improved by the ABC algorithm to solve the N -way model matching problem.
In the ABCMatch algorithm, the corresponding relationship between bee colony foraging
behavior and model matching problem is given in Table 1.

Table 1. Corresponding relationship between foraging behavior
of bee colony and model matching problem

Bees foraging Model matching

Food source position Model matching solution
Nectar quality Model matching degrees
Speed of searching and foraging Speed of algorithm optimization
The best food source The optimal model matching solution

Dimension of food source The first dimension represents matching path
The second dimension represents matching solution

In the original ABC algorithm [14], the food source position represents the feasible
solution to the optimization problem, which is denoted by a multidimensional vector. In
the model matching problem, each candidate solution represents a feasible model matching
solution. Therefore, it is necessary to improve the food source encoding and the strategy for
generating candidate solutions. Here, we use a two-dimensional integer array coding scheme
to code the model matching solution. A matching path is represented by a two-dimensional
array di, where d[i][j] = 1 indicates that the model element eij is in the matching path,
and d[i][j] = 0 indicates that it is not in the matching path. Multiple disjoint matching
paths compose a matching solution.

5.2.1. Initialization

The number of food sources is denoted as SN . In the initialization phase of the ABC-
-Match algorithm, SN feasible solutions are generated randomly. Each matching path is
a two-dimensional matrix with m rows and m columns, where m is the maximum number
of model elements. According to the proposed coding scheme, to select the j-th element
from model Mi, we need to set the value of the element in the j-th row and i-th column
to “1”. If all values in a column are set to “0”, which means no model element of the
corresponding model is taken.

Next, we check whether all the elements in the matrix are “0” or if there is only one
“1” in the matrix. If so, it means that the matching solution is empty or there is only

Article number 240109

13

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

one model element. In that case, a new matching path is generated. In our approach,
a threshold GSiD of matching degrees is defined, and the matching degrees of S matching
paths are calculated. If the matching degree is less than GSiD, a new matching path will be
generated until matching degrees of S matching paths are all over GSiD. After generating
S valid paths, we compose them to generate SN matching solutions. This process needs to
satisfy the following rules:
1. Each matching solution has at least one matching path.
2. Matching paths must not intersect.

In the process of path combination, if the rules are not satisfied, a new combination
will be generated until SN feasible solutions are generated.

According to Equation (3), the model matching degree SiD(Di) of each matching
solution Di is calculated as the fitness value of the feasible solution. Among the fitness
values of SN feasible solutions, the maximum fitness value max_v and the optimal matching
solution best_s are recorded.

Figure 4. Matching paths in the example

An example of the matching paths is shown in Figure 4. It shows three models of
a “login” function in a medical system software. The input models to be merged are
in three colors: deep blue (M1), light blue (M2) and green (M3). Matching paths are14

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

a set of elements (class diagrams) from different models. For example, the matching path
d1 = {e11, e21} means “login: M1” and “login:M2” are matched. Matching paths need to
be merged if they have intersections. For example, in Figure 4, the matching paths d1 and
d2 have intersection, which is consistent with (5), so they are merged to a new path d12.
Similarly, d3 and d4 are merged to a new path d34.

In the the initialization phase, first, valid paths d1 = {e11, e21}, d2 = {e11, e31}, d3 =
{e12, e22, e32}, d4 = {e11, e22}, d5 = {e13, e23, e33} are generated randomly. Then, five
feasible matching solutions are obtained by composing the five paths d1, d2, . . . , d5. After
deleting solutions with intersecting paths, the matching degrees of all matching solutions
are calculated, and the results are shown in Table 2.

Table 2. Matching solutions and model matching degrees

No. Matching solution Matching degree

1 D1 = {d1, d3} 1.5625
2 D2 = {d2, d5} 1.7777
3 D3 = {d3, d4} 1.2857
4 D4 = {d1, d4} 1.4732
5 D5 = {d2, d3} 1.5208

5.3. Iteration process

After initialization, all the feasible solutions (food sources) will be exploited. Each cycle
includes the behaviors of employed bees, onlookers, and scouts.

5.3.1. Employed bees phase

We assign an employed bee to each food source, thus the number of the employed bees is
SN too. In the initial matching solution, there are only S matching paths. The employed
bee exploits the neighborhood of the food source and adds matching paths. Because adding
a new matching path may cause conflicts with existing matching paths, it is necessary to
determine whether to delete the conflict elements in existing paths and add the new path
or just stay unchanged. In our approach, the decision is made according to the matching
degree. At the beginning of the cycle, each matching path dy in the food source is matched
with each path dx in solution Di and the conflict rate between them is calculated. Suppose
that there are k models where each model Mi has mi model elements, the conflict rate is
denoted as P , and the boolean variable m is used to indicate whether the composition of
paths is necessary. There are three situations as follows:
1. If the collision rate of matching paths is 0 which means that all paths are disjoint, then

there is no need to merge the paths, which is formally expressed as (4).
∀i ∈ [1, k], ∀j ∈ [1, mi], dx[i][j] + dy[i][j] ≤ 1 → P = 0, M = 0 (4)

2. If two paths have only one common element and there is no other model elements from
the same model in these paths, then the conflict rate is 0 and the composition of paths
is necessary. It is formally expressed as (5).

∀i, p, q ∈ [1, k], ∀j, t ∈ [1, mi], ∃dx[i][j] + dy[i][j] > 1
∧ j 6= t ∧ dx[p][t] + dy[q][t] ≤ 1 → P = 0, M = 1

(5)

Article number 240109

15

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

3. If there exist elements in the intersecting path from the same model, a conflict occurs.
It is formally expressed as (6).

∀i, p, q ∈ [1, k], ∀j, t ∈ [1, mi], ∃dx[i][j] + dy[i][j] > 1
∧ j 6= t ∧ dx[p][t] + dy[q][t] > 1 → P > 0

(6)

The computation method of the conflict rate P is as (7).

P = n

(mi + mk) × (mi + mk − 1)/2 (7)

In (7), n is the number of conflict element pairs. The conflict rate is the ratio of the
number of conflict pairs to the number of possible cases of taking any pair of elements in
the two matching paths.

In this approach, we add the new path according to the above three situations. If
P = 0, M = 0, the path will be directly added to the matching solution; If P = 0,
M = 1, the path will be merged into the path that intersects with it in the matching
solution. If P > 0, we select the matching path dy whose conflict rate P is less than the
predefined threshold P ′, and add the path dy to the matching solution Di to generate
matching solution Neighbour_Di. Then, we delete the model elements in the original
solution that conflict with the new path. In the above-mentioned example, the paths of
D2 are re-matched. After generating new matching paths according to the rules, a new
matching solution D′

2 is obtained. A new matching solution Neighbour_Di is a new food
source. If the model matching degree of Neighbour_Di is greater than that of Di, the food
source will be updated.

In the above example, for the first employed bee, it selects food source D1 and adds it
to D2. Then, the path in D1 with the least matching conflict to D2 is added to solution
D2, and the new food source is [d1, d2, d3, d5]. As d1 and d2 have intersection, which is
consistent with (5), they are merged to a new path d′

12 as shown in Figure 4. After merging,
we can get the new matching solution D′

2 = {d′
12, d3, d5}. Then we calculate the matching

degree SiD(D′
2) = 2.4781, which is better than the original D2 = 1.7777, so we accept the

new food source. When all employed bees have completed the search, the new population
is shown in Table 3. The number updated in this iteration is indicated by the underline.

Table 3. Updated matching solutions and matching degrees

No. Matching solution Matching degree

1 D1 = {d1, d3} 1.5625
2 D′

2 = {d′
12, d3, d5} 2.4781

3 D′
3 = {d′

3, d4} 1.5382
4 D4 = {d1, d4} 1.4732
5 D5 = {d2, d3} 1.5208

5.3.2. Onlookers phase

Each onlooker selects a food source according to the probability which is proportional to
the nectar quality. The selecting probability Pi is calculated by (8) [53].16

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Pi = 0.9 × fit(Di)
maxSN

i=1 fit(Di)
+ 0.1 (8)

In (8), Pi is the fitness value of solution Di, and in this paper, fit calculates the matching
degree SiD. Onlookers select the food source by the roulette mechanism. First, it generates
a random number. If the number is greater than the random number, then the onlooker
will not move. Otherwise, the onlooker will attach itself to the food source and exploit its
neighborhood. The greedy selection strategy is used to update the food source. Obviously,
according to the selection method, the food source with higher fitness will attract more
onlookers.

In the above example, the selecting probabilities are 1, 0.95, 0.87, 0,43, 0.1. For the
third onlooker, first, a random number is generated, which is smaller than P3, and then
this onlooker will exploit the solution. And the new solution is D′

3 = {d2, d′
5}. The new

matching degree SiD = 1.79 > 1.52, thus the matching solution will be updated. For the
fifth onlooker, the random number is greater than 0.1, so it does not move. After all the
onlookers finish the search, the new population is shown in Table 3, and the updated
number is indicated in bold.

5.3.3. Scouts phase

If a solution is not updated after limited iterations (set to 5 in the proposed algorithm),
then this food source will be abandoned. The associated employed bee will become a scout
and randomly generate a new food source. For the above example, after the employed bees
and onlookers finish the search, the trial is [1, 3, 3, 4, 1], which did not reach the maximum
value limit, thus the scout will not appear. After all the food sources are explored, the best
matching solution best_s and the optimal matching degree max_v will be updated, and
the next iteration will begin. Until now, max_v is 2.4781, and the corresponding best_s
is {d′

12, d3, d5}. In this matching solution, the following three sets of classes are matched:
{e11, e21, e31}, {e12, e22, e32}, and {e13, e23, e33}.

6. Model combination

This section defines the matching model and introduces the approach of transforming the
matching model to the final merged model. First, the meta-model is presented. Second, an
example is given on how to build a matching model from the matching elements obtained
in the model matching step. Then, we introduce how to generate the final merged model
from the matching model. Finally, we prove that our approach satisfies the Generic Merge
Requirements [32].

6.1. Meta-model

The proposed meta-model is given in Figure 5. It consists of the following type definitions
for the objects in the matching model.
1. Matching element. Matching elements are the first-class objects in a matching

model. Each matching element consists of four properties: the Input_Model_Element_-

Article number 240109

17

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Figure 5. The proposed meta-model of the matching model

Set, the Prior_Input_Model_Element, the Merged_Input_Model_Element and the
Prior_Element_Link.
The Input_Model_Element_Set is a set of matched model elements obtained by the
proposed ABCMatch algorithm. By merging the model elements in an Input_Model_-
Element_Set, the Merged_Input_Model_Element is generated. Each input model to be
merged is given a different priority number. When conflicts occur during model merging,
the model element with the highest priority is picked, and this element is called the
Prior_Input_Model_Element. By searching the direct and indirect parent nodes until
finding a root node of the Prior_Input_Model_Element, the Prior_Element_Link is
obtained, which is used to build relationships of the Merged_Input_Model_Elements
in the matching model.

2. Relationship. There are three types of relationships in the matching model: Match,
Composition and Input_Model_Relationship. The Match is the relationship among
multiple model elements, it represents correspondences among similar/common model
elements from different models. We define Composition as the binary relationship
between matching elements which indicates that a matching element consists of another
matching element. For example, suppose that MA and MB are two matching elements
where A and B are Merged_Input_Model_Elements in MA and MB, respectively. If B
is the subclass of A, then a Composition relationship should be built from MB to MA.
As matching is not only between the model elements themselves but also their related
model elements. In addition to source and target matching elements, the relationship
Composition also has a property that records relationship types between input model
elements. The Input_Model_Relationships are binary relationships between input model
elements, they are defined by the meta-model of input models. In this paper, input18

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

models to be merged are UML class diagrams, so Input_Model_Relationships are UML
relationships such as generalization, association, etc.

6.2. The model matching process

We define two operators for model matching. The operator match is to find a set of matched
model elements from multiple models built by different collaborators and generate matching
elements. The operator connect is to build relationships between matching elements and
model elements. After operating match and connect in sequential order on a group of input
models, a matching model is generated. In our approach, the models are merged based on
the matching models. The inputs of match are as follows:
1. Input models: M1, M2, . . . , Mn.
2. Priority of input models: Pr1, P r2, . . . , P rn.

Each model element has a priority number the same as the model it belongs to. When
conflicts occur, the model element with the highest priority is picked.

The semantics of match is defined as follows:
The function match((M1, P r1), (M2, P r2), . . . , (Mn, P rn)) −→ ME matches n models
M1, M2, . . . , Mn based on similarity, the detailed description of similarity calculation
is given in Section 4. The function consists of three steps as follows. First, it searches for
the optimal matching solution which contains multiple matching paths of similar model
elements. Second, it generates a merged element for each matching path. When facing
representation conflicts, the representation of the element with the highest priority is
picked. Third, it records the related elements and relationships of the prior element. Finally,
a matching model element ME is generated.

The semantics of connect is defined as follows:
The function connect(ME1, ME2, . . . , MEn) −→ GM connects n matching elements ME1,
ME2, . . . , MEn based on original model relationships and generates a matching model GM .
Relationships are added according to three different situations. (1) For each matching element
ME i (1 ≤ i ≤ n), we search its Prior_Element_Link. If the model element in the link
does not exist in GM , then we add it to GM as well as its relationships. (2) If the model
element already exists in a matching element MEj (1 ≤ j ≤ n, i 6= j) in GM and there is no
relationship between ME i and MEj , then the relationship Composition is added from MEj

to ME i. And its property Input_Model_Relationship is set the same as the relationship
in the Prior_Element_Link. (3) If the added model element or the matching element has
related nodes, then we search its element link and repeat the steps in the first two situations.

6.3. An example of the matching model

An example of the matching model is shown in Figure 6. It shows three models of a “login”
function in a medical system software. The input models to be merged are in three colors:
deep blue (M1), light blue (M2) and green (M3). The matching elements generated are in
red and the Merged_Input_Model_Elements are in blue. We define that the priority order
of these models is M3 > M2 > M1.

As shown in Figure 6, matching elements are generated based on these matching paths.
Take the the matching path d1 = {e11, e21, e31} as an example, “Matching element login” is
generated which consists of three properties, the set {login: M1, login: M2, login: M3}, the
prior element “login: M3”, and the merged element “Merged_Input_Model_Element login”.
As “login” is the root node which does not have a parent node in this example, there is no

Article number 240109

19

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Figure 6. An example of the matching model

Prior_Element_Link in this matching element. “Merged_Input_Model_Element login”
contains all properties and methods of the original models. It is a new “duplicate-free”
model element obtained by merging “login: M1”, “login: M2”, and “login: M3”.

Models have relationships, so it is necessary to compare matched elements’ related
nodes which are connected by model relationships. Searching all related nodes of model
elements is time-consuming. To improve the efficiency of this process, we search the prior
element link of each merged element from itself to the root node and compare these nodes
to other matching elements’ merged elements. First, we find out all groups of matched
elements and generate a merged element for each group. Second, the prior element and
prior element link is memorized in each group where the merged element shares the same
link with the prior element. Then, matching elements are generated and relationships
between merged elements are built with the help of the Prior_Element_Links. For example,
in Figure 6, “doctorLogin: M3” is the prior element of “Merged_Input_Model_Element
login”. And its Prior_Element_Link is highlighted in orange in Figure 6. As “login: M3” in
the Prior_Element_Link exists in the Input_Model_Element_Set of “Matching element
login”, so it is replaced by “Merged_Input_Model_Element login”.

6.4. Model merging

We merge model elements and generate a new global model M ′ by operating on the
matching model. First, model elements that are not in Prior_Element_Links are deleted.20

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

For example, “docLogin: M1” and “login:M1” are deleted while “StaffLogin: M3” is reserved
as it is in the Prior_Element_Link of “Matching element doctorLogin”.

Figure 7. The merged model M ′ in the example

Second, merged elements are connected to model elements in Prior_Element_Links.
For example, in the Prior_Element_Link of “Matching element doctorLogin”, there is
a generalization relationship which connects “doctorLogin: M3” with “StaffLogin: M3”, so
we build the same relationship between “Merged_Input_Model_Element doctorLogin” and
“StaffLogin: M3”. Note that in this step, if the model element in the Prior_Element_Link
exists in any matching element’s model element set, it means there is a merged element of
this model element. In that case, we replace this model element with the corresponding
merged element. For example, “Login: M3” is replaced by “Merged_Input_Model_Element
login”. Finally, input model elements that do not match with other elements are added to
the merged model directly. In this example, the final merged model M ′ is given in Figure 7.

The proposed model merging method satisfies the following Generic Merge Require-
ments [32]. Signals used are given in Table 4.
1. Element preservation. Each element of source models has a corresponding element

in the target model. Formally, for each element eij ∈ Mi(1 ≤ i ≤ n, j > 0), if it
has one or more matching elements in other input models, they will be matched and
generate a merged model element MMEk (k > 0) in the matching model ME i, which
will be added into the merged model M ′. So eij must have a corresponding element
e′ = MMEj ∈ M ′. If eij does not have any matching element but it exists in the prior
element link PELq (q > 0), then it is added to M ′ and connected with the merged
element MMEq or model elements in PELq. If eij does not have any matching element
and does not exist in any prior element link, it will also be added to M ′ with its related
model elements and relations in the source model. So we can conclude that for any
element eij ∈ Mi (1 ≤ i ≤ n, j > 0), there is always a corresponding element e′

ij ∈ M ′.
2. Equality preservation. Input elements of source models are mapped to the same

element in merged model M ′ if and only if they are equal in the mapping, where equality

Article number 240109

21

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Table 4. Signals illustration

Signal Meaning

n The number of input models.
Mi The i-th input model (1 ≤ i ≤ n).
Pr i The priority number of model Mi.
eij The j-th model elements in Mi(1 ≤ i ≤ n).
M ′ The global model after model merging.
GM The matching model.
ME i The i-th matching element in GM (1 ≤ i ≤ n).
MES i The set of model elements in matching element ME i.
PE i The prior model element in matching element ME i.
MME i The merged model element in matching element ME i.
PELi The prior element link in matching element ME i.
M(e, e′) The input model element e has a unique corresponding element e′ in M ′.
Eq(ei, ej) Input model elements ei and ej are equal in model merging.
R(ei, ej) The relationship between model elements ei and ej .
V (e, p) The value of the property p in the model element e.

in the mapping is transitive. Formally, suppose that ei ∈ Mi, ej ∈ Mj and Eq(ei, ej),
which means that ei and ej are equal in the process of generating a matching element
ME i. Then ei, ej ∈ MES i. And M(ei, e′), M(ej , e′) where e′ = MME i ∈ M ′. Suppose
that Eq(ei, ej), Eq(ei, ek), then ei, ej ∈ MES1, M(ei, e′

1), M(ej , e′
1) and ei, ek ∈ MES2,

M(ei, e′
2), M(ek, e′

2). As ei’s corresponding element e′ is unique in M ′, e′
1 = e′

2 = e′. So
M(ej , e′), M(ek, e′) which means that equality in the mapping is transitive. If ei and
ej are not equal in the mapping, then there is no such e′, so that ei and ej correspond
to different element in M ′.

3. Relationship preservation. Each input relationship is explicitly in or implied by
target model M ′. Formally, for each relationship R(eik, eij) between eik and eij in
Mi, there are two cases. If one or both of eik and eij have matching elements such
that eik ∈ MES i or ejk ∈ MES j , then R(eik, eij) is recorded in PELi or PELj . And
R(eik, eij) will be added to M ′. If neither of eik and eij has matching element, they will
both be added to M ′ as well as the relationship R(eik, eij) between them in the last
step of model merging.

4. Similarity preservation. Elements that are declared to be similar (but not equal)
to one another in mapping from one model to another retain their separate identity
in target model and are related to each other by some relationship. Formally, for each
pair of similar but not equal elements ei ∈ Mi and ej ∈ Mj . There exist elements e′

i

and e′
j ∈ M ′ and M(ei, e′

i), M(ej , e′
j). As Eq(ei, ej) is not true, ei and ej correspond

to different elements in M ′, so e′
i 6= e′

j . Suppose R(ei, ej) is the relationship between ei

and ej . As relationship preservation is proved, there must be a relationship R(e′
i, e′

j)
between e′

i and e′
j in M ′.

5. Meta-meta-model constraint satisfaction. There are meta-meta-model conflicts
caused by one-type constraint and no-cycle constraint in model merging, we solve these
problems by appointing a prior model and picking the elements in the prior model
when conflicts occur. As the prior model is a correct UML model that satisfies all
meta-meta-model constraints, the merged model M ′ satisfies them too.

6. Extraneous item prohibition. Other than the elements and relationships specified in
source models, no additional elements or relationships exist in merged model. Formally,
for each model element e′ ∈ M ′, e′ = ei ∈ Mi if ei has no matching element or
e′ = MME i which is a merged element whose properties and methods all come from22

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

elements in MES i ∈ {M1, M2, . . . , Mn}. For each relationship R(e′
i, e′

j) ∈ M ′, there
exist ei, ej ∈ Mi, M(ei, e′

i), M(ej , e′
j) such that R(e′

i, e′
j) = R(ei, ej) ∈ Mi.

7. Property preservation. For each element property would be presented only if property
of element is mapped exactly to element in target model. The goal is to prove for each
element e′ ∈ M ′, e′ has property p if and only if ∃ei ∈ Mi, M(ei, e′) and ei has property
p. Suppose that ∃ei ∈ Mi, M(ei, e′) and ei has property p. If e′ is not a merged element,
then e′ = ei , so if e has property p, e′ has p too. If e′ is a merged element in matching
element ME i, and ei is the prior element PEi, then e′ has all properties of ei. If ei

is not PEi, ∃PEi ∈ Mj , and PEi has the property p′ which is the same property in
different representation with p, such that e′ has p′ instead of p. If there is no such p′ ,
then e′ has p. If for each ei ∈ Mi(1 ≤ i ≤ n), M(ei, e′) , ei does not have property p,
then e′ does not have property p.

8. Value preference. For each element in merged model M ′, its property value is chosen
from mapping elements. Suppose that ∃ei ∈ Mi, M(ei, e′) and ei has property p. For
each element e′ ∈ M ′, if e′ is not a merged element, then e′ = ei, V (p, ei) = V (p, e′).
If e′ is a merged element in matching element ME i, and ei is the prior element PEi,
then V (p, ei) = V (p, e′). If ei is not PEi, ∃PEi ∈ Mj has the property p′ which is the
same property in different representation with p, then V (p′, PEi) = V (p′, e′). So for
each e′ ∈ M ′, p(e′) is chosen from the mapping element corresponding to e′ or the prior
element PEi corresponding to e′.

7. Case study

We implement a prototype tool of the proposed approach in Java. The source code of
the tool is available online [54]. The code dictionary and the view of the proposed N -way
model merging tool are given in Figure 8. This tool can be used to merge different versions
of UML class diagrams modeled in the famous Papyrus modeling environment [42]. Users
are supposed to run this tool in the Eclipse IDE. First, users need to move the different
versions of UML class diagrams into the folder named Models in the directory of the tool.
Then, users need to set the relations of the UML versions as the example given in the file
version_r in the Models folder. After refreshing the tool view in Eclipse, users can see
the diagram of the versions and the list of the versions as shown in Figure 8. Users need
to select the versions to be merged by selecting corresponding checkbox. By editing the
priority file following the example in the Models folder, priority can be set to facilitate
conflict prevention based on priority. After that, users need to click the button Merge
Selected V ersions to accomplish model merging.

The proposed ABCMatch algorithm is a search-based meta-heuristic algorithm to
search for the optimal matching solution. So we evaluate the algorithm by comparing it
with existing novel meta-heuristic algorithms. The implemented tool merge the models
according to the optimal matching solution. We evaluate the scalability of the tool by
inviting participants to use the tool.

The purpose of the case study is to evaluate the effectiveness of the proposed method in
real-world collaborative modeling. However, existing N -way model merging methods [6, 27,
28, 40] cannot directly process and generate complete UML diagrams as our tool does, they
require a lot of manual processing. In addition, these methods do not provide publically
available tools for us to compare with. EMFStore [4] is one of the most widely-used

Article number 240109

23

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

version control systems in real-world collaborative modeling and it supports two-way model
merging, so we choose it to compare our tool with.

This section evaluates the proposed approach by answering the following research
questions.
– RQ1. Compared with the existing version control system, is the proposed N -way model

merging approach more effective?
– RQ2. What are users’ views on the usefulness of the proposed N -way model merging

approach compared with the existing version control system?
– RQ3. How is the performance of the proposed ABCMatch algorithm compared with

existing novel meta-heuristic algorithms?

Figure 8. The code dictionary and the view of the proposed N -way model merging tool

7.1. Experiment

7.1.1. Participants

We selected 30 participants from the College of Computer Science and Technology of Nanjing
University of Aeronautics and Astronautics. The selected participants are graduate students
majoring in software engineering, The participants meet the following requirements:
1. At least 2 years of software modeling experience.
2. Have experience in using the model management tool EMFStore [4].

7.1.2. Modeling tasks

We designed the following two tasks with different workloads:
Task 1. Use the UML class diagram to model the following information in a library

information system: (1) system users such as administrators, teachers, and students. (2)24

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

system functions available to each type of user. Require a minimum of 40 classes in the
submitted model.

Task 2. Use the UML class diagram to model the following information in a common
hospital information system: (1) departments, (2) medical staff, (3) system functions available
to medical staff, (4) wards, (5) patients, (6) system functions available to patients. Require
a minimum of 80 classes in the submitted model.

We divided the participants into two groups, Group 1 and Group 2. Based on the
information provided by the mentors of the participating students, we tried to make the
modeling levels of the two groups as equal as possible. Group 1 and Group 2 were the
experiment group and the control group, respectively, and were supposed to work on the
same tasks with the N -way model merging tool developed in this paper and EMFStore [4],
respectively. We asked participants to record the following information during the experiment:
(1) the time taken to complete the task, (2) the number of model merges performed, (3) the
number of conflicts, and (4) the total time taken for resolving conflicts, including the time
taken for group discussion, the time taken for modifying conflicting models and the time
taken for remerging models using the tool. In addition, we asked participants in the same
group to work together in the same period of time each day for modeling, model merging,
and group discussion to facilitate time consumption statistics.

7.1.3. Questionnaire

To compare participants’ views of the tools, we designed the following questionnaire:
1. How useful is the model merging function supported by the tool in collaborative

modeling?
A. Very useful; B. Useful; C. A little useful; D. Not useful.

2. How useful is the conflict handling function supported by the tool in collaborative
modeling?
A. Very useful; B. Useful; C. A little useful; D. Not useful.

3. Which tool do you prefer as the model merging tool for collaborative modeling?
A. The N -way model merging tool; B. EMFStore.

7.1.4. Evaluation of ABCMatch

In recent years, numerous novel meta-heuristic algorithms have been proposed to solve
optimization problems in various fields. However, most of these algorithms are not suitable
for solving the N -way model matching problem. This is because in the N -way model
matching problem, each matching solution consists of multiple matching paths, and each
matching path contains a set of UML classes. When using meta-heuristic algorithms to
solve the N -way model matching problem, the locations of different agents are supposed to
represent different matching solutions. However, most of the existing novel meta-heuristic
algorithms update the locations of agents through complex numerical calculations, which
cannot represent the update of the matching paths and the UML classes contained in
matching paths in each model matching solution. Therefore, this paper cannot compare
ABCMatch with the latest meta-heuristic algorithms which use complex numerical calcula-
tions to update locations of agents, such as Sparrow Search Algorithm (SSA) [21], Honey
Badger Aptimization (HBA) [23], and Northern Goshawk Optimization (NGO) [24].

As a meta-heuristic algorithm, the reason why the ABC algorithm can be improved to
solve the N -way model matching problem is that ABC updates the locations of agents by

Article number 240109

25

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

searching adjacent locations with higher fitness without complex numerical calculations.
Therefore, this paper can improve ABC and propose ABCMatch to solve the N -way model
matching problem. ABCMatch regards two matching solutions with only one matching path
to be different as neighbors when updating the locations of agents. We implemented the
ABCMatch algorithm in Eclipse using Java. The parameter configuration of the algorithm
is shown in Table 5.

Table 5. Parameter configuration

Algorithms Description Parameters Value

GA[15]
Population size PG 90
Crossover rate PC 0.9
Mutation rate PM 0.01

EHO[20]

Population size PE 90
Number of clans in elephant population NClan 9
Number of elephants in each clan Nc 10
Random number in the separating process R [0, 1]

ABCMatch

Population size PA 90
Number of employed bees Ne 30
Number of onlookers No 30
Number of scouts Ns 30
Initial number of matching paths S 10in each matching solution

In order to evaluate the performance of the proposed ABCMatch algorithm by comparing
it with existing novel meta-heuristic algorithms in the literature, we analyzed 23 existing
state-of-the-art meta-heuristic algorithms to find the algorithms that can be used to solve
the N -way model matching problem. These 23 algorithms are Genetic Algorithm (GA) [15],
Gray Wolf Optimization (GWO) [16], Symbiotic Organisms Search (SOS) [17], Whale
Optimization Algorithm (WOA) [18], Farmland Fertility Algorithm (FFA) [19],Elephant
Herding Optimization (EHO) [20], Sparrow Search Algorithm (SSA) [21], Tunicate Swarm
Algorithm (TSA) [22], Honey Badger Optimization (HBA) [23], and Northern Goshawk
Optimization (NGO) [24] Ant Colony Optimization (ACO) [55], Particle Swarm Optimiza-
tion (PSO) [56], Invasive Weed Optimization (IWO) [57], Firefly Algorithm (FA) [58], Fruit
Fly Optimization (FFO) [59], Flower Pollination Algorithm (FPA) [60], Moth-Flame Opti-
mization (MFO) [61], Crow Search Algorithm (CSA) [62], Dragonfly algorithm (DA) [63],
Grasshopper Optimization Algorithm (GOA) [64], Spotted Hyena Optimization (SHO) [65],
Emperor Penguin Optimization (EPO) [66], Butterfly Optimization Algorithm (BOA) [67].
Among the above algorithms, only GA[15] and EHO[20] do not need to update the positions
of agents through complex numerical calculations, so they can be used to solve the N -way
model matching problem.

Genetic algorithm (GA) [15]: GA is a classic meta-heuristic algorithm inspired by natural
evolution theory. GA simulates the phenomena of replication, crossover and mutation
in natural selection and genetics. Starting from any initial population, through random
selection, crossover and mutation operations, it generates a group of individuals more
suitable for the environment, so that the population evolves to a region with higher
adaptability in the search space, and continues to reproduce and evolve from generation to
generation, and finally converges to a group of individuals most suitable for the environment,
so as to obtain the optimal solution of the problem. To compare ABCMatch with GA, we
implemented GA using Java in Eclipse, and searched for the optimal solution of the N -way26

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

model matching problem by selecting, crossing and mutating the matching paths in the
model matching solutions. The parameter configuration of GA implemented in this paper
is shown in Table 5.

Elephant Herding Optimization (EHO) [20]: EHO is an advanced swarm intelligence
optimization algorithm that has been applied to optimization problems in many fields.
This algorithm mainly simulates the herding behavior of elephant groups. In nature, an
elephant group can be divided into multiple clans, and each clan has a matriarch as the
leader. Elephants belonging to different clans live under the leadership of the matriarch
(the best position in the clan). EHO has two operations: clan updating and separating.
In the clan updating operation, the position of each elephant is updated according to its
position and the position of the matriarch. In the separating operation, elephants with the
worst finesses will be moved to new locations to increase the global search ability of the
population. To compare ABCMatch with EHO, we implemented EHO in Eclipse using
Java. In the implemented EHO algorithm, we regarded multiple sets of model matching
solutions as multiple clans in an elephant group and took the best matching solution in
each set as the matriarch in each group. For separating, new matching paths were randomly
generated to replace the matching solutions with poor matching degrees. The parameter
configuration of the EHO algorithm implemented in this paper is shown in Table 5.

Table 6. Details of the data sets

Data sets Number of Number of Number of class diagrams
class diagrams matching paths that can be matched

Class diagrams ModelSet1 332 25 233
of the library ModelSet2 380 28 271
information ModelSet3 417 32 300
system (Task 1) ModelSet4 422 32 304

ModelSet5 426 33 308

Class diagrams ModelSet6 701 60 589
of the hospital ModelSet7 785 69 651
information ModelSet8 803 73 702
system (Task 2) ModelSet9 812 74 710

ModelSet10 820 76 718

Data sets. In order to evaluate the performance of ABCMatch in solving the N -way
model matching problem, this paper uses the class diagrams of the library information
system and the hospital information system established by the participants in Task 1 and
Task 2 as the experimental data sets, and compared the ABCMatch algorithm proposed
in this paper with Genetic algorithm (GA) [15] and Elephant Herding Optimization
(EHO) [20]. The details of the data sets are shown in Table 6. In Task 1, Group 1 conducted
a total number of 13 times of model merging, and we randomly selected five times among
them to collect the models to be merged. The selected models are from the first, the
third, the tenth, the eleventh, and the thirteenth times of model merging and we named
them as ModelSet1 to ModelSet5 in sequence as the experimental data sets. In Task 2,
Group 1 conducted a total number of 29 times of model merging. We randomly selected the
models from the fourth, the tenth, the thirteenth, the twenty-second and the twenty-ninth
times of model merging, and named them as ModelSet6 to ModelSet10 in sequence as the
experimental data sets.

Article number 240109

27

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

Table 6 presents the details of each model set, including the total number of class
diagrams in the model set, the number of matching paths in the model set, and the total
number of class diagrams that can be matched in the model set. In order to avoid the
statistics bias, the results of each algorithm are averaged over 30 runs.

Experimental environment. The experiment was performed on 64-bit Windows
desktop computer with the following configuration: 3.19 GHz CPU and 16 GB RAM.

7.2. Results and discussion

RQ1.Compared with existing version control system, is the proposed N -way model merging
approach more effective?

Table 7. Experimental data statistics of the two groups

Group 1 Group 2

Task 1

Total Time Taken 12 h (6 days, 2 hours per day) 14 h (7 days, 2 hours per day)
Total Number of Model
Merging

13 131

Total Number of Conflicts 92 96
Total Time Taken for
Resovling Conflicts

Total: 3 h 16 min
Group Discussion: 1 h 50 min
Modeling: 1 h 10 min
Merging by Tool: 16 min

Total: 5 h 13 min
Group Discussion: 2 h 10 min
Modeling: 1 h 15 min
Merging by Tool: 1 h 48 min

Group 1 Group 2

Task 2

Total Time Taken 24 hours (12 days, 2 hours per
day)

30 hours (15 days, 2 hours per
day)

Total Number of Model
Merging

29 307

Total Number of Conflicts 284 302
Total Time Taken for
Resovling Conflicts

Total: 9 h 22 min
Group Discussion: 5 h 15 min
Modeling: 3 h 10 min
Merging by Tool: 57 min

Total: 15 h 51 min
Group Discussion: 7 h 20 min
Modeling: 4 h 18 min
Merging by Tool: 4 h 13 min

Two groups of participants completed their tasks and submitted the models and related
experimental records. The models built by Group 1 have 43 classes (Task 1) and 82
classes (Task 2), respectively, and the models built by Group 2 have 44 classes (Task 1)
and 83 classes (Task 2), respectively. As we expected, the complexity of models built by
the two groups is relatively similar due to our design when grouping participants. The
statistical results of the experiment are given in Table 7. The results show that Group 1
(using the N -way model merging tool) spent less time on both tasks than Group 2 (using
EMFStore [4]). And the time consumption gap is greater in the second task. The reason is
that Group 2 spent more time on merging models using EMFStore when resolving conflicts,
taking 1 hour and 48 minutes in Task 1 and 4 hours and 13 minutes in Task 2. This is
much more than that of Group 1 which spent only 16 minutes (Task 1) and 57 minutes
(Task 2) using the proposed N -way model merging tool.

The essential reason why our tool is more effective than EMFStore [4] is that EMFStore
cannot support N -way model merging. Each group member needs to submit the model
one by one. When conflicts occur, each member needs to wait for others to deal with the
conflicts immediately, and only after resolving the conflicts can the next merge be carried
out. Unlike EMFStore, our tool supports N -way model merging thus saving the extra28

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

waiting time of submitting the model one by one. The results show the applicability of our
approach in merging real-world collaborative models.

Figure 9. Statistics on the results of the answers to the questions in the questionnaire

RQ2. What are users’ views on the usefulness of the proposed N-way model merging
approach compared with the existing version control system?

According to the statistical results of questionnaires given in Figure 9, most participants
think that the N -way model merging tool proposed in this paper is more useful than the
existing version control system EMFStore [4] in model merging and conflict handling and
are more willing to choose our tool as the model merging tool.

As shown in Figure 9a, most of the participants (14 out of 15) in Group 1 (using the
N -way model merging tool) stated that the N -way model merging tool was very useful
or useful. And only one participant stated that the N -way model merging tool is a little
useful. Compared with the N -way model merging tool, most participants in Group 2 (using
EMFStore) found that the model merging function provided by EMFStore was not as useful
as they had expected. And only a few participants (3 out of 15) stated that EMFStore’s
model merging function was useful. The results show that most participants agreed that the
N -way model merging tool is useful and EMFStore is not useful enough. This is because
a large number of models were required to be merged in the experiment. Unlike the N -way
model merging tool which can merge a large number of models at one time, EMFStore
requires more manual efforts to merge these models.

As shown in Figure 9b, most of the participants (14 out of 15) using the N -way model
merging tool stated that the conflict handling function provided by the N -way model

Article number 240109

29

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

merging tool was very useful or useful. In contrast, only a few participants (4 out of 15)
felt that the conflict handling function of EMFStore was useful or very useful. This is
because unlike EMFStore, the N -way model merging tool supports to show all the conflicts
between the models to be merged at one time, which greatly improves the efficiency of
conflict handling.

Figure 9c shows the comparison results of participants’ favoritism for the N -way model
merging tool and EMFStore. Most of the participants (26 of 30) prefer to use the N -way
model merging tool in collaborative modeling. They stated that the N -way model merging
tool can improve the efficiency of model merging when there are a large number of models
to be merged. Other participants (4 out of 30) chose EMFStore because they were used to
using EMFStore to manage their models.

RQ3. How is the performance of the proposed ABCMatch algorithm compared with
existing novel meta-heuristic algorithms?

Table 8 shows the model matching accuracy and the time cost of ABCMatch, GA [15],
and EHO [20] when the maximum model matching degree tends to be stable. The calculation
method of model matching accuracy is shown in Equation (9). Where Ncorrect_path is the
number of the correct matching paths in a matching solution, and Ntotal_path represents
the total number of paths in a matching solution. A matching path is a correct matching
path if and only if all the UML classes in this matching path are different versions of the
same UML class.

Accuracy = Ncorrect_path
Ntotal_path

× 100% (9)

Table 8. Comparison of the model matching results between ABCMatch, GA [15], and EHO [20]

Data sets ABCMatch GA[15] EHO[20]
Accuracy [%] Time [min] Accuracy [%] Time [min] Accuracy [%] Time(min)

ModelSet1 98.0341 0.9687 95.6442 1.4283 96.5336 1.2557
ModelSet2 96.8774 0.9841 95.3084 1.4392 95.4013 1.2892
ModelSet3 97.8759 1.0259 94.2405 1.5870 96.7265 1.3066
ModelSet4 98.1253 1.0373 94.8720 1.5932 96.5449 1.3592
ModelSet5 96.9697 1.0429 93.3201 1.6079 95.1102 1.3623
ModelSet6 97.2340 1.8214 95.1853 3.1047 94.7228 2.9968
ModelSet7 98.0599 1.9028 94.9275 3.2824 96.0849 3.0294
ModelSet8 97.0538 2.0215 96.0284 3.2879 95.3972 3.0851
ModelSet9 98.1667 2.0250 95.0828 3.2901 95.9601 3.0883
ModelSet10 97.8613 2.0316 93.9238 3.2962 94.9730 3.0935

As shown in Table 8, for the five model sets ModelSet1–ModelSet5 from Task 1, the
average value of the maximum model matching accuracy that GA and EHO can achieve
when they tend to be stable are 94.6770% and 96.0633%, respectively. Compared with
GA and EHO, the ABCMatch algorithm proposed in this paper can achieve a higher
model matching accuracy of 97.5765% in a shorter time. For the five model sets Mod-
elSet6-ModelSet10 from Task 2, the average value of the maximum accuracy that GA and
EHO can achieve when they tend to be stable are 95.0296% and 95.4276%, respectively.
Compared with GA and EHO, ABCMatch can achieve a higher model matching accuracy
of 97.6751% in a shorter time. For all data sets in the experiment, ABCMatch has better
performance than GA and EHO. The average accuracy of model matching has increased by
2.7725% and 1.8804% compared with GA and EHO, respectively. And the average time cost30

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

has decreased by 0.9056 mins and 0.7005 mins compared with GA and EHO, respectively.
The reason why ABCMatch performs better than EHO and GA is that ABCMatch can
maintain a good balance between global search and local search through the cooperation
of the employed bees, onlookers, and scouts. Unlike ABCMatch, GA has poor local search
ability due to its randomness, so its performance is not as good as ABCMatch. Although
EHO has a strong local search ability, its performance is not as good as the ABCMactch
algorithm because of its poor global search ability. This problem makes it easy to fall into
local optimum.

7.3. Threats to validity

In this section, we analyze the threats to the validity of the case study using the method [68]
proposed by Wohlin et al.
1. Internal validity. The internal threat is that the modeling level of the participants

could affect the results of the experiment. We set the modeling level that the participants
need to achieve and tried to make the modeling levels of the two groups as equal as
possible to relieve this threat.

2. External validity. The external validity means that the conclusion drawn from existing
examples in the experimental data set is also valid for out-of-set examples [68]. Our
experiments assume that the collaborative modeling is performed by a large group of
people in the same period of time together. In this case, our approach is more effective
than existing version control tools. We acknowledge that existing version control tools
are more effective in the case that there is no need for a large group of users to resolve
conflicts and merge models together during the same period of time.
The limited sample size poses a threat to the validity of our experimental results. Due to

the limited time and manpower, in the current research work, only two group of participants
were involved in the experiment. In the future, we will invite external practitioners and
researchers to use the proposed method and continuously improve it.

To mitigate the threats to external validity brought by the particular tasks delivered in
the experiment, we had selected two common and representative models of different scales
in different fields. The selected models are similar to other common information systems in
the real world.
3. Construct validity. The construct validity reflects the degree to which the case study

truly represents what needs to be studied according to the research questions [68].
The two research questions of this paper are the effectiveness and users’ views on the
usefulness of the proposed approach compared with the existing version control tool. For
the first question, we let two different groups (an experiment group and a control group)
work on the same tasks with the two different approaches. For the second question,
we obtained users’ views on the usefulness of the proposed approach by questionnaire.
So this case study totally represents what needs to be studied according to the two
research questions.

4. Conclusion validity. As the conclusions of case studies are usually drawn from several
cases, the results suffer from the threat to conclusion validity [68]. In this case study,
we target to simulate the real-world collaborative modeling process to demonstrate
the effectiveness of the proposed approach compared with the existing version control
system. However, this requires much manual modeling effort and time consumption. So
it is difficult to provide a large number of examples.

Article number 240109

31

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

8. Conclusion and future works

In this paper, we propose a novel N -way model merging approach and accompanying
prototype tool for collaborative modeling. Our approach takes a set of model variants as
inputs and generates a single global merged model by model comparison, model matching
and model combination. For model comparison, this paper proposes a new calculation
method for calculating the similarity of a group of model elements. For the most challenging
step, matching, which is an NP-hard problem, we propose a novel N -way matching algorithm
ABCMatch. Model combination is implemented by building a matching model which is
then transformed into the merged model. Unlike other approaches, we reshuffle elements
from distinct chains by extracting the prior element link and store it in matching models
rather than breaking the chain into pieces. Theoretical analysis is given to prove that our
approach satisfies the Generic Merge Requirements. A case study is conducted and the
experiment results corroborate the effectiveness of the proposed approach. Compared with
existing novel meta-heuristic algorithms GA and EHO which can be used to solve the
N -way model matching problem, the proposed ABCMatch algorithm can obtain more
accurate model matching solutions in a shorter time. The average model matching accuracy
of ABCMatch is 2.7725% higher than GA and 1.8804% higher than EHO.

At present, the N -way model merging method proposed in this paper is only applicable
to merging UML class diagrams and cannot be used to merge other types of models, such
as UML sequence diagrams. This is because the model comparison method, the model
matching method and the model combination method used in this paper are specially
designed for UML class diagrams. In the future, we will extend the model merging method
proposed in this paper to support the merging of other types of UML models.

References

[1] T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen, Model-driven software development
– Technology, engineering, management. Hoboken, NJ, USA: John Wiley and Sons, Inc., 2006.

[2] M. Franzago, D.D. Ruscio, I. Malavolta, and H. Muccini, “Collaborative model-driven software
engineering: A classification framework and a research map,” IEEE Transactions on Software
Engineering, 2017, p. 1.

[3] J.E. Rumbaugh, I. Jacobson, and G. Booch, The unified modeling language reference manual.
Reading, MA, USA: Addison Wesley Longman, Inc., 1999.

[4] M. Koegel and J. Helming, “EMFStore: a model repository for EMF models,” in Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering, Vol. 2, 2010,
pp. 307–308.

[5] E. Stepper, “CDO model repository,” 2010.
[6] J. Rubin and M. Chechik, “n-way model merging,” in Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering. Association for Computing Machinery, 2013,
pp. 301–311.

[7] F.S. Gharehchopogh, “Advances in tree seed algorithm: A comprehensive survey,” Archives of
Computational Methods in Engineering, Vol. 29, 2022, pp. 3281–3304.

[8] H. Mohammadzadeh and F.S. Gharehchopogh, “A multi-agent system based for solving
high-dimensional optimization problems: A case study on email spam detection,” International
Journal of Communication Systems, Vol. 34, No. 3, 2021, p. e4670.

[9] F.S. Gharehchopogh, I. Maleki, and Z.A. Dizaji, “Chaotic vortex search algorithm: Meta-
heuristic algorithm for feature selection,” Evolutionary Intelligence, Vol. 15, No. 3, 2022,
pp. 1777–1808.32

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

[10] T.S. Naseri and F.S. Gharehchopogh, “A feature selection based on the farmland fertility algo-
rithm for improved intrusion detection systems,” Journal of Network and Systems Management,
Vol. 30, No. 3, 2022, p. 40.

[11] H. Mohammadzadeh and F.S. Gharehchopogh, “Feature selection with binary symbiotic
organisms search algorithm for email spam detection,” International Journal of Information
Technology and Decision Making, Vol. 20, No. 01, 2021, pp. 469–515.

[12] F.S. Gharehchopogh, “Quantum-inspired metaheuristic algorithms: Comprehensive survey and
classification,” Artificial Intelligence Review, 2022, pp. 1–65.

[13] S. Ghafori and F.S. Gharehchopogh, “Advances in spotted hyena optimizer: A comprehensive
survey,” Archives of Computational Methods in Engineering, 2021, pp. 1–22.

[14] D. Karaboga, “Artificial bee colony algorithm,” Scholarpedia, Vol. 5, No. 3, 2010, p. 6915.
[15] S. Katoch, S.S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and

future,” Multimedia Tools and Applications, Vol. 80, 2021, pp. 8091–8126.
[16] S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in Engineering

Software, Vol. 69, 2014, pp. 46–61.
[17] M.Y. Cheng and D. Prayogo, “Symbiotic organisms search: A new metaheuristic optimization

algorithm,” Computers and Structures, Vol. 139, 2014, pp. 98–112.
[18] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in Engineering

Software, Vol. 95, 2016, pp. 51–67.
[19] H. Shayanfar and F.S. Gharehchopogh, “Farmland fertility: A new metaheuristic algorithm for

solving continuous optimization problems,” Applied Soft Computing, Vol. 71, 2018, pp. 728–746.
[20] G.G. Wang, S. Deb, and L.d.S. Coelho, “Elephant herding optimization,” in 3rd International

Symposium on Computational and Business Intelligence (ISCBI). IEEE, 2015, pp. 1–5.
[21] J. Xue and B. Shen, “A novel swarm intelligence optimization approach: Sparrow search

algorithm,” Systems Science and Control Engineering, Vol. 8, No. 1, 2020, pp. 22–34.
[22] S. Kaur, L.K. Awasthi, A. Sangal, and G. Dhiman, “Tunicate swarm algorithm: A new

bio-inspired based metaheuristic paradigm for global optimization,” Engineering Applications
of Artificial Intelligence, Vol. 90, 2020, p. 103541.

[23] F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, and W. Al-Atabany, “Honey Badger
Algorithm: New metaheuristic algorithm for solving optimization problems,” Mathematics and
Computers in Simulation, Vol. 192, 2022, pp. 84–110.

[24] M. Dehghani, Š. Hubálovskỳ, and P. Trojovskỳ, “Northern goshawk optimization: A new
swarm-based algorithm for solving optimization problems,” IEEE Access, Vol. 9, 2021,
pp. 162 059–162 080.

[25] F.S. Gharehchopogh, M. Namazi, L. Ebrahimi, and B. Abdollahzadeh, “Advances in sparrow
search algorithm: A comprehensive survey,” Archives of Computational Methods in Engineering,
Vol. 30, No. 1, 2023, pp. 427–455.

[26] Y. Huo, Y. Zhuang, J. Gu, S. Ni, and Y. Xue, “Discrete gbest-guided artificial bee colony
algorithm for cloud service composition,” Applied Intelligence, Vol. 42, 2015, pp. 661–678.

[27] W.K.G. Assunção, S.R. Vergilio, and R.E. Lopez-Herrejon, “Discovering software architectures
with search-based merge of UML model variants,” in ICSR, 2017.

[28] D. Reuling, M. Lochau, and U. Kelter, “From imprecise N-way model matching to precise
N-way model merging.” The Journal of Object Technology, Vol. 18, No. 2, 2019.

[29] M. Koegel, H. Naughton, J. Helming, and M. Herrmannsdoerfer, “Collaborative model merg-
ing,” in Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion. Association for Computing
Machinery, 2010, pp. 27–34.

[30] H.K. Dam, A. Reder, and A. Egyed, “Inconsistency resolution in merging versions of architec-
tural models,” in IEEE/IFIP Conference on Software Architecture, 2014, pp. 153–162.

[31] P. Buneman, S. Davidson, and A. Kosky, “Theoretical aspects of schema merging,” in Inter-
national Conference on Extending Database Technology: Advances in Database Technology,
1992.

[32] R. Pottinger and P.A. Bernstein, “Merging models based on given correspondences,” in
Proceedings VLDB Conference, 2003, pp. 862–873.

Article number 240109

33

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

[33] M. Sharbaf and B. Zamani, “Configurable three‐way model merging,” Software: Practice and
Experience, Vol. 50, No. 8, 2020.

[34] C. Thao and E.V. Munson, “Using versioned trees, change detection and node identity for
three-way XML merging,” Computer Science – Research and Development, Vol. 34, No. 1,
2019, pp. 3–16.

[35] C. Debreceni, I. Rath, D. Varro, X. De Carlos, X. Mendialdua et al., “Automated model
merge by design space exploration,” in Fundamental Approaches to Software Engineering, 2016,
pp. 104–121.

[36] F. Schwagerl, S. Uhrig, and B. Westfechtel, “Model-based tool support for consistent three-way
merging of EMF models,” ACME, 2013, p. 2.

[37] A. Schultheiß, P.M. Bittner, L. Grunske, T. Thüm, and T. Kehrer, “Scalable N -way model
matching using multi-dimensional search trees,” in ACM/IEEE 24th International Conference
on Model Driven Engineering Languages and Systems (MODELS), 2021, pp. 1–12.

[38] M.S. Kasaei, M. Sharbaf, and B. Zamani, “Towards a formalism for specifying N -way model
merging rules,” in 27th International Computer Conference, Computer Society of Iran (CSICC),
2022, pp. 1–7.

[39] M. Boubakir and A. Chaoui, “A pairwise approach for model merging,” in Modelling and
Implementation of Complex Systems, S. Chikhi, A. Amine, A. Chaoui, M.K. Kholladi, and
D.E. Saidouni, Eds. Cham: Springer International Publishing, 2016, pp. 327–340.

[40] Y. Jiang, S. Wang, K. Fu, W. Zhang, and H. Zhao, “A collaborative conceptual modeling
tool based on stigmergy mechanism,” in Proceedings of the 8th Asia-Pacific Symposium on
Internetware, 2016, pp. 11–18.

[41] J. Martinez, T. Ziadi, T.F. Bissyande, J. Klein, and Y.L. Traon, “Automating the extraction
of model-based software product lines from model variants,” 2015, pp. 396–406.

[42] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard et al., “Papyrus UML: An
open source toolset for MDA,” in Proc. of the Fifth European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-FA 2009). Citeseer, 2009, pp. 1–4.

[43] F.S. Gharehchopogh, M.H. Nadimi-Shahraki, S. Barshandeh, B. Abdollahzadeh, and H. Zamani,
“CQFFA: A Chaotic Quasi-Oppositional Farmland Fertility Algorithm for Solving Engineering
Optimization Problems,” Journal of Bionic Engineering, Vol. 20, No. 1, 2023, pp. 158–183.

[44] F.S. Gharehchopogh, “An improved tunicate swarm algorithm with best-random mutation
strategy for global optimization problems,” Journal of Bionic Engineering, Vol. 19, No. 4,
2022, pp. 1177–1202.

[45] B. Abdollahzadeh and F.S. Gharehchopogh, “A multi-objective optimization algorithm
for feature selection problems,” Engineering with Computers, Vol. 38, No. Suppl 3, 2022,
pp. 1845–1863.

[46] Şaban Öztürk, R. Ahmad, and N. Akhtar, “Variants of Artificial Bee Colony algorithm and its
applications in medical image processing,” Applied Soft Computing, Vol. 97, 2020, p. 106799.

[47] U. Mansoor, M. Kessentini, P. Langer, M. Wimmer, S. Bechikh et al., “MOMM: Multi-objective
model merging,” Journal of Systems and Software, Vol. 103, 2015, pp. 423–439.

[48] A. Anwar, A. Benelallam, M. Nassar, and B. Coulette, “A graphical specification of model
composition with triple graph grammars,” in Model-Based Methodologies for Pervasive and
Embedded Software, Vol. 7706, 2012, pp. 1–18.

[49] A. Koshima and V. Englebert, “RuCORD: Rule-based composite operation recovering and
detection to support cooperative edition of (meta)models,” in 2015 3rd International Conference
on Model-Driven Engineering and Software Development (MODELSWARD), 2015, pp. 1–7.

[50] H. Chong, R. Zhang, and Z. Qin, “Composite-based conflict resolution in merging versions of
UML models,” in 17th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2016, pp. 127–132.

[51] J. Rubin and M. Chechik, “Combining related products into product lines,” in Fundamental
Approaches to Software Engineering, 2012, pp. 285–300.

[52] P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New Phytologist, Vol. 11,
No. 2, 1912, pp. 37–50.

34

Article number 240109

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/

Tong Ye, Gongzhe Qiao e-Informatica Software Engineering Journal, 18 (2024), 240109

[53] D. Karaboga and B. Gorkemli, “A combinatorial artificial bee colony algorithm for traveling
salesman problem,” in International Symposium on Innovations in Intelligent Systems and
Applications, 2011, pp. 50–53.

[54] “N Way Model Merging Tool,” https://github.com/YETONG1219/NWay, [accessed 7 Nov.
2023].

[55] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Computational
Intelligence Magazine, Vol. 1, No. 4, 2006, pp. 28–39.

[56] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 –
International Conference on Neural Networks, Vol. 4. IEEE, 1995, pp. 1942–1948.

[57] S. Karimkashi and A.A. Kishk, “Invasive weed optimization and its features in electromagnet-
ics,” IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 2010, pp. 1269–1278.

[58] X.S. Yang and X. He, “Firefly algorithm: Recent advances and applications,” International
Journal of Swarm Intelligence, Vol. 1, No. 1, 2013, pp. 36–50.

[59] B. Xing, W.J. Gao, B. Xing, and W.J. Gao, “Fruit fly optimization algorithm,” Innovative
Computational Intelligence: A Rough Guide to 134 Clever Algorithms, 2014, pp. 167–170.

[60] X.S. Yang, M. Karamanoglu, and X. He, “Flower pollination algorithm: A novel approach for
multiobjective optimization,” Engineering Optimization, Vol. 46, No. 9, 2014, pp. 1222–1237.

[61] S. Mirjalili, “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm,”
Knowledge-based Systems, Vol. 89, 2015, pp. 228–249.

[62] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization
problems: Crow search algorithm,” Computers and Structures, Vol. 169, 2016, pp. 1–12.

[63] S. Mirjalili, “Dragonfly algorithm: A new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems,” Neural Computing and Applications,
Vol. 27, 2016, pp. 1053–1073.

[64] S.Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah, “Grasshopper optimization
algorithm for multi-objective optimization problems,” Applied Intelligence, Vol. 48, 2018,
pp. 805–820.

[65] G. Dhiman and V. Kumar, “Multi-objective spotted hyena optimizer: A multi-objective
optimization algorithm for engineering problems,” Knowledge-Based Systems, Vol. 150, 2018,
pp. 175–197.

[66] G. Dhiman and V. Kumar, “Emperor penguin optimizer: A bio-inspired algorithm for engi-
neering problems,” Knowledge-Based Systems, Vol. 159, 2018, pp. 20–50.

[67] S. Arora and S. Singh, “Butterfly optimization algorithm: A novel approach for global opti-
mization,” Soft Computing, Vol. 23, 2019, pp. 715–734.

[68] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell et al., Experimentation in software
engineering: An introduction. Kluwer Academic Publishers, 2000.

Article number 240109

35

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-9/
https://github.com/YETONG1219/NWay

e-Informatica Software Engineering Journal (EISEJ) is an international, fully open access (CC-BY 4.0 without any fees
for both authors and readers), blind peer-reviewed computer science journal using a fast, continuous publishing model
(papers are edited, assigned to volume, receive DOI & page numbers, and are published immediately after acceptance
without waiting months in a queue to be assigned for a specific volume/issue) without paper length limit. Our aim is to
focus on empirical software engineering, as well as data science in software engineering.
The journal is published by Wrocław University of Science and Technology under the auspices of the Software Engineering
Section of the Committee on Informatics of the Polish Academy of Sciences.
Aims and Scope
The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in all areas of
software engineering research.
The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress is laid on empirical evaluation
using well-chosen statistical and data science methods.
e-Informatica Software Engineering Journal is published online and in hard copy form. The on-line version is from the
beginning published as a gratis, no authorship fees, open-access journal, which means it is available at no charge to the
public. The printed version of the journal is the primary (reference) one.

Topics of interest

— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and prac-

tices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software engi-

neering (incl. replications)
— Evidence-based software engineering
— Systematic reviews and mapping studies (see SEGRESS

guidelines)
— Statistical analyses and meta-analyses of experiments
— Robust statistical methods
— Reproducible research in software engineering
— Object-oriented software development

— Aspect-oriented software development
— Software tools, containers, frameworks and develop-

ment environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data science in software engineering
— Prediction models in software engineering
— Mining software repositories
— Search-based software engineering
— Multiobjective evolutionary algorithms
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and mea-

surement programs
— Process maturity models

Funding acknowledgements: Authors are requested to identify who provided financial support for the conduct of the
research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the
collection, analysis and interpretation of data; in the writing of the paper. If the funding source(s) had no such involvement
then this should be stated as well.
The submissions will be accepted for publication on the base of positive reviews done by international Editorial Board and
external reviewers.
English is the only accepted publication language. To submit an article please enter our online paper submission site.
Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.
The journal is indexed by ISI Web of Science, Scopus, DBLP, Google Scholar, DOAJ, Index Copernicus, etc.
Paper copies of selected issues of the journal are available from our Publisher (please contact oficwyd@pwr.wroc.pl for
details). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission
of the publishers.

https://madeyski.e-informatyka.pl/download/shortly-about-segress-guidelines.pdf
https://madeyski.e-informatyka.pl/download/shortly-about-segress-guidelines.pdf
https://www.e-informatyka.pl/index.php/einformatica/editorial-board/
https://mc.manuscriptcentral.com/e-InformaticaSEJ

	Title Page
	Editorial Board
	Content
	A Multivocal Literature Review on Non-Technical Debt in Software Development: An Insight into Process, Social, People, Organizational, and Culture Debt
	Continuous Software Engineering Practices in AI/ML Development Past the Narrow Lens of MLOps: Adoption Challenges
	Software Defect Prediction Using Non-Dominated Sorting Genetic Algorithm and k-Nearest Neighbour Classifier
	Migrating a Legacy System to a Microservice Architecture
	Measuring End-user Developers’ Episodic Experience of a Low-code Development Platform
	Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill
	Boosting and Comparing Performance of Machine Learning Classifiers with Meta-heuristic Techniques to Detect Code Smell
	Automated Code Reviewer Recommendation for Pull Requests
	An N-Way Model Merging Approach Based on Artificial Bee Colony Algorithm
	A Multivocal Literature Review on Non-Technical Debt in Software Development: An Insight into Process, Social, People, Organizational, and Culture Debt
	Introduction
	Research method
	Planning the MLR
	Motivation

	Conducting the MLR
	Search strategies and data sources
	Primary studies selection procedure and application of inclusion/exclusion criteria
	Quality assessment
	Data extraction and analysis

	 Results
	Demographics
	NTD state of the art
	Process debt
	People debt
	Culture debt
	Social debt
	Organisational debt

	NTD accumulation causes
	Process debt causes
	People debt causes
	Culture debt causes
	Social debt causes
	Organisational debt causes

	NTD mitigation strategies
	Process debt mitigation
	People debt mitigation strategies
	Culture debt mitigation strategies
	Social debt mitigation strategies
	Organisational debt mitigation strategies

	Future work
	Implications
	Threats to validity
	Discussion and conclusion
	Acknowledgment
	References

	Primary studies
	List of primary studies

	Continuous Software Engineering Practices in AI/ML Development Past the Narrow Lens of MLOps: Adoption Challenges
	Introduction
	Background
	Continuous SE
	ML Development from the point of view of software engineering
	Related work: MLOps and continuous SE in ML

	Research framework
	Research method
	Data collection
	Data analysis

	Results
	Overview of used tools and methods
	Business strategy and planning
	Development
	Operations
	Improvement and innovation

	Discussion
	Answers to research questions
	Limitations

	Conclusions and future research suggestions
	References

	Interview instrument

	Software Defect Prediction Using Non-Dominated Sorting Genetic Algorithm and k-Nearest Neighbour Classifier
	Introduction
	Related work
	Objective functions
	Multiobjective genetic algorithms
	Basic concepts
	Genetic algorithm
	Chromosome construction
	Multiobjective genetic algorithm

	Methodology
	Using the solutions produced by NSGAII in kNN
	Datasets

	Results
	Threats to validity
	Conclusion
	References

	Migrating a Legacy System to a Microservice Architecture
	Introduction
	Microservice technology
	State of the industry

	Related work
	Methods
	Analysis
	Research areas and approaches (RQ1)
	Re-engineering phase (RQ2)
	Contributions to the domain (RQ3)
	Key findings

	Discussion
	Threats to validity
	Conclusion
	Information about funding/support sources
	References

	Primary studies
	Publication venues

	Measuring End-user Developers’ Episodic Experience of a Low-code Development Platform
	Introduction
	Related work
	Factors influencing developer experience
	End-user developers
	Low-code development platforms (LCDPs)

	Research approach
	Literature-based development of a preliminary questionnaire
	Source literature
	Item selection and categorisation
	Questionnaire format

	Delphi study and final questionnaire
	Task-based test
	Participants
	Procedure
	Analysis
	Task difficulty vs. developer experience
	Individual experience items vs. the evaluation of the tool and tasks
	Programming backgrounds vs. developer experience

	Discussion
	Experience should be set apart from task difficulty and tool usability
	Comparing to related work
	Episodic experience vs. cumulative experience
	Insights for further research
	Limitations

	Conclusions
	Acknowledgements
	References

	Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill
	Introduction
	Data used in the study
	Objective
	Propositions, hypotheses, research questions
	Understand the Fire Drill manifestation
	Establish an understanding using qualitative data
	Obtain a robust predictive model

	Notions and abbreviations
	Structure of this article

	Related work
	Background
	Phenomena described using a pattern language
	The Fire Drill
	Patterns related and similar to the Fire Drill

	Previous work

	Case study design
	Context
	Product
	Processes and practices
	Students, researchers, customers, and the organization

	Embedded unit selection
	About the data
	Qualitative design
	Quantitative design
	Activities in issue-tracking data
	Activities in source code data
	Modeling of activities as probability densities
	Deriving features from activities

	First analysis: weighted mixtures
	Second analysis: variable importance
	Adaptive training
	Notations
	Stability analysis
	Training flow and model selection

	Analysis and results
	Inter-rater reliability and consensus
	Phenomenon prevalence and manifestation
	Phenomenon absence
	Quantitative phenomenon manifestation
	Variable importance
	Adaptive training

	Discussion
	Summary of the results
	Validity, limitations, replicability, and generalizability

	Conclusions and future work
	Synthesis
	Future work
	Acknowledgments

	References
	Appendices
	Full Fire Drill description
	Fire Drill
	Summary
	Context
	Unbalanced forces
	Symptoms and consequences
	Causes
	(Refactored) solution
	Sources

	Project setup
	Fire Drill symptoms and consequences
	Symptoms and consequences indicating the absence
	Detailed variable importance

	Boosting and Comparing Performance of Machine Learning Classifiers with Meta-heuristic Techniques to Detect Code Smell
	Introduction
	Motivation

	Related work
	Research methodology
	Research questions addressed
	Code Smells investigated
	Datasets used
	Experimentation setup
	Performance measures
	Accuracy
	 F-measure
	ROC-AUC

	Results and analysis
	Support Vector Machine
	Data class
	Feature envy
	God class
	Long method

	k-Nearest neighbors
	Data class
	Feature envy
	God class
	Long method

	Discussion
	Does using meta-heuristic algorithms for optimizing machine learning classifiers boost their performance to detect code smell in complex software systems?
	How significant is the impact of optimization of machine learning algorithms with meta-heuristic techniques on its overall performance?
	Given the meta-heuristic algorithms, which yields the best performance in optimizing classifiers to detect code smell and why?
	How does our approach perform compared to existing machine learning based techniques?

	Threats to validity
	Threats to internal validity
	Threats to external validity
	Threats to conclusion validity

	Conclusions and future work
	References

	Machine learning algorithms used
	Support Vector Machine (SVM)
	k-Nearest Neighbors

	Meta-heuristic algorithms used
	Arithmetic optimization abualigah2021arithmetic
	Behavior
	Phase changing variable
	Exploration equations
	Exploitation equations

	Jellyfish search optimization chou2021novel
	Behavior
	Initialization
	Exploration equations
	Exploitation equations
	Phase changing variable

	Flow direction optimization karami2021flow
	Behavior
	Initialization
	Phase changing variable
	Learning equations

	Student psychology Based Optimization das2020student
	Behavior
	Learning equations

	Pathfinder optimization yapici2019new
	Behavior
	Learning equations
	Phase Changing Variable

	Sine Cosine Optimization mirjalili2016sca
	Behavior
	Learning equations

	Jaya Optimization rao2016jaya
	Behavior
	Learning equations

	Crow Search Optimizationaskarzadeh2016novel
	Behavior
	Learning equations

	Dragonfly optimization mirjalili2016dragonfly
	Behavior
	Learning equations

	Krill herd optimization gandomi2012krill
	Behavior
	Learning equations

	Multi-verse optimization mirjalili2016multi
	Behavior
	Learning equations

	Symbiotic organisms search cheng2014symbiotic
	Behavior
	Learning equations

	Flower pollination optimization yang2012flower
	Behavior
	Exploration equations
	Exploitation equations

	Teaching learning based optimization rao2011teaching
	Behavior
	Learning equations

	Gravitational search optimization rashedi2009gsa
	Behavior
	Learning equations

	Biogeography-based optimization simon2008biogeography
	Behavior
	Learning equations

	Automated Code Reviewer Recommendation for Pull Requests
	Introduction
	Proposed approach
	Scores definition
	Initial formulation of scores
	Relative formulation of reviews and commit scores
	Applying the impact of time factor
	Examining reviews and commit scores for directories of previous levels
	Determining Optimal Coefficients

	Evaluations
	Evaluations questions
	Evaluations setup
	Dataset
	Evaluation criteria
	Comparison with Related Works

	Evaluations results
	Quantitative results
	Qualitative results

	Threats to validity

	Discussion
	Related work
	Conclusions and future work
	Acknowledgments
	References

	An N-Way Model Merging Approach Based on Artificial Bee Colony Algorithm
	Introduction
	Related work
	Two-way and three-way model merging
	N-way model merging
	Operation-based merging approach
	Conflicts resolving

	Overview of the proposed approach
	Model comparison
	Calculation of model matching degree
	An example of model comparison

	The ABCMatch algorithm
	The problem of model matching
	Encoding
	Initialization

	Iteration process
	Employed bees phase
	Onlookers phase
	Scouts phase

	Model combination
	Meta-model
	The model matching process
	An example of the matching model
	Model merging

	Case study
	Experiment
	Participants
	Modeling tasks
	Questionnaire
	Evaluation of ABCMatch

	Results and discussion
	Threats to validity

	Conclusion and future works
	References

	EISEJ Homepage

