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Abstract
Background: Software Defect Prediction (SDP) is a vital step in software development.
SDP aims to identify the most likely defect-prone modules before starting the testing
phase, and it helps assign resources and reduces the cost of testing.
Aim: Although many machine learning algorithms have been used to classify software
modules based on static code metrics, the k-Nearest Neighbors (kNN) method does not
greatly improve defect prediction because it requires careful set-up of multiple configuration
parameters before it can be used. To address this issue, we used the Non-dominated
Sorting Genetic Algorithm (NSGA-II) to optimize the parameters in the kNN classifier
with favor to improve SDP accuracy. We used NSGA-II because the existing accuracy
metrics often behave differently, making an opposite judgment in evaluating SDP models.
This means that changing one parameter might improve one accuracy measure while it
decreases the others.
Method: The proposed NSGAII-kNN model was evaluated against the classical kNN
model and state-of-the-art machine learning algorithms such as Support Vector Machine
(SVM), Naïve Bayes (NB), and Random Forest (RF) classifiers.
Results: Results indicate that the GA-optimized kNN model yields a higher Matthews
Coefficient Correlation (MCC ) and higher balanced accuracy based on ten datasets.
Conclusion: The paper concludes that integrating GA with kNN improved defect
prediction when applied to large or small or large datasets.

Keywords: software defect prediction, genetic algorithm, multi-objective opti-
mization, k-nearest neighbor

1. Introduction

Software systems are integral to daily life [1–4]. As such, the quality of our software
systems must be monitored for defects in order to produce perfectly running, defect-free
systems and limit software failures [3, 5–7]. A software defect is simply defined as an error,
fault, bug, or problem in a computer program [8]. Software defects are caused by errors
made during the implementation phase and can lead to software failures when the software
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program is executed [9, 10]. Studies have shown that such defects lead to decreased customer
satisfaction and increased maintenance costs [11]. Therefore, it is essential to locate software
defects and identify which modules require repair or retesting before running a program
application. Software Detection Prediction (SDP) is the process of predicting defect-prone
modules before starting the testing phase [12]. As software complexity increases, the use of
SDP in the software development process has become even more crucial. The necessity of
having proper SDP models results in improved efficiency, reduced development time, and
reducing time spent on testing and error management [4, 5, 13]. Many SDP models were
built in the last decades using several different datasets. The most commonly used publicly
accessible dataset is the NASA repository, produced in 2005 [14]. Researchers have used
the NASA repository with many machine learning models with promising results [15–19].
The most widely used machine learning algorithms include Naïve Bayes (NB), Neural
Networks (NN), k-Nearest Neighbor (kNN), Support Vector Machine (SVM), decision
trees, etc. [20, 21].

Our focus in this paper is on kNN algorithm because it has less attention form researchers,
and it did not offer significant improvements on the prediction accuracy. One reason for
that is the large space of configuration possibilities that govern the execution of kNN which
includes 1) choosing distance measure, 2) optimal features sets, 3) optimal feature weights,
and most notably, 4) the number of nearest neighbors. This resulted in a massive number
of configuration possibilities that extend 100,000 possible solutions. Therefore, searching
for the best subset of kNN configuration parameters is relatively impossible unless a more
robust searching algorithm is used.

This paper applied Non-dominated Sorting Genetic Algorithm (NSGAII) optimization
technique to search for the best kNN solution that fits training data [22]. This algorithm
finds the best solution amongst a vast space of solution sets or a primary population
where an individual is referred to as a chromosome [23], inspired by Darwin’s theory of
“survival of the fittest.” The best individuals have the best probability of being reproduced
in the next generation [24]. GA has been widely used to solve complex problems in
computing and engineering fields [25]. The GA process consists of four main phases:
1) initialization, 2) selection, 3) crossover, and 4) mutation. In each cycle of GA construction,
the chromosomes with high fitness are most likely reproduced to generate new generations.
With the help of crossover and mutation, the GA can make a minor modification to the
most fitted individuals to generate hopefully better solutions [26, 27].

However, the existing accuracy metrics often present opposite judgments in evaluating
SDP models [19, 28]. This means that changing one parameter could improve one accuracy
metric while reducing the other accuracy metrics. Therefore, we used a Pareto front
multiobjective NSGAII to come up with an optimal solution that improves the overall
accuracy of SDP-based kNN without reducing the other accuracy metrics. The effect of
these conflicting parameters together has not been examined before. Thus, we propose to
see the construction of kNN as a multiobjective optimization problem. This research is
driven by the following research questions:
– RQ1. Do the use of NSGAII and the proposed solution vector improve accuracy of

kNN model for software defect prediction problem?
– RQ2. Is there sufficient evidence that the NSGAII algorithm can find the best k value

for each module?
To answer these questions, we integrated the kNN algorithm with NSGAII. We proposed
a new solution vector that combines two main kNN variables that must be optimized. The
first variable is an integer that represents best k value and the second one is a binary
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vector of length m, where m is the number of features. Furthermore, since the evaluation
measure cannot give indication to the superiority of the generated configuration, we used
mutliobjective optimization based on two evaluation measures that are less vulnerable
to imbalanced data, namely, Matthew’s Correlation Coefficient (MCC ) and Balanced
Accuracy (BA). In general, the proposed model produced good performance when compared
to baseline kNN and other machine learning algorithms.

The rest of the paper is structured as follows. The first section introduced the research
and the subject matter of the paper, an overview of the literature available on software defect
prediction, the algorithms we tested, and the results of significance obtained from these
research papers. Section 2 presents related work. Section 3 presents a problem presentation.
Section 4 presents multiobjective optimization algorithms. The research methodology is
presented in Section 5. The obtained results are covered in Section 6. Section 7 introduced
threats to validity. Section 8 provides a summarized conclusion to the efforts of this study
and the future works, along with limitations.

2. Related work

Many machine-learning models have been used to predict the defects in software systems.
Shuai et al. [29, 30] Investigated the use of GA with an SVM classifier and particle swarm
algorithm for software fault prediction. Another study investigated a novel dynamic SVM
method based on improved Cost-Sensitive SVM (CSSVM) optimized by GA [29]. Results
demonstrated a high Area Under the Curve (AUC) value for the GA-CSSVM model
compared with only SVM or CSSVM. Recorded results were 0.721 with the KC1 dataset,
0.832 with PC1, and 0.897 with the MC1 dataset. The proposed method resulted in an F1
score of 94.88% with the CM1 dataset, 91.89% with KC1, 94.90 with KC3, 99.7% with
MC1, and 95.78% with the MW1 dataset. Elish et al. [31] compared the effectiveness
of SVM prediction to that of eight machine learning models in predicting defect-prone
software modules. Using the PC1, KC1, and KC3 datasets, the findings showed that SVM
outperformed other machine learning models. Hammad et al. [32] used the kNN machine
learning algorithm to predict faulty software projects. They used public datasets and four
different similarity measures, achieving an accuracy of 87.2% using the Euclidean distance
measure. The researchers [7, 11, 33] studied the detailed performance analysis of various
machine learning classification techniques using publicly available NASA datasets. They
found that evaluation metrics like ROC and accuracy are ineffective performance measures
because they do not react to class imbalance. In contrast, precision, recall, f -measure, and
MCC react to class imbalance. Moreover, Khoshgoftaar et al. [34] worked on a pre-existing
model to enhance the performance of Random Forest by applying feature selection to detect
software defects. They achieved high accuracies with PC2, PC2, PC3, and PC4 datasets.

Mabayoje et al. [35] focused on understanding the effect of kNN tuning on the abilities of
the SDP based on 6 datasets. The result of significance was that the k value should be greater
than 1 and the distance weighting improved the predictive performance of the SDP by 8.82%.
Iqbal et al. [36] used Use of a feature selection-based ensemble classification framework,
divided over four stages, with the framework implemented with and without feature
selection. They Found that the framework proposed in the paper could perform better in
comparison to other popular classification techniques including kNN, NB, MLP and OneR
among others. One issue that the study faced was with regards to imbalance; a solution
was not presented in the paper. Jindal et al. [37] proposed a Solution for defect severity
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assessment using text mining and machine learning. The results showed that the kNN
technique could predict defects across all severity levels, with the performance improving
every time the number of corresponding words was increased. The study concluded that the
kNN method is best used for defects of medium severity. Ulumi et al. [38] focused on subject
of SDP for cross-project domain. The study made use of kNN to fill in missing values from
a dataset, followed by classification using the NB or RF methods. Goyal et al. [39] used
the kNN regression as opposed to Ordinary Least Square (OLS) parametric regression
for defect prediction. They found the kNN regression remains unaffected with increasing
number of predictors and provide better performance when using linear regression.

Based on existing research, it appears that using the kNN method in conjunction with
other techniques, such as machine learning, can help develop models capable of conducting
SDP with higher levels of accuracy and reliability. In addition to SDP for single projects,
kNN presents an exciting front for cross-project defect prediction. Without using kNN,
this can be a challenging task since the datasets across domains contain many features.
An issue that is also faced is data imbalance, which is a significant issue in SDP; one
possible solution is the use of resampling techniques, which enhance the accuracy of machine
learning classifiers, including kNN.

Above all, there is little research on the kNN efficacy in predicting defect-prone software
systems, and it does not offer significant improvements in prediction accuracy. This is due
to the multiple configuration possibilities that govern kNN, including 1) choosing distance
measures, 2) optimal feature sets, 3) optimal feature weights, and most importantly, 4) the
number of nearest neighbors [35, 40]. Because these configuration possibilities result in
100 000 possible solutions, a more robust searching algorithm is needed to identify the best
subset of kNN configuration parameters. One possible solution to this problem is to apply
the Multi-Objectives Genetic Algorithm (MOGA) optimization technique to search for the
best kNN solution that fits training data. This study hypothesized that optimizing kNN
with GA would create a more robust algorithm for SDP.

3. Objective functions

Objective function is important termination factor that tells MOGA to stop iteration
before reaching maximum number of iterations. Usually, the classical GA uses one objective
function that tell us we found the best solution for a problem. In case of SDP studies,
the objective function is frequently one of the accuracy measures. However, there are
multiple accuracy measures that are used evaluate SDP models where some of them are
less informative for the model performance. Since these accuracy measures (a.k.a. objective
functions) behave differently we prefer to use multiple objective function functions. The
second important question is which reliable accuracy metrics should be used as objective
functions. After careful investigation we found that almost all SDP datasets suffer from
imbalanced data distribution where number of non-defected modules outnumbers the
defected modules which lead to prediction bias towards majority class which is non-defected
modules. Therefore, we searched in the literature for the best evaluation metrics that
are considered reliable and work well with the existent of imbalanced data. We found
that Matthews Correlation Coefficient (MCC ) is the most credible metrics for imbalanced
datasets [19, 41]. The MCC as shown in Eq. (1) uses binary confusion matrix values (i.e.,
True Positive (tp), True Negative (tn), False Positive (fp) and False Negative (fn)) and
returns a value between −1 and +1 corresponding to the relationship between predicted
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output labels and actual output labels. Any value closes to +1 means strong positive
correlation, any value closes to −1 means strong negative correlation and value around
zero means no correlation.

MCC = tp × tn − fp × fn√
(tp + fn)(tp + fp)(tn + fp)(tn + fn)

(1)

The second objective function is the Balanced Accuracy (mathitBA) as shown in
Eq. (2). This measure is considered less important than MCC when data is imbalanced,
but it is still useful because it computes the average of compromises between Sensitivity
and Specificity. This metric is less sensitive to bias than other accuracy metrics.

BA =

tp
tp + fn + tn

tn + fp
2 (2)

The Area Under Precision-Recall Curve is the third objective function (AUPRC).
This measure is thought to be more stable and less susceptible to data imbalances than
Area Under ROC [19]. AUPRC is a binary response evaluation metrics statistic that is
acceptable for unbalanced data and is independent of model specificity. In other fields,
precision-recall curves have been recognized as useful for assessing classification performance
for unbalanced binary responses; its tolerance of skewed data (e.g., many absences and few
presences) makes it well suited for quantifying distribution model performance for minority
cases. All objective functions are supposed to be maximized. These objective functions
have been selected because, even though all of them were initially designed to show the
performance of a model, they can behave in a different way as mentioned in [6, 42, 43].
This enables us to choose as many as possible good solutions that can produce tradeoff
between these objective functions.

4. Multiobjective genetic algorithms

4.1. Basic concepts

Evolutionary algorithm is widely used to solve complex problems with interrelated param-
eters as encountered in computing. The problem of searching can be defined as follows:
Given a function f : S → < from some set of decision vectors (S) to the set of real numbers
(<), the aim is to find a solution ~so in S such that the objective function is either minimized
(f(~so) ≤ f(~s), ∀s ∈ S) or maximized (f(~so) ≥ f(~s), ∀s ∈ S), where each solution ~s is
defined as vector of variables in the d-dimensional space as shown in Eq. (3).

~s = [s1, s2, . . . , sd]T (3)
For single objective problem, finding the optimal solution is straight forward. But, when the
problem should be optimized by multiple objective functions. We arrive at the conclusion
that there is no one optimum solution, but rather a good trade-off solution that represents
the best compromises between the objectives. Since there are several linked decisions that
need to be optimized based on discovering trade-offs between different accuracy metrics, the
challenge of tuning kNN process can be considered as a multiobjective optimization problem.
The GA has been chosen for three reasons: 1) widely used among research community,
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2) simple to implement and 3) it showed astonished accuracy against other evolutionary
algorithms such as Particle Swarm Optimization and Simulated Annealing.

4.2. Genetic algorithm

GA is an evolutionary algorithm based on natural selection. The GA algorithm simulates
natural selection, in which the fittest chromosomes are picked for reproduction in order to
generate the next generation. A particular number of solutions are chosen initially to run
the problem. Some of these solutions (fittest ones) are combined, resulting in new solutions
including pieces (genes) from the generating pair (crossover). A new generation is defined
when the components of other solutions are randomly transformed (mutation). The goal of
all of these procedures is to identify the individuals who perform the best in terms of the
objective function. The current best solutions are always moved to the next generation to
ensure that the algorithm progresses toward improving the objective functions. A careful
selection of all of these parameters, with the conventional technique being to test various
combinations of their values. The size and makeup of the original population, as well as the
number of generations to compute, are also essential assumptions. The last parameter of
the algorithm can be securely examined by observing the evolution of the objective function
over generations and terminating the algorithm when no improvement is obtained after
a specific number of iterations. Finally, because the majority of the above mechanisms are
influenced by random factors, it is common practice to repeat the entire operation for each
fixed set of parameter values. The crossover operator randomly recombines specific parts
from two selected solutions and creates a new solution (chromosome) for the new population.
The mutation operator picks out a point in parent solutions and generates a new random
solution to replace the previously selected solution. In contrast, the reproduction operator
propagates the selected solution to the new population [44]. The process repeats until the
maximum iteration set has been reached or the objective function has been met [44].

4.3. Chromosome construction

This section describes the proposed chromosome that is used with NSGAII to improve kNN
model for defect prediction. Usually, the kNN model can accept two decision variables:
1) feature weights (w), and 2) number of nearest analogies (k). The first decision variable
determines the importance of each feature in the training data set during distance calculation
as shown in Eq. (4). The kNN classifier is defined as retrieving by similarity [42, 45]. The
Euclidean distance is usually used to determine the closest observations. The value of k
determines the number of nearest neighbors that will be used to make final prediction.
Figure 1 illustrates the effect of k variable on the final prediction. Usually choosing small
k value will result in ignoring other useful instances, whereas choosing large k value will
results in potential misclassification. Therefore, the good k value is the one that can identify
the actual nearest instances without degrading the accuracy.

The use of kNN is a practical application for SDP applications, given its ability to
predict defects across all severity levels. The kNN method is used in addition to the other
techniques, including practices such as the Euclidean distance measure to improve the
accuracy of fault prediction.
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Figure 1. kNN classification example [46]

distance =

√√√√ m∑
u=1

wu (xiu − xju)2 (4)

where m is the number of features, xi and xj are instances under investigation, u is the
index of the feature and wu is the weight of feature u that is identified by MOGA algorithm.

The second decision variable determines how many nearest neighbors should be retrieved
from training data sets for which the final prediction will be made from them using voting
technique. Each feasible solution (−→s ) in the search space is represented as a vector of two
choice variables, as indicated in Eq. (5).

−→s = 〈k, w〉 (5)
where k is the number of nearest neighbors which must be bounded by 1 and n/2 (i.e.,
k ∈ [1, n/2]) where n is the number of training instances, w is a numeric vector whose
coordinate represent the weight in addition to the presence or absence of feature. If the
any value in the w is zero, then that feature is not important. Each possible weight can
take value between zero and one (i.e., wij ∈ [0, 1]) and the summation of weight values
should equal to 1 as shown in Eq. (6). Finally, the dimension of w should be equivalent to
number of input features in the training dataset.

m∑
i=1

wi = 1 (6)

To illustrate that, assume the following solution vector −→s = 〈5, 0.2, 0.4, 0.1, 0.15, 0.05, 0.1〉
are the best identified solution and assume the number of features is 6 (m = 6). This
solution vector shows that only 5 nearest analogies should be retrieved, and the remaining
values after 5 (i.e., from 0.2 to 0.1) represent the weight of each feature. It is important to
note that all features should be included in distance computation because all of weights
are above zero. As mentioned earlier, this solution vector is generated from NSGAII as
explained in the methodology section.

4.4. Multiobjective genetic algorithm

The multiobjective optimization is defined as searching for a solution vector (~s) that
meet d inequality constraints (gi(x) ≥ 0, i = 1, 2, . . . , d.) and p equality constraints
(hi(x) = 0, i = 1, 2, . . . , p.) while simultaneously optimizing a vector of M conflict objective
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functions as indicated in Eq. (7). The constraints determine the feasible zone, which includes
all viable options. As depicted in Figure 2, the ideal solution is reached as a trade-off
between two or more competing objectives, which is known as a Pareto optimal solution.
Here are some key terms to remember when it comes to multiobjective optimization:

~f(~x) = [f1(~x), f2(~x), . . . , fM (~x)] (7)

Figure 2. The Pareto front of a set of solutions in a two-objectives space
(f1 and f2 are supposed to be minimized)

– Definition 1 (Dominance): A solutionx ~xi ∈ <m is strictly dominated by a solu-
tion ~xj ∈ <m (~xi ≺ ~xj and ~xi 6= ~xj) iff fl (~xi) ≤ fl (~xj), ∀l ∈ 1, 2, . . . , M and fl (~xi) <
fl (~xj), ∃l ∈ 1, 2, . . . , M .

– Definition 2 (Non-dominance): The solution ~xi ∈ <m is non-dominated solution, if there
does not exist another solution ~xj ∈ <m such that fl(~xi) ≤ fl( ~xj), ∀l ∈ 1, 2, . . . , M and
i 6= j.

– Definition 3 (Pareto optimal): We say that a solution ~x∗ ∈ η ⊂ Rm is a Pareto optimal
if it is non-dominated with respect to the feasible region (η).

– Definition 4 (Pareto optimal set): a set ρ ⊂ X non-dominated solutions is called Pareto
Optimal set which is formally defined as: ρ = {~x ∈ η | ~x} is a Pareto optimal set.

– Definition 5 (Pareto front): is defined as ρf = {f(~x) ∈ Rm | ~x ∈ η}.
In this paper, we used a modified version of the GA method called NSGAII [22], which

supports Pareto-front optimization. This algorithm employs a strong elitism technique
to provide a number of Pareto fronts solutions, taking non-dominance into account as
illustrated in Figure 3. All non-dominated solutions make up the initial front solution. The
second one has the solutions dominated by only one solution, and the fronts are generated
until all solutions are classified. To maintain the diversity of solutions, another sort is
performed using the crowding distance for solutions of the same front. The crowding distance
defines how distant a solution’s neighbors are from it, where the solutions are ranked in
decreasing order. The selection operator employs both front and crowding distance sorting
processes. Individuals with lower fronts are picked in the binary tournament; if the fronts
are the same, the solution with the greatest crowding distance is chosen. Recombination
and mutation are used to create new populations.
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Figure 3. NSGAII algorithm pseudo code [22]

5. Methodology

5.1. Using the solutions produced by NSGAII in kNN

Figure 4 illustrates the research methodology of our study. We used repeated 10 folds cross
validation to validate our model. In order to show how the NSGAII algorithm works with
kNN we first start with describing the process of initialization as shown in Figure 5. Each
vector represents a potential solution which is composed of two variables – k and w. Each
solution is randomly initialized such that the value of k can take random integer number
between 1 and n/2 and w can randomly take value between 0 and 1.

Figure 4. Research methodology

Figure 5. The algorithm of population generation

Article number 240103

9

https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-3/


Mohammad Azzeh et al. e-Informatica Software Engineering Journal, 18 (2024), 240103

When NSGAII starts execution, the k and w values are updated based on crossover and
mutation. Figure 3 depicts how each solution in this study is updated using Pseudo code.
Recent research publications show that the solution’s values frequently surpass the search
space’s bounds. This is most likely to take place when a solution is far away from best
solution. The conventional method is to truncate the location at the exceeded boundary
in this iteration and reflect the values in the boundary in the following generation such
that the solution moves away. It does, however, limit the size of the solution step, limiting
additional solution divergence and allowing the solution to stay near to the bounds during
the search process.

In this study, we used the following configuration parameters for GA: 1) The mutation
probability was 0.05, and 2) cross over operation has been performed using single point
cross over.

To test the accuracy of our proposed, we also implemented a model without GA. To
do this, we ran the classical kNN model and recorded the evaluation metrics to verify
that the model with optimization gave us good results. We used the kNN classifier in our
experiment to check the accuracy of our proposed model with and without optimization.
One additional benefit of using kNN is its ability to enhance its performance as the size of
the dataset increases. A larger training dataset typically provides a more comprehensive
representation of the underlying data distribution. This increased coverage helps the kNN
algorithm make more accurate predictions by capturing a wider range of data patterns and
reducing the influence of outliers. The kNN model has also a better chance of learning the
underlying patterns and relationships within the data. This improved generalization ability
enables the model to make more accurate predictions on unseen or test data. The kNN
model is less likely to overfit the training data. Overfitting occurs when the model becomes
too specialized to the training set and fails to generalize well to new data. Increasing the
training dataset size helps alleviate this issue. The kNN determines the class of a new
data point based on the majority vote of its kNN. When the training dataset is larger, the
decision boundaries between different classes can become more refined, leading to better
classification performance.

These features ensure that software of higher complexities can use the kNN method for
SDP. It is also assuring that the methodology will consider all the different parameters and
produce an accurate representation of the defect probability in the system. In addition to
the kNN classifier, we also tested the code using SVM, NB, and RF classifiers to compare
our results and prove that the optimized model gave the best results. We chose these
classifiers because they have been used widely in SDP in combination with other algorithms
to evaluate results.

5.2. Datasets

The employed datasets have been obtained from the PROMISE repository [5, 12], which
consisted of six imbalanced datasets from the NASA Metrics Data Program (NASA MDP),
one dataset from ReLink [47], and three from the Modular Open Robotics Platform for
Hackers (MORPH) [48]. These datasets are used in many studies related to SDP due to
similar data points and the respective fault data, which helped us assess NSGAII-kNN
performance during the testing, training, and evaluating process. Table 1 lists and describes
the datasets we used in this experiment. Before implementation, we checked the datasets
for missing attributes, and we applied data normalization. Before running NSGAII-kNN,
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we also normalized the input features using the Min-Max scaler to avoid errors in our
results.

Table 1. Datasets description

Dataset Source No. of No. of Defective
attributes instances instances

CM1 NASA 37 344 12
KC1 NASA 21 2107 15
KC3 NASA 40 458 9
MC1 NASA 38 9277 1
AR3 NASA 29 63 12
PC4 NASA 37 1399 12
Safe ReLink 26 56 39

Poi- 1.5 MORPH 20 237 59
Ant- 1.3 MORPH 20 125 16
Redktor MORPH 20 176 15

6. Results

This section focuses on the design and implementation of NSGAII-kNN.
To answer the research questions, we first installed required libraries and packages,

followed by the dataset import. We set up GA parameters manually before running the
experiment. The GA was used to find the best features weight and k number that produced
a minimized objective function value. Therefore, we tuned the GA parameters to a set
number of maximum iterations, creating a population size. The objective function class
defined how we made the population and assigned weights. Then we split our data into
training and testing sets using the 10 × 10-Folds cross-validation method. For the genetic
algorithm, the objective function focused on minimizing the false-negative and maximizing
the true positive. Before generating the optimized function, we normalized the input
features using the Min-Max scaler and then applied the kNN classifiers to output results.
Next, with the aid of this optimized function class, we passed on the genetic algorithm and
found out the best solution that consisted of optimal weights and k numbers. We used the
10 × 10-Folds cross-validation technique, and the iterations were repeated many times for
each dataset. Finally, we recorded the output results. We used MCC and balanced accuracy
to conclude our results. In addition, we ran the overall model on datasets CM1, KC1, KC3,
MC1, PC4, AR3, Safe, Ant- 1.3, Poi- 1.5, and Redktor. Along with the optimized model
setup, we ran a classical kNN model, splitting the dataset into training and testing, then
normalizing the features using the Min-Max scalar before fitting the model and predicting
results. We tested the accuracy of this model using the same evaluation measures as we did
for the optimized model. We also set up classical SVM, NB, and RF models to compare the
results with GA-kNN. The configuration parameters of these machine learning alogrithms
are presented in Table 2. The layout of the code was the same as the classical kNN model.
We used the same evaluation metrics to record the results.

Tables 3 and 4 summarize the results. Table 3 summarizes the MCC values obtained
with all the models, including the SVM, NB, and RF classifier models, while table 4 shows
the balanced accuracy for all models. The tables show that the NSGAII-kNN classifier
performed better than the other classifier models in both MCC and balanced accuracy. The
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Table 2. Configuration parameters of the employed machine learning algorithms

Model Best configuration parameters

kNN n_neighbors = 5, weights=’uniform’, algorithm=’ball_tree’
RF n_estimator= 100, learning_rate=0.01, tree_method=’hist’
NB Kernel=’Gaussian function’
SVM Gamma=’scale’, kernel=’rbf’, epsilon=0.1

Table 3. MCC recorded for all models

Datasets NSGAII Classica SVM NB RF
kNN kNN

CM1 0.893 0.796 0.511 0.256 0.0963
KC1 0.974 0.950 0.967 0.433 0.379
KC3 0.326 0.198 0.056 0.278 0.0987
MC1 0.241 0.189 0.0 0.117 0.241
AR3 0.330 0.293 0.130 0.401 0.330
PC4 0.342 0.339 0.156 0.319 0.389
Safe 0.426 0.367 0.325 0.288 0.304
Poi- 1.5 0.405 0.367 0.386 0.184 0.532
Ant- 1.3 0.341 0.326 −0.009 0.234 0.0240
Redktor 0.466 0.447 0.383 0.099 0.370

Table 4. Balanced accuracy recorded for all models

Datasets NSGAII Classical SVM NB RF
kNN kNN

CM1 0.941 0.897 0.686 0.622 0.527
KC1 0.987 0.975 0.987 0.678 0.676
KC3 0.716 0.582 0.517 0.674 0.536
MC1 0.821 0.796 0.700 0.804 0.800
AR3 0.882 0.782 0.715 0.860 0.815
PC4 0.683 0.669 0.547 0.650 0.633
Safe 0.734 0.682 0.659 0.649 0.666
Poi- 1.5 0.718 0.687 0.683 0.574 0.767
Ant- 1.3 0.690 0.668 0.495 0.630 0.489
Redktor 0.771 0.723 0.719 0.510 0.722

highest MCC was scored with the KC1 dataset, while the highest balanced accuracy was
also with the KC1 dataset. If we compare the classical kNN model with other classifiers,
the kNN classifier proved to be better than the others in most of the datasets, proving to
be a good classifier for SDP.

Tables 3 and 4 provide different combinations of parameters and conditions, which we
used to obtain different results. NSGAII-kNN yielded the highest overall recorded MCC of
0.974 on the KC1 dataset, while NSGAII-kNN’s lowest MCC value was .241 in MC1 dataset.
By comparison, the classical kNN model’s highest MCC was 0.796 in the CM1 dataset and
an MCC of 0.189 in the MC1 dataset. Overall, the NSGAII-kNN model yielded MCC values
ranging from 0.241 to 0.974 while the classical kNN model yielded MCC values ranging
from 0.189 to 0.950. For balanced accuracy, again, NSGAII-kNN outperformed, yielding the
highest value of 0.987. By comparison, the classical kNN model’s highest value was 0.975.
GA-kNN yielded balanced accuracy values between 0.650 and 0.987, while the classical
kNN model yielded balanced accuracy values between 0.582 and 0.975. These results
demonstrate that GA performed well on all datasets and that the NSGAII-kNN model
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works better than the classical kNN model across the majority of datasets. When comparing
NSGAII-kNN with the SVM, NB, and RF models, NSGAII-kNN performed better again.
MCC and balanced accuracy remained high for GA-kNN in all the datasets and low in the
SVM model, proving that NSGAII-kNN performs SDP better. The NB model also yielded
poor results with MCC ranging from 0.099–0.433, a short-range compared to 0.241–0.974
for NSGAII-kNN. Balanced accuracy recorded with the SVM model also produced poor
results with the minimum MCC value of 0.517 with the KC3 dataset compared to 0.650
with the optimized model. Lastly, the RF model’s MCC range was relatively low compared
to NSGAII-kNN, similar to the other classifier models. The balanced accuracy was also low,
0.489–0.815, compared to NSGAII-kNN’s range of 0.650–0.975. These results demonstrate
that overall, NSGAII-kNN performed better than SVM, NB, and RF.

The results obtained from these experiments used the same high-performance methods
to define the accuracy of the results. Our results support previous findings that both kNN
and NSGA-II are effective methodologies in SDP. Our experiments resulted in balanced
accuracy and MCC values comparable to those found in the literature, supporting our
hypothesis that using kNN with NSGAII is an effective method of SDP. Using NSGAII
with kNN is a unique approach in terms of the algorithm that governs this experiment’s
classification methodology. Most of the literature review focused on the sole use of kNN,
which has produced high-reliability results. However, our study demonstrates that the
addition of GA enhances the accuracy and reliability of results and is a methodology
superior to one solely reliant on kNN. Table 5 provides an analytical comparison of some
of these literature reviews to our study. Many different methodologies and frameworks
have been considered for application for SDP. The kNN classification method has been
assessed and applied under various conditions and to other datasets, yielding results that
display a high potential for application in SDP modules. The classical kNN model gave us
good results when testing it as a classifier for a software defect prediction model with high
accuracy values.

Finally, we revisited the proposed research questions to facilitate drawing the conclusions:
– RQ1. Do the use of NSGA-II and the proposed solution vector improve accuracy of

kNN model for software defect prediction problem?
Answer. Yes, as we have seen from Tables 3 and 4, the proposed NSGA-II model can
produce significant results over all results.

Table 5. Analytical comparison with the existing literature

Ref. Used algorithms Key findings in comparison to our study

[32] Used the kNN algorithm, like our
study, in addition to constructing
using Euclidean distance, weighted
ED, Manhattan distance, and Haus-
dorff distance measures.

This study achieved an accuracy of 87.2% with the same
datasets as our research used. However, we used an op-
timized approach with GA and kNN and gained higher
balanced accuracy, 94.1%, and 98.7%, with CM1 and KC1
datasets, respectively.

[49] This study used variant-based en-
semble learning and feature selec-
tion techniques.

KC1 dataset achieved an MCC of 0.482, very low in com-
parison to our study. We achieved an MCC of 0.974 with
the KC1 dataset, proving to be a better algorithm for SDP.

[50] The authors in this study used the
kNN based probability density esti-
mation approach using fuzzy mem-
berships to eliminate classification
errors.

The results were a balanced accuracy of 72.76% with CM1,
71.78% with KC1, and 64.27% with KC3. In comparison
to these values, we obtained high-performance results that
are 94.1%, 98.7%, and 65% with the CM1, KC1, and KC3
datasets, respectively.
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– RQ2. Is there sufficient evidence that the NSGA-II algorithm can find the best k value
for each module?
Answers. Yes, if we compare performance between our proposed model and classical
kNN, we can reach to a conclusion that our model that uses dynamic selection of k
produces better performance than classical kNN that uses static k value for all samples.

7. Threats to validity

This section aims to discuss the threats to validity encountered in the present study.
The identified threats are categorized as either internal or external. External validity is
further subdivided into three aspects: datasets, SDP scenarios, and evaluation measures.
To ensure accurate conclusions, the utilization of an adequate number of diverse datasets
that encompass a wide spectrum of features is vital. In this investigation, a comprehensive
analysis was performed on 10 public datasets obtained from three software repository,
which exhibit variations in module numbers and defect percentages. Moreover, the findings
of this research are specific to “within-project” defect prediction scenarios, and the practical
guidelines derived may not be readily applicable to other contexts. Additionally, while
evaluation measures such as MCC and BA are generally robust against changes in the
confusion matrix, the utilization of MCC and BA is recommended for enhanced sensitivity
and informative results when dealing with imbalanced data.

The internal validity of this study is susceptible to three potential threats: the validation
approach and feature selection. Although the conducted experiments employed a 10-fold
cross-validation technique, it is acknowledged that leave-one-out cross-validation may yield
better results by minimizing potential bias stemming from data sampling. Furthermore,
feature selection algorithms were not employed in the current investigation to identify the
optimal features for each dataset. Previous empirical studies have indicated that utilizing
all available features often produces accuracy similar to that achieved by using the best
feature subset. Consequently, the impact of the feature selection process on the final results
is deemed insignificant and thus not recommended for utilization.

8. Conclusion

Predicting defects in the software modules helps developers detect faulty modules and
identify the classes that might need refactoring. In this research paper, we trained the kNN
classifier with a multi-optimization model called Genetic Algorithm (GA), resulting in our
model, GA-kNN. Model performance was measured using MCC and balanced accuracy.
The dataset KC1 yielded the highest MCC of 0.974 with k = 3 for GA-kNN, while the
classical kNN model recorded an MCC value of 0.950 with the same k number. All the other
datasets yielded a higher MCC and AUC when trained with the NSGAII-kNN model. Our
experiments proved that the NSGAII-kNN model is better than the classical kNN model
and can be used with various datasets. Our results demonstrated that the kNN classifier
gave us good results for all the datasets proving that it is a good classifier for SDP datasets
when compared to other classifiers such as SVM, NB, and RF, and thus, a good base for
our model. Furthermore, NSGAII-kNN also showed superior performance when compared
to other classifier models, including classical kNN because it yielded a high range of MCC
and balanced accuracy values. In this study, we analyzed the kNN method for the purpose
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of SDP, and we evaluated its performance based on three different classifiers. Our study
was limited to understanding the optimization of kNN parameters using the GA. This is
one possible method, although alternatives such as multilayer perceptron, neural networks
and binary trees need to be analyzed for similar SDP applications on a dataset. As well,
our study applied NSGAII-kNN to a limited number of datasets. Ideally, NSGAII-kNN
should be applied to other varying datasets consisting of different types of data to analyze
whether the results and accuracy are maintained. As well, we used three classifiers as
evaluation metrics to determine the accuracy of our NSGAII-kNN model; this proves to
be a limitation as numerous classifiers are available and the accuracy for SDP should be
evaluated against each one of these classifiers. One final limitation of the study is that it was
limited to the study of single platform algorithms and not on cross-platform systems, so it is
unknown whether the proposed algorithm will provide the same results in a cross-platform
environment. Future studies could investigate more developed optimization algorithms and
other classification techniques for SDP. Furthermore, the NSGAII-kNN could be applied to
in cross-platform applications, applications of software development, with different types
and weights of datasets. Finally, future studies could evaluate the accuracy and efficiency
of the proposed algorithm for use as a mainstream algorithm for SDP.
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