e-Informatica Software Engineering Journal, Volume 19, Issue 1, 2025, pages: 250102, DOI: 10.37190/e-Inf250102

ACoRA — A Platform for Automating
Code Review Tasks

Mirostaw Ochodek*, Miroslaw Staron**

* Institute of Computing Science, Poznan University of Technology
**IT Faculty, Chalmers University of Technology | University of Gothenburg

miroslaw.ochodek@put.poznan.pl, miroslaw.staron@gu.se

Abstract

Background: Modern Code Reviews (MCR) are frequently adopted when assuring code
and design quality in continuous integration and deployment projects. Although tiresome,
they serve a secondary purpose of learning about the software product.

Aim: Our objective is to design and evaluate a support tool to help software developers
focus on the most important code fragments to review and provide them with suggestions
on what should be reviewed in this code.

Method: We used design science research to develop and evaluate a tool for automating
code reviews by providing recommendations for code reviewers. The tool is based on
Transformer-based machine learning models for natural language processing, applied to
both programming language code (patch content) and the review comments. We evaluate
both the ability of the language model to match similar lines and the ability to correctly
indicate the nature of the potential problems encoded in a set of categories. We evaluated
the tool on two open-source projects and one industry project.

Results: The proposed tool was able to correctly annotate (only true positives) 35%—41%
and partially correctly annotate 76%-84% of code fragments to be reviewed with labels
corresponding to different aspects of code the reviewer should focus on.

Conclusion: By comparing our study to similar solutions, we conclude that indicating
lines to be reviewed and suggesting the nature of the potential problems in the code
allows us to achieve higher accuracy than suggesting entire changes in the code considered
in other studies. Also, we have found that the differences depend more on the consistency
of commenting rather than on the ability of the model to find similar lines.

Keywords: Code Reviews, Continous Integration, BERT, Machine Learning

1. Introduction

Modern Code Reviews (MCR) [1, 2] is a common practice in continuous integration and
deployment companies. A modern code review is a practice that evolved from software
inspections advocated by Fagan et al. [3] already in 1976, but it adapts to modern tools
and the ability to peer review smaller segments of code (commits) pushed by developers
to the main branch of the code. MCR is integrated into modern software development
pipelines and all leading configuration management platforms enable this way of working.
Git and Gerrit [4, 5] are two examples of such tools, where the developers can review
other’s code before it is integrated with the main branch.

© 2025 The Authors. Published by Wroctaw University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.
Submitted: 18 Jan. 2024; Revised: 5 Aug. 2024; Accepted: 2 Sep. 2024; Available online: 3 Oct. 2024

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/EISEJ/papers/2025/1/2
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9103-717X
https://orcid.org/0000-0002-9052-0864

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Although MCR is a lightweight process compared to the original inspection process of
Fagan, it is still a tiresome process and can result in delays when delivering the product [6].
It is also a process known to miss important quality issues [7]. To address the problem, the
majority of current research efforts are targeted towards either eliminating this activity by
automated code repairs [8], improving the tools used for code reviews [9], or even predicting
which lines of code should be reviewed manually [10, 11].

However, one of the main limitations of the automated code repair activities is the low
success rate (ca. 30% at best, [8]). The major drawback of the automated suggestion for
which code fragments to review is the lack of information on why and what should be
reviewed exactly in that code fragment. Furthermore, MCR has secondary goals in addition
to quality assurance. It is often perceived as a good way of onboarding developers into new
projects and learning within the team [12, 13]. Therefore, in this paper, we address the
research problem of:

To which degree can we suggest relevant review guidance for a given code fragment
based on historical data?

We address this question by designing and constructing an automated code review
assistance platform—ACoRA. The platform is based on the idea that a programming language
can be treated as a natural language from the perspective of machine learning language
models [14]. It employs a Transformer-based language model [15] to search for lines of
code similar to those under review that were previously commented on. Later, it analyzes
the comments to highlight the aspects of code on which the reviewer should focus while
reviewing a given code fragment. It performs a multi-class / multi-label classification
according to the proposed taxonomy [16] and aggregates the results over the comments
for similar lines to guide the reviewers’ focus. ACoRA can be integrated with MCR tools to
learn from the previous reviews to be able to suggest what should be reviewed in a given
code fragment.

We use design science research as our methodology as prescribed by [17] and evaluate
ACoRA on both open-source projects and together with an industrial partner. The results
show that we can suggest completely correct recommendations (only true positives) in
35%-41% of the fragments and partially correct in 76%-84% of the fragments. The results
are better than the results of similar studies (e.g., suggesting code that repairs a defect or
suggesting a review text itself).

The paper is structured as follows. Section 2 summarizes the most relevant related
research. Section 3 describes the ACoRA platform and Section 4 details our research method-
ology. Sections 5 and 6 present and discuss the results of evaluating ACoRA and Section 7
discusses the threats to validity. Finally, Section 8 presents the conclusions and outlines
the further work in this area.

2. Related Work

The field of using natural language processing models for programming tasks is developing
rapidly. In this section, we provide the current and the most relevant related research in
this area.

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

2.1. Natural Language Processing models applied to code

“On the naturalness of software” by [14] is a seminar work that started a number of research
directions in using machine learning for programming tasks. This paper shows that there
exist several approaches for using natural language processing machine learning models in
software engineering, with a focus on such tasks as program repair or defect finding.

In fact, this field became very popular and a survey by [18] formalized a hypothesis
about the naturalness of programming languages: “The naturalness hypothesis. Software
is a form of human communication; software corpora have similar statistical properties
to natural language corpora; and these properties can be exploited to build better software
engineering tools.” This hypothesis provided a foundation to classify approaches to pro-
cessing programming languages, but the most important contribution of this work is the
classification of the tasks where the hypothesis is used (at least initially, when it was
formulated): code-generating models, representational models of code, and pattern mining
models. The paper also reviewed each of these application areas and found a significant
number of models and applications. For example, for the code-generating models, they
found 49 studies, and the number is certainly higher today. Our work, however, is focused
on studying the last area—pattern mining of code, although focused on applying these
techniques to a specific task—code review support. That area showed a significantly smaller
set of studies—10 studies in 2018.

2.2. Using language models for code repair and generation tasks

One of the first models, which is used in several studies, is the representation of code using
information about the program’s abstract syntax tree—code2vec, as introduced by [19].
The underlying concept behind code2vec is that a program’s code should be represented as
a feature vector using information taken from the grammar of the programming language.
The feature vector carries information about whether a code fragment is a definition of
a function, a single statement, or even a specific type of token. The approach has been
demonstrated to work well when translating programming languages or finding meaningful
synonyms. However, it has one disadvantage. Namely, it requires the program to compile,
which is'quite problematic in industrial contexts as well as in the context of MCRs. Since
the focus of MCR is, per definition, one commit, then the set-up of the entire code2vec
alongside compilers can be problematic, as we found in our previous studies [6].

As opposed to the grammar-based language models, a new trend emerged when BERT
models [20] showed significant progress in the area of natural language processing, in
particular in translation between programming languages. One of the first BERT-based
models in this area is CodeBERT designed by [21]. The model is pre-trained for programming
languages like JavaScript or Python along with the English natural language. The model
supports translations between a natural language and a programming language for such
tasks as writing programs based on natural language commands or summarization of
programs in natural languages (documentation generation).

Program generation and translation of natural language to programs are also the base
tasks for the TransCoder models presented by Facebook Research. An example of such a
task is the deobfuscation task, where the models change identifiers in the program to ones
that are more meaningful for software developers, as presented by [22]. The performance
of the model is impressive and in the best-case scenarios achieves an accuracy of 67.6%.

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

AlphaCode as presented by [23], is another prominent example of current state-of-the-art
models in program generation. The model is trained to solve problems from programming
competitions and uses the same technology. The application of the model demonstrates
that it can generate programs based on natural language specifications and also ranks in
the top 54.3% compared to ca. 5,000 participants. The main difference of this model is that
it is trained to solve “artificial” programming tasks, which are not the same as software
engineering tasks in the industry. Our work is based on the same principles as AlphaCode
(using transformer models) but aligned with the industrial needs and requirements.

However, the accuracy depends on the dataset and the task of the model. An example of
a problem, which is significantly more relevant to the industrial context is program repair.
There, the newest models, such as ReviewdRepair [24], can achieve an accuracy of above
30%, which is still a significant improvement from the previous models. Review4Repair
solves the task of fixing a given defect based on finding and adapting code fragments from
Git. The problem is significantly more difficult than deobfuscation or program generation
since the new code fragment has to fit in the existing context. A similar approach was
followed by Tufano et al. [25] who studied the possibility of adapting Text-To-Text Transfer
Transformer (T5) to either automatically suggest changes in the code under review or to
generate such changes based on the reviewer comments. These ways of using language
models are the most similar to our approach, with the difference that we donot generate
code fragments but guide the focus of the reviewers by indicating lines of code similar
to the previously commented ones with hints on potential reasons for comments. Thus,
we solve a modified version of this problem. As opposed to Review4Repair, we provide
a recommendation for a software developer, who needs to react, rather than providing a
solution that needs to be automatically approved (e.g., through testing).

Finally, the latest commercial achievement in this line of research is the GitHub
Copilot!, which is based on OpenAI’s GPT-4 model. GitHub Copilot tool can provide
both suggestions for new code fragments based on natural language comments of what the
code should do, and based on the previous code that has been written (code completion).
Our model solves a simpler problem but is trained on a codebase selected by the software
developers, which does not pose any legal issues, as they can choose to use the model only
on their previous code.

2.3. Modern Code Reviews

The focus of our work; i.e., code review processes in the continuous integration/deployment
context, has industrial roots. The MCR process is effort-intensive and can vary in quality.
One of the seminal papers about MCR, and its industrial role, is the study of code
reviews at Google [26]. Among other findings, [26] presents identifying code ownership and
readability as important factors in the process of code review. They have also found that
code reviews should be done on smaller parts of the code to make the process faster, which
has implications for the technology used to support the code reviews. The smaller fragments
of code require the models to use non-grammar-based approaches. It also poses requirements
for being specific when providing recommendations. These implications have also been
identified in our previous studies [6] and therefore ACoRA generalizes the review suggestions
as well as provides recommendations on arbitrary code fragments, e.g., individual lines.

"https://copilot.github.com

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2
https://copilot.github.com

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

One of the fundamental challenges when applying machine learning to code reviews is
our ability to understand what a good code review is. [27] studied the concept of code review
and source code change from the perspective of how a good change, or review, is defined in
the literature. They verified their studies based on industrial practice. Small size of the
change, clear context, and relevant suggestions are some of the identified factors. In ACoRA,
we follow these findings and provide generalized suggestions about the potential nature of
the problem and its context (examples of similar lines of code previously commented on
and the comments) to help the developers make the most of the suggestions.

One of the challenges we encounter in our work is the ability to characterize and
categorize code review comments. [28] studied a set of code review comments from over
2,000 software developers. Their study used pre-defined, fine-grained: categories of code
reviews and achieved an accuracy of 63.9%. This shows that the accuracy of the ACoRA’s
BERT4Comments model (above 86%) is in line with other models performing automatic
classification of pull-request comments, e.g., [29, 30, 31].

Continuing in this area, the state-of-the-art models for review recommendation use
ensembles and several matches to provide a good recommendation. For example, automating
code review tool CORE, presented by [32], uses a corpus of 57,000 code review comments
and obtains results at the level of 11% (recall for one suggestion) and 48% (recall for ten
suggestions). The results are improvements of two orders of magnitude compared to the
previous tools. The low recall for the first suggestion, however, can be linked to the fact
that the CORE tool generates natural language suggestions, i.e., a text for the comment.
In order to reduce the complexity, ACoRA suggests categories of problems rather than
generating the text. Our results outperform CORE’s recall for a single suggestion.

Instead of providing suggestions for code reviews in general, there are tools that focus
on specific types of suggestions. An example of such a tool is the RAID tool, as presented
by [33]. The tool focuses on identifying code refactoring opportunities based on analyzing
code reviews in MCR. The tool results in significant improvements in the code base, e.g.,
by reducing the size of the codebase. It also, like ACoRA, uses software developers in the
loop to make the assessment of the quality of the recommendations.

Tufano et al. [34] studied the strengths and weaknesses of contemporary code-review
automation approaches. They identified three types of code-review automation tasks, i.e.,
code-to-comment, code & comment-to-code, and code-to-code. The first one, code-to-comment,
is about generating review comment text for a piece of code under review that would
match the comment made by a human expert reviewer. ACoRA partially fits into this
category. However, instead of generating a comment, we aim to guide the focus of the
human reviewers, first to the lines that might need their attention, secondly by suggesting
what they should focus on when reviewing the code, and finally by showing examples of
comments for similar lines. By doing so, we limit the weaknesses of similar tools that use
historical code-review comments to generate review comments, such as CommentFinder
[35], since we donot narrow the recommendation to a proposal of a single comment but
rather guide the focus of the reviewer.

Finally, the field of MCR, has been developing rapidly, and there are several systematic
reviews on the topic, e.g., by Badampudi et al. [36, 37], by Davila and Nunes [38], and
by Cetin et al. [39]. We can summarize the current state-of-the-art as being focused on
either understanding the process of code reviews or providing tool support. Our work
contributes to the latter, in particular by creating a support tool. We automate the process
and support learning (onboarding new project members, solution discussions) rather than
replacing core reviewers.

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

3. Automated Code Review Assistant platform

Automated Code Review Assistant? (ACoRA) is a platform for automated review recommen-
dations based on historical code reviews. In general, it covers two processes: a configuration
process and a recommendation process (see Figure 1).

e \

OSSPV
— N .,4‘/. -

Source code

training 2%
CodeEmbedder
@ (BERT4Code,
. CodeBERT,
e GraphCodeBERT,
CodeT5+)
. \)

7

\ /
Review recommendation \ / — |\ N
Find similar lines that were * | \
commented on \
Classify comment

|
|
|
EEE, / | | purpose and subject
: |
AQr== |
% _\ ! @
| ' @
: |
e |
® { 2, “Substract” }, |_ _—— L !

Reviewers comented similar lines to BEELTES S8 ELEENEEZ)
It would be good to focus on: BEETENCIHLZ] Coding style (10%)

Comments for similar lines

subtract without 's'— { 3, "Substract" }

Please, change “Substract”
to “Subtract” -_—F—_—_———-
Reviewer
J

Figure 1. Overview of the use of ACoRA. First, the integration leader configures ACoRA. Then,
software developers use ACoRA to check their code before it is integrated with the entire product
code.

The integration leader, or another continuous integration specialist, configures ACoRA
once when the system is being set up. Later, this process can be periodically repeated in
order to update the recommendations. Software developers and architects use ACoRA to
check the quality of their source code before it is integrated with the entire codebase of
the product. Since ACoRA uses code fragments, it can be used as part of the continuous
integration toolchain or as an add-on to a development environment.

The configuration process presented in Figure 1 consists of two independent subprocesses.
The first one is to pre-train/fine-tune a neural network language model @ (CodeEmbedder)
using a codebase @ that seems similar to the target codebase on which one wants to apply
ACoRA. Alternatively, one can use publicly available pre-trained models (e.g., CodeBERT,

2ACoRA — https://github.com/mochodek/acora

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2
https://github.com/mochodek/acora

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

CodeT5+, etc.). The second sub-process is to train/fine-tune a review-comment classifier @
(CommentClassifier) using a dataset of manually labeled comments @. Finally, one needs
to establish a reference database of past code reviews ® that includes commented code
chunks and reviewer comments classified with CommentClassifier.

A configured ACoRA can provide recommendations ® as shown in Figure 2 by searching
for similar lines in the reference code reviews database ® to those currently under review.
As we can see in Figure 2, ACoRA suggested the reviewer to focus on line 3 by providing
recommendations about the potential nature of the problem (code_data) and an example
of a similar line from the reference code database. New comments provided by reviewers
can be classified with CommentClassifier and stored in the database ®.

B [ACORADemo x == = o X
<« C @ localhost:3389 s 1= g @
ACORA Demo

This line would trigger a change
request and the problem is related

Please paste your code here:

to the data.
Review focus:
1 x = 12; [codedata 100.0% | Show similar

- Magic number, either document what it means or use a define for it.

ACoRA provides an example line
from the reference code, which can
help the software developer to
understand the problem.

Figure 2. Demonstration of ACoRA as a stand-alone web service, to be used by software developers.
After submitting a code fragment, different lines in this fragment are provided with
recommendations on what to fix.

3.1. CodeEmbedder Language Models

The core component of ACoRA is a language model used to transform programming language
text to its vector representation. As the ACoRA design follows the pipe and filter architectural
style, one can either use a built-in infrastructure to train such a model (BERT4Code) or
employ one of the publicly available pre-trained models for generating code embedding
vectors by adding a new filter component. For instance, in this study, we use three proven
pre-trained models, i.e., CodeBERT, GraphCodeBERT, and CodeT5+, as well, as BERT4ACode
models pre-trained from scratch.

The BERT4Code model is based on the BERT (Bidirectional Encoder Representations
from Transformers) language model [20], which is a deep artificial neural network implement-
ing a multi-layer bidirectional Transformer architecture [15] (however, technically, it uses
only the Transformer Encoder stack). The language model is trained and evaluated during
the configuration phase of ACoRA and used in the recommendation phase. The pipeline for
training follows the same principles as the established approaches like TransCoder and
CodeGen [40]:

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

1. Tokenization: where each code fragment is transformed into a set of tokens. We use
a modified version of WordPiece tokenizer [41] that split tokens not only based on
whitespace characters but also on operators, brackets, etc. [42]. Optionally, ACoRA allows
to convert the out-of-vocabulary tokens into their symbolic form [43], e.g., a variable
identifier number0 would be replaced by a signature a0 (a sequence of small letters
proceeded with a sequence of digits).

2. Padding: where each code fragment is transformed to a vector of the same size, 128
tokens in our case.

3. Embeddings extraction: a fragment of code is transformed into its embedding represen-
tation using four last hidden layers of BERT4Code (by following the recommendations
for the original BERT model [20]).

In the training phase, we pre-train a BERT4Code model using the same procedure as
for the original BERT model [20]. This process is used by other BERT-inspired models [44].
The inputs to the model are pairs of code fragments (in 50% _ of cases these are consecutive
fragments). The model is simultaneously trained on two tasks—Masked Language Model
(MLM) and Next Sentence Prediction (NSP). For the former, 15% of tokens in a sequence
is being masked and the goal of the network is to guess the original ones. For the NSP
task, the network needs to respond to whether the second provided code fragment directly
proceeds from the first one. The BERT4Code models studied in this paper consist of four
layers (384 neurons in each of the hidden layers; 8 attention heads). We use compact BERT
models [45] since programming languages are more formal (and structured) than natural
languages. Also, such networks can be pre-trained on commodity hardware affordable even
for small organizations.

In the inference phase, each code fragment is inputted to the BERT4Code model, and the
embedding vector output is used when calculating the similarity between code fragments.

3.2. CommentClassifier Language Model

ACoRA provides a default implementation of CommentClassifier called BERT4Comments?.
It is a language mode structurally similar to the BERT4Code model, except that it is based
on the official pre-trained BERT model (12-layer), which is further fine-tuned to classify
review comments. The BERT model was pre-trained on a large corpus of plain text for the
masked word prediction and next sentence prediction tasks. Such a pre-trained BERT model
can be further fine-tuned to a specific downstream task. The input to BERT4Comments is
one review comment and the output is a set of categories describing what the comment is
about. The process is shown in Figure 3.

The taxonomy of the comments is taken from our previous work [16], and is shown in
the top row of Figure 3. The categories of the taxonomy are as follows:
code__design — the comment is about a structural organization of code into modules,
functions, classes, or similar, e.g. “code snippet inherited from original dissector. I have
refactored the code to have the decompression in a single place now it should be a bit
better”. It is also about overriding, e.g. “this will not work for TA5. Why not simply override
dataCoding before the switch?”, and dead/unused code, e.g. “This is duplicated code, put
outside the if-else.”.

3BERT4Comments is also available at the Huggingface repository: https://huggingface.co/mochodek/
comment-bert-subject together with a complementary model to annotate comment purpose https://
huggingface.co/mochodek /comment-bert-purpose.

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2
https://huggingface.co/mochodek/comment-bert-subject
https://huggingface.co/mochodek/comment-bert-subject
https://huggingface.co/mochodek/comment-bert-purpose
https://huggingface.co/mochodek/comment-bert-purpose

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Multi-label classifier

review

Threshold = 0.5 | o
, £

= T

& g
© c

o =

o o

= c

5 g z £ 5

i ¢ 0§ % g 5 g = 5 3
n\ i < 2 2 5 9 5 K 3 o il

) o o) ® o) ® o)) 2 | 2 2

° ° ° ° ° ° ° ° £ @ c c

<1 <1 <] <1 <1 <1 <1 <1 S S S S

o o o o o o o o o = o o

GRGRGAGRGRGROGAORGRGRONG

Dropout = 0.1
-0
768
12 ENCODER
2 ENCODER BERT
1 ENCODER
® 2 3 4 5 6 e 128

@l (CLS] You should implement virtual bool
Reviewer

Figure 3. BERT4Comments architecture [16].

code__style — the comment is about the layout of the code/readability issues, for example:
“add blank line” or “formatting: remove space after 4”.

code__naming — the comment is about issues related to naming code constructs, tables,
for example “please use lowercase for field name => ’isakmp.sak.nextpayload’ ” or “Add
name of dissector XXX: use custom...”

code_ logic —— the comment is about algorithms used, operations on data, calling functions,
creating objects, and also the order the operations are performed, for example “missing
validation of chunk size, potential buffer overflow?” or “should this be initialized with
NULL or something?”

code__io — the.comment is about input/output, GUI, for example: “What about showing
the hub port, i.e. ’address:port’? So the normal endpoints would display as ’address.endpoint’
and split would display as ’address:port’ ” or “Debug output to be removed?”.
code__data — the comment is about data, variables, tables, pieces of information, and
strings, for example: “You probably want encoding ENC__BIG__ENDIAN here. You could
also use

proto_tre_add__item-ret()int() here to avoid fetching the value twice. This is true for other
places in the code too” or “Are these ports registered with IANA? If not, I am not sure if
they should be used here”.

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

code__api — the comment is about an existing API or suggestions on how the API
should evolve, for example: “This needs to remain the same as before. The dissection
must continue therefore the latest offset must be updated after adding to the tree. off-
set += dissect__dsmcc__un_ session_nsap(tvb, offset, pinfo, sub_sub_ tree)” or “If they
are non-standard and uncommon, I would replace them with: dissector_add_ for de-
code_as(”udp.port”, otrxd__handle)”.

code__doc — the comment concerns the documentation or comments in the source code,
for example: “Which 3GPP document specifies this AVP?” or “Maybe remove this comment,
now? We do not support older drafts anymore”.

compatibility — the comment is related to the operating system compatibility, tools
compatibility, versions, or issues that appear only on certain platforms; e.g.: “the Ubuntu
failure is to the revert of my previous change (only on_ btnIlmport

_ clicked() call must be guarded)” or “I can empirically confirm that /proc/self/exe somehow
expands to the real path. So this code would probably have no effect on Linux”.

rule_ def — the comment can be used to elicit a definition of coding/style rules, note
it has to explain the broader context, e.g., “’add blank line’ is not a definition since we
don’t know why the blank line should be added here; on contrary, 'use space for indent
(like rest of file)’ states that spaces should be used for indentation (in general)” or “remove
comment when it doesn’t help understanding the code”.
config_commit_ patch_ review — the comment is about patches, commits, or review
comments, for example: “To be done in the next patch set” or “Right, if you decide to do
a formatting patch, it is best to do that in a separate change”.

config building_ installing — the comment is about a process of building, installing,
and running the product, for example “This is not required. Already done by the install
script” or “let’s remove this example; installing binary packages across different distros is
not supported and we should not recommend users to skip signature checking, etc”.

Naturally, this taxonomy can be used manually to understand and classify each comment,
but the best support is to use an automated classifier of these comments. The classifier
needs to be based on techniques from natural language processing and has to utilize a
pre-trained model as the number of comments in a typical repository is not in parity with
the diversity of the natural language constructs available.

The proposed taxonomy consists of categories representing high-level problem areas to
direct the focus of reviewers. However, it is possible to extend or even replace our taxonomy
with other taxonomies like the ‘one proposed by Tufano et al. [34] that defines low-level
code issues that are raised during MCRs.

In our previous study [16], we trained and validated BERT4Comments models on the
dataset of 2,672 MCR comments from three open-source projects, i.e., Wireshark, The
Mono Framework, and Open Network Automation Platform (ONAP). The accuracy of
the models ranged from 0.84 to 0.99 (mean = 0.94). The mean Matthews Correlation
Coefficient (MCC) value was equal to 0.60, which can be considered a moderate to strong
correlation [46]. Finally, the average Area under the ROC Curve (AUC) was equal to 0.76,
which is an acceptable value for a classifier according to [47].

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

4. Research Methodology

In this work, we use design science research (DSR) methodology as described by Wieringa
[17]. The first step recommended by DSR is problem formulation, which usually entails the
need to organize artifact development and treatment design into more distinct parts [48].

The evaluation is structured into the initial evaluation, where we study open-source
projects in-depth, and the external evaluation, where we apply ACoRA on an industrial
project with an industrial partner—Bosch Gmbh.

The reproduction package for the study containing datasets and scripts used to perform
the analyses (with the exclusion of confidential data) is publicly available.*

4.1. Problem formulation

In the context of our study, the question of “To what degree can we suggest relevant
review guidance for a given code fragment based on historical data?” has two parts, two
sub-questions:

RQ1: To what degree does the language embedding model find similar code fragments?
RQ2: How relevant are the review comment suggestions with respect to the nature of
the problem identified by reviewers?

RQ1 addresses our need to understand how well language embedding models (CodeEmbedders)

find similar code fragments. We need to know whether the lines that are matched as similar
are relevant—whether two given lines can be judged as similar or not. The similarity is a
concept that depends on the textual content of the line, its context, and the semantics of a
line, and there is no good measure for that [49]. Therefore, in our work we approximate
similarity by changes in code fragments—we can change a code fragment so that it is
textually different but has a resemblance in terms of its purpose and context. We seed
changes to code fragments and assess the fragments returned by the language model
as similar. The changes are designed to exemplify types of problems that the reviewers
comment on, i.e., the taxonomy presented in Section 3.2 and studied in [16].

RQ2 addresses the problem of how well the review suggestions correspond to the
suggestions that a code reviewer would provide. Since the review comments are specific
to the code fragments commented on, we need to generalize them, and therefore we use
the comment taxonomy and BERT4Comments as the means to provide such suggestions. As
learning-by-example has been identified as an important aspect of MCR, we provide a
similar line and its comment as an example. RQ2 also addresses the challenge related to
the reproducibility of suggestions and their generalizability. Since the review comments
are specific to the code fragment, they cannot be directly provided as suggestions for
other code fragments (even similar ones). However, they can capture problems that can
be generalized and these generalized suggestions can be used as guidance for the software
developers reviewing the new code fragment.

“Reproduction package — https://www.cs.put.poznan.pl/mochodek/acora-package.7z. Note: this is a
temporal location for the purpose of the manuscript-review process.

11

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2
https://www.cs.put.poznan.pl/mochodek/acora-package.7z

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Code individual branch

Q.

>0

OO
++ﬁ® — OZ O —>

©

Commited Static analysis & ACORA Code review and

patch/code Regression tests discussions
\ Integration with the
main branch

- -

Code main branch

Figure 4. ACoRA integrated into a CI pipeline.

4.2. Treatment design

To address the research questions and ensure that ACoRA supports both the automation of
code reviews and the possibility of training new project members, it is integrated into a
continuous integration pipeline, as shown in Figure 4.

The integration is done using docker containers, i.e., we designed ACoRA as a microservice
that can be plugged into a continuous integration pipeline. It has several components
designed according to the pipes and filters architectural style that allow for flexibility
in implementing and replacing the components. The tool can be configured to provide
feedback offline, as shown in Figure 2. The detailed design is described in Section 3.

4.3. Initial treatment evaluation and improvements

To evaluate the code review platform, we chose to use two separate open-source projects,
which had an open Gerrit code review tool instance available for public access. For the
initial treatment evaluation, we chose two open-source projects:

— Wireshark (https://www.wireshark.org) — an open-source network protocol analyzer,
developed by professionals from leading telecommunication companies.

— Cloudera (https://www.cloudera.com) — an open-source cloud hosting solution, devel-
oped by a professional community.

Both projects are professionally developed and we chose them because of the size and
quality of the code reviews in Gerrit. These two products are also rather specific, so the
variety of use cases is not considered as a factor in assessing code reviews. In particular,
when discussing the selection with our industrial partner, we wanted tools that were either
in C/C++ or Java, developed by professional developers, and had a specific purpose. We
considered using other tools like Android to study, but the diversity of the product (mix of
C, C++, and Java), as well as the number of use cases (it is an operating system), made it
not fit our requirements.

First, we prepared for the evaluation by performing the following steps:

Step 1: Clone a repository at a selected revision (#base_rev).

12

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2
https://www.wireshark.org
https://www.cloudera.com

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Step 2: Obtain a CodeEmbedder model either by pre-training BERT4Code on the code
downloaded in Step 1 or by choosing one of the pre-trained language models, i.e.,
CodeBERT [21], GraphCodeBERT [50], or CodeT5+ [51].

Step 3: Fetch the MCR review comments for the revisions following the #base_rev and
the specific code fragments that were reviewed (all-code dataset).

Step 4: Use the CommentClassifier (i.e., BERTAComments trained on the manually labeled
dataset of MCR comments [16]) to classify the MCR comments in the all-code
dataset.

Then, we performed the following steps to address RQ1:

Step 5: Select a sample of the code fragments from the all-code dataset (up to 11 fragments
per each of the taxonomy categories).

Step 6: Introduce changes to the code fragments based on the taxonomy (modified dataset).

Step 7: Assess the similarity of the matched code fragments.

We decided to select and study four Transformer-based CodeEmbedders (Step 2). First, we
pre-trained BERT4Code according to the process described in Section 3.1. This represents a
scenario where a CodeEmbedder is pre-trained on a small but very representative codebase
(an intra-organization usage). Then, we employed three language models pre-trained on large
code corpora that are publicly available, i.e., CodeBERT, GraphCodeBERT, and CodeT5+. The
former model is a BERT-based model pre-trained on combined inputs of natural language
texts and code. GraphCodeBERT augments the inputs with the information about data
flow. Finally, CodeT5+ is an example of a large Transformer-based model. Although our
goal was not to determine what is the best possible CodeEmbedder, the variety of selected
models allowed us to gain early insights regarding the differences in how ACoRA performs
depending on the embedding model it uses.

In Step 6, we modified lines to investigate how sensitive to such changes CodeEmbedders’
embeddings are when they are used to find similar lines. We selected up to 10 lines for
each of the comment categories from our taxonomy and introduced the following types of
changes related to the category of comments they belong to:

— config__commit__patch_ review — since most of the comments belonging to that
category refer to lines of code that are commented, we decided to add/modify /replace
particular parts of the text in a line, e.g., a person’s name, commit identifier referred
to in a line, a part of variable identifier, etc.,

Original: %% Copyright (C) 2010-2012 The Async HBase Authors. All rights reserved.®
Modified: %% Copyright (C) 2010-2012 The another company Authors. All rights
reserved.”

Original: % * scanners through the @link KuduScanToken API. Or use MapReduce.®
Modified: ® * scanners through the @link AnotherPatch API. Or use MapReduce.®
Original: %Change-Id: I11d6dfc4314091eb6f3eef418cbal7ed37£7a1200%

Modified: ®Change-Id: I2d6dfc4314091eb3d3eef418c5al7ed37£7a1200%

— code__logic — we changed the logic of the code by modifying the operators being
used,

13

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Examples:

Original: % return percent/4;%

Modified: ® return percentx*4;%

Original: % else if (containers_total_ !=0) *
Modified: % else if (containers total == 0) *
Original: % offset += 4_%

Modified: % offset -= 4_%

— code__data — we changed either the values or the types of variables,

Original: % int64_t time_elapsed = 0;
Modified: ® int32_t time_elapsed = 0
Original: % percent += 100;%
Modified: ® percent += 1000;*

Original: ¢ int num_micro_batches = *
Modified: ®int num_micro_batches = *
Original: if (packet_num > 0) {*
Modified: % if (packet_num > 0) {*

— code__doc — we commented /uncommented lines using inline or block comments,

Original: % return 11_%
Modified: ® // return 11_%
Original: %/* packet_list.cpp®
Modified: %packet_list.cpp®

— code__io — we modified sub-words in identifiers to their synonyms or changed abbre-
viations to full words,

Original: % LOG(ERROR) << s;%

Modified: % LOG(PROBLEM) << s;%

Original: % ctx_menu_.addSeparator()_%
Modified: ® context_menu_.addSeparator()_*

—~ code__api — we added/removed some parameters from function headers/calls,

Original: % ascendlex_destroy(&scanner)_*

Modified: ® ascendlex_destroy(&scanner, force)_ %

Original: % DCHECK_EQ(out_length, cleartext[i].size());*®

Modified: ® DCHECK_EQ(out_length, cleartext[i].size(out_length));*

— code__naming — we changed the character case for some identifiers,

14

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Original: %#define USBLL_POISON OxFE%
Modified: %#define usbll_poison OxFE*
Original: % gint bytes_consumed_*
Modified: ® gint Bytes_Consumed_*

— code__design — we modified /removed the keywords or names of identifiers,

Original: % if (skipped > 0)%

Modified: ® while(skipped > 0)*

Original: % LZ4F_freeDecompressionContext(1z4_ctxt)_*
Modified: ® LZ4F_freeCompressionContext(1z4_ctxt)_*

— compatibility — we added a suffix _v2 to some identifiers,

Original: % struct hf_tree tree = 0_%
Modified: ® struct hf_tree tree_v2 = 0_*
Original: %find_path(PCAP_INCLUDE_DIR®
Modified: ®find_path_v2(PCAP_INCLUDE_DIR*

To assess the matched code fragments in Step 7, we used the ranking of the recommen-
dations. The fragment that is returned as the closest one (calculated as the Minkowski
distance, used by ACoRA, between the embedding vectors) is ranked 1; the second closest is
ranked 2, and so on. For practical reasons, we only report up to-rank 10, and for higher
ranks, we only report that the rank is higher than 10. In this case, we assess how well
CodeEmbedder can match the modified line to the original line.

To address RQ2, we focused on evaluating the quality of ACoRA’s recommendations by
performing the following steps:

Step 8: Divide the all-code dataset into reference database and validation dataset based
on a selected revision (#split_ rev)—remove duplicates so both datasets consist
only of unique code fragments.

Step 9: Use ACoRA to provide recommendations for the code fragments in the validation
dataset based on the reference database.

Step 10: Assess the relevance of the recommendations.

To evaluate the relevance of the suggestions, we start by dividing the code fragments
in all-code dataset into the reference database and validation dataset to mimic how ACoRA
would be used. We eliminate the duplicated code fragments so we do not bias the results
by over-representing a given code fragment. We then use the reference database as a basis
for providing recommendations for the code fragments in wvalidation dataset. We apply the
following filtering criteria to mitigate the impact of the following issues related to data
quality:

— MCR comments attached to empty lines or code-block opening/closing — we remove
lines that contain less than three characters—unfortunately, we observed that sometimes
comments concerning fragments of code are attached by reviewers to lines such as
closing or opening of code blocks or to empty lines proceeding or preceding a given code
fragment. As a result, there is no logical association between the comment provided by
the reviewer and the line of code in the data.

15

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

— Acknowledgment comments — we remove comments being classified by the BERT4Comments
model as acknowledgment (e.g., “Thank you”, “Done”) since these are irrelevant from
the perspective of providing suggestions to reviewers.

— Reviewers’ discussion not resulting in change requests — we remove the lines for which
there were no comments classified by BERT4Comments as change_request. Since not
all comments provided by reviewers have to be relevant, we assume that the discussions
between reviewers that do not result in requesting a change to be made in code are not
useful as the basis for automatic recommendations.

In order to evaluate the correctness of the suggestions, we calculate how many of
the suggested categories overlap with the original categories, compared to the number of
categories in the original line, according to Formula 1. In the formula; O is the overlap
ratio, N is a set of categories of comments in the new line and R.is the set of categories of
comments for the reference line.

NAR
O:||N| (1)

Formula 1 is designed so that the correct suggestion means that the overlap ratio is 1.0
while a suggestion that misses all categories is 0.0. A partial suggestion is between these
values, with the better suggestions being closer to 1.0.

Finally, the quality of recommendations provided by automatic tools such as ACoRA
depends on how similar the lines and comments in the reference database are with respect
to the new code being targeted for review. Therefore, we perform the analyses for three
scenarios. In the first scenario, we force ACoRA to provide recommendations for every line
in validation dataset, no matter how similar or different are the reference and validation
lines. In the following two scenarios, we use a maximum distance threshold between the
line-embedding vectors generated by CodeEmbedders to control whether a recommendation
should be made ornot. We calculate these thresholds based on the distribution of distances
between the most similar lines in the reference database (10th and 50th percentile). We
assume that lowering the distance threshold should result in increasing the relevance of
comments with the cost of decreasing the number of cases for which the recommendation
could be provided.

4.3.1. Wireshark and Cloudera

In the Wireshark and Cloudera projects, we focused on the subset of the projects written
in C as our goal was to use the same base language model for all three evaluations. In
the industrial validation, we limited the search to a smaller number as our visit time was
limited. Project-specific parameters are presented in Table 1.

These three projects are selected since we validate slightly different aspects in each
context, as prescribed by both design science research [17] and action research [48]. In
Wireshark, we focused on the curation of the dataset for training. In Cloudera, we focused
on-the scalability of the approach and sensitivity to noise in the dataset, and in industry,
we focused on the usability of the suggestions from the perspective of a software developer.

The BERT4Comments used in the study was trained on a subset of manually curated
and labeled Wireshark codebase. The curation was done by:

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Table 1. Project specific parameters used in our research design. Note 1: The Wireshark
community has migrated from Gerrit to Gitlab and its old Gerrit instance is no longer available
therefore we only use data up until 2019-12-31. Note 2: We are not allowed to publish some
information regarding the industrial source code (N/A).

Parameter Wireshark Cloudera Industry
Revision (#base_rev) (Step 1) 5e34492a7e 10e3cecl27 N/A
Pre-train BERT4Code (Step 2) 20 epochs, batch | the same the same
size 32, sequence
length 128
Review comments (Step 3) 2015-02-23 2022-01-26 2021-11-24
Reference database (Step 8)
— comments 40,430 74,000 N/A
— unique code fragments 9,930 29,599 15,000
Validation dataset (Step 8)
— comments 46,850 174,630 N/A
— unique code fragments 12,789 51,034 10 commits
Filtered suggestions (Step 9) 1,582 4,738 10 commits

— Removing the pairs <line, comment> which are wrong, e.g., when the review comment
does not comment on anything specific to that line.

— Rewriting the comment to make the text more general and less specific to a particular
line, e.g., by changing a comment about datatype int to a comment about a datatype
in general.

We used the same approach in our previous work and the accuracy and MCC for
BERT4Comments were 0.86-0.98 (Accuracy) and 0.32-0.62 (MCC) [16]. Therefore, the
evaluation of BERT4Comments is outside of the scope of this article.

4.4. Evaluation at the industrial partner

To understand the limitations of ACoRA, we design an evaluation of the tool at our industrial
partner. The evaluation was done in the following way.

First, we pre-trained ACoRA’s BERT4Code on the source code from an open-source project
suggested by the company employees as being similar to their code (19,218,513 lines of
code). Next, we fetched code and comments from a Gerrit instance of a selected project at
the company. For practical reasons, we limited the dataset to 500 patches, which included

approximately 18,000 lines of code—15,000 with comments and 3,000 without comments.

The commented lines were used as the reference database in this study.

Second, we tested ACoRA on 10 selected commits from another project as the validation
dataset. We asked the company representatives to extract 10 commits containing code
fragments that were commented on by a code reviewer, based on the method used to
evaluate software measures [52]. We used ACoRA to provide suggestions for the code based
on‘the comments in the reference database. The company representatives were asked to
judge the correctness and actionability of each recommendation. We adjusted ACoRA to be
over-sensitive, i.e. provide more suggestions for reviews, in order to challenge the industrial
partners to check whether more lines should be commented on in the evaluated commits.

17

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

5. Results

5.1. Wireshark
5.1.1. RQ1: Finding similar lines — Wireshark

The recommendations provided by ACoRA are based on finding similarities between the
lines under review and the lines previously commented on by reviewers. ACoRA performs
that task by measuring the distance between line embeddings generated by CodeEmbedder.
Unfortunately, the neural-network-based language models work as black boxes and we
cannot tell exactly what relationships between tokens and code lines they capture. There-
fore, we decided to study this phenomenon by investigating how sensitive the selected
CodeEmbedders’ code-line representations are to certain types of modifications introduced
to lines when used to search for line similarities. We modify a line of code, ask ACoRA
to search for similar lines to the modified one, and calculate the ranking position of the
original line in the lines recommended by ACoRA. If the ranking position of the original line
is greater than one, it means that the change introduced to the line caused it to be more
“similar” to some other lines in the dataset than to the original line from which it was
derived. The dataset included 35,000 Wireshark lines (including the 100 original lines that
were modified), therefore, it was rich in examples of lines that could be identified as more
similar to the modified lines than the original ones.

Figure 5 shows the distributions of ranking positions of original lines in the recommen-
dations provided for their modified counterparts in the dataset when CodeT5+ was used as
a CodeEmbedder. Although none of the CodeEmbedders appeared unanimously superior,
ACoRA using CodeT5+ seems to provide the best overall results (the results for the remaining
CodeEmbedders are presented in Table 2). For all CodeEmbedders, the changes made in the
commented lines belonging to config_commit_
patch_review and code_style categories appeared as difficult. Also, BERT4Code, CodeBERT,
and GraphCodeBERT all had problems with detecting similarities for the code_doc category,
which was not the case for CodeT5+. Finally, CodeT5+ performed slightly worse than
BERT4Code for the code_data category.

We analyzed each of the cases where the original line was not provided as the first
recommendation to study and hypothesize about what differences in code make the studied
CodeEmbedders’ embeddings recognize lines as similar or not.

For the changes made to the lines belonging tocode_io, the top suggestions made by
ACoRA were the original lines. Therefore, the changes made to these lines were not significant
enough (with regards to how the lines are represented by CodeEmbedders’ embeddings) to
make any other lines more similar to them than their original lines.

config_commit_patch_review — ACoRA using CodeT5+ found five perfect matches (the
original line appears as the first recommendation). These lines were modified by chang-
ing the e-mail addresses of reviewers, changing the commit hash, or a website address.
CodeBERT and GraphCodeBERT failed to match the lines with modified e-mail addresses,
while BERT4Code matched only the lines with modified change hashes. Still, the recom-
mendations for the remaining lines in this category seemed valid, despite the fact that
the original lines were not provided as top recommendations. For instance, when we
modified one of the lines having the structure of Petri-Dish: Name Surname <e-mail

18

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Table 2. Similarity of modified lines to their original counterparts for Wireshark (all

CodeEmbedders).

CodeEmbedder / taxonomy category original line similarity rank
config__commit__patch__review 1 314|516 789110 | 11+
BERT4Code 2 20 -1-111]-1-1- - 4
CodeBERT S |- |- |- -]-11|-1- 3
GraphCodeBERT 4 | - | - - -11/1-1-1- _ 5
CodeT5+ 5 |1]1]- - - 1] - 2
code__logic 1 (21345678910 11+
BERT4Code 8 1| -11]-1]-1-1-]- - -
CodeBERT 9 -1 -=-1-1-1- - =
GraphCodeBERT 100 -|-|-|-1-|-1-4-1 - u
CodeT5+ 9 |1 - - s - -
code__data 1 1234|567 |8]9]10]| 11+
BERT4Code 100(-]-1-1-1-4-+-1- - -
CodeBERT 9 N S _ 1
GraphCodeBERT 9 | - | -] -|=|-1-1-1- - 1
CodeT5+ 9 1 = - |- . -
code__style 1 12|34 |5[6|7/18{9]10/| 11+
BERT4Code 1 SN P S I I O B - 9
CodeBERT 4| -Aol-1-1Tal-1-141 5
GraphCodeBERT 8 |- -]l =11|-1-1=]-4 - 1
CodeT5+ 9 - - - _ 1
code__doc 112134 (5(6|7|8]|9]10| 11+
BERT4Code 1 -2 - - = - - - - 8
CodeBERT 6 |~ |- -1 =Pp|-|-1]-1 3
GraphCodeBERT 8 | - P I O S R - 2
CodeT5+ 10 - | - - - - - -
code__i0 1 234|567 |8]9]10| 11+
BERT4Code 10 - = -1-1-1-1-1- - -
CodeBERT 10 -1 -1-1-1-=1-1-1- - _
GraphCodeBERT 10 - - -1-1-1-1-=-1- _ _
CodeTbh+ 10 - [I _ _
code__api 1 1234|567 |8[9]10] 11+
BERT4Code 100(-1-1-1-1-1-1-1- - -
CodeBERT 8 |- -|-1-1-1-1-11] 1
GraphCodeBERT 10 -|-1|-1-1-1-1-1-1- -
CodeT5+ 10 -1 -1 - - - _ _
code__naming 1 (2134|5678 9]10|11+
BERT4Code 4 131 -11|-1-1-1-1- - 2
CodeBERT 8 [[S IR R B _ 1
GraphCodeBERT 9 | - S I A I A A 1
CodeTb5+ 9 1 - [I - _
code__design, 1 1234|567 |8]9]10]| 11+
BERT4Code 6 - - - -1 - - 3
CodeBERT 9 | - |- -|-1-1-1-1- - 1
GraphCodeBERT 10 N I - _ _
CodeTb+ 10 - . _ _
compatibility 1 (2134|5678 9]10| 11+
BERT4Code 10 - | - - -] -] - - -
CodeBERT 9 | |- - -l-1-1-]-1- 1
GraphCodeBERT 9 | - | -1-1-|-1-1-1-1 - 1
CodeT5+ 10(-1-1-1-1-1-1-1- - -

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron

e-Informatica Software Engineering Journal, 19 (2025), 250102

Frequency
= N w H ul

0

o 1 2 3 4 5 6 7 8 9

10 11+

Frequency

Original line similarity rank (config_commit_patch_review)

Frequency
o N B o o

o

1 2 3 4 5 6 7 8 9
Original line similarity rank (code_logic)

10 11+

Frequency
o N H o [o¢]

o

1 2 3 4 5 6 7 8 9
Original line similarity rank (code_data)

10 11+

Frequency
o N N o [ee]

0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (code_style)
10
8
>
2
o 6
3
o
o 4
w
2
0
0 1 2 3 4 5 6 7 8 9 10 11+

Original line similarity rank (code_doc)

Frequency

Frequency

Frequency

Frequency

10

¢4}

[}

IS

N

o

iy
o

[e¢)

o

IS

N

o

¢4}

)]

IN

N

o

fury
o

¢4}

[}

IS

N

o

=
o

[e)

0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (code_io)
0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (code_api)
I
0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (code_naming)
0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (code_design)
0 1 2 3 4 5 6 7 8 9 10 11+

Original line similarity rank (compatibility)

Figure 5. Similarity of modified lines to their original counterparts for Wireshark (CodeT5+).

20

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

address> by changing the person’s name and e-mail address, the original line appeared
as the sixth recommendation, however, all ACoRA suggestions seemed equally valid since
they all had exactly the same structure but contained names and addresses of other
people. We made similar observations for other lines, e.g., for the line “Reviewed-on:
https://code.wireshark.org/review/33705” that we modified by changing the review
identifier to 52705. The original line appeared as the recommendation number 42, however,
all proceeding lines in the ranking had exactly the same structure but different review
identifiers (e.g., “Reviewed-on: https://code.wireshark.org/review/22515”).

code_logic — the changes we made for commented lines belonging to this category were
mostly simple operator overloading (e.g., “<” — “>"). ACoRA using CodeT5+ was able to
indicate the modified line in the first place in nine out of ten cases. However, in the only case
that the modified line was ranked second, the indicated similar line seemed more similar to
the original line than its modified version. The original line was “ *buf = '"\0'_ /* NULL
terminate */” and was modified by removing the pointer operator *. The most similar line
found by ACoRA was “ *buf = '\0'; /* NULL terminate */” which differs by a single
character and has the pointer operator. Interestingly, ACoRA using GraphCodeBERT indicated
all modified lines as the most similar to the original ones. However, taking into account the
above, this might not necessarily be the best result. Finally, BERT4Code performed slightly
worse and suggested eight out of ten modified lines. The two exceptions were the lines: “if
(tree) {” modified to “if (! tree) {” and “DISSECTOR_ASSERT (pos+chunk_size <=
length) _” changed to “DISSECTOR_ASSERT (pos+chunk_size > length)_”". In the case of
the former, the line that was considered more similar by ACoRA was the line “if (len >
length) {”—a conditional expression that has the same number of indenting whitespace
characters but uses a different operator (“>” instead of negation). The original line has
no operator at all, which might be the cause of recognizing this line as more similar. For
the latter line, the recommendations were less clear to us. The top recommended line was
“g_free(temp_name)”, which is also a function call, but in contrast to the modified line,
there are no operators used to calculate the values of function parameters being passed.

code_data — only ACoRA using BERT4Code provided all ten modified lines as top suggestions,
however, the remaining CodeEmbedders were also very accurate with nine out of ten correct
suggestions.

code_style — we observed mixed results for this category. ACoRA using CodeT5+ or
GraphCodeBERT correctly indicated nearly all modified lines (nine and eight, respectively),
while for BERT4Code and CodeBERT in nine and five cases the modified line was ranked
beyond top ten suggestions. After analyzing the worst cases, we could observe that tab (__)
was often “recognized” as a visibly different token than space (). For instance, when we
removed indentation spaces from the line “,,,,if (api_version >= 4) {”, the most
similar line suggested by ACoRA was “__if (tokenlen >= 1) {”. Similarly, the top match
for the line “__. if (is_encrypted && !docsis_didssect_en

crypted_frames)” modified by changing two indentation tabs (__.__) to four spaces (i
uuw) was “Luuuif (is_from_server && session->is_session_resumed)”. Therefore,
the presence of indentation spaces influenced, to a large degree, the embedding vector

for these lines. These observations were consistent among the other studied examples.

Therefore, it seems that using BERT4Code or CodeBERT embeddings for finding similar lines
is sensitive to the number and type of indentation whitespaces. We hypothesize that it
might be a consequence of how BERT models are trained. One of the tasks used to pre-train

21

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

BERT is next sentence prediction (i.e., next line of code prediction in the case of BERT4Code).
In programming languages, such as C/C++, whitespaces are used by programmers to
indent code blocks to improve code readability. Therefore, it seems that the number of
trailing whitespaces could be an important code-feature that a BERT model uses when it
is pre-trained on source lines of code. Also, using spaces for indentation (typically 2 or
4) is preferred over tabs within the Wireshark community, therefore, using tabs for that
purpose could be considered as an anomaly. Finally, this property of BERT4Code does not
have to be necessarily perceived as its weakness, since it could help identify issues related
to wrong indentation in the code.

code_doc — again, we observed that ACoRA using CodeT5+ or GraphCodeBERT was vis-
ibly better in finding modified lines than the variants using BERT4Code or CodeBERT.
CodeT5+-based ACoRA correctly indicated all of the modified lines‘and provided them as
top-ranked suggestions. At the same time, it seems that the toggle between a commented/non-commented
line seemed to visibly influence the embeddings generated by BERT4Code Only for one of the
modified lines, its original counterpart was returned as the top recommendation. However,
since the line was a long (113 characters), inline comment, by removing the “//” we
made it an invalid C/C++ line (“// Adapted from sample code in https://raw...”)
and difficult to match by any other line in the dataset. For the remaining lines, when
a non-commented line was turned into a commented line, the suggestions provided by
ACoRA became mostly commented lines. For instance, for the line “return 11_” modified to
“// return 11_", the top recommendation was “// Hex dump -x” (both lines have four
proceeding spaces and one space between “//” and the following token). The original line
was ranked as the 30,903rd suggestion. Similarly, when we converted a commented line into
a non-commented line, the suggested lines were also non-commented lines. For instance, for
the line ”/* packet_list.cpp” changed to "packet_list.cpp”, the top suggestion was
"cfutils.h” (the following suggestions were also mainly names of files). Interestingly, only
at position 22 of the ranking was the first valid C/C++ code line consisting of an include
statement (“#include "packet-ssl-utils.h"”) that also contained the name of a file
(with the word “packet”). The original line was returned as the 5,464th recommendation.

code_api — only the variant of ACoRA using CodeBERT did not top-ranked all the modi-
fied lines. It struggled with finding modified lines for “ col_append_fstr(pinfo->cinfo,
COL_INFO, " [zstd decompression failed]")_” and “decompress_lz4(tvbuff_t *tvb,
packet_info *pinfo _U_, int offset, int length, tvbuff_t **decompressed_tvb,
int *decompressed_offset)”.In the case of the second line the modified line appeared
at the 75th position of the ranking.

code_naming — ACoRA using CodeT5+ suggested nine out of ten modified lines in the first
place while the remaining one was the 2nd recommendation. For other CodeEmbedders,
in most cases, the original lines were either provided as a top suggestion or within
the top 2 or 4 lines. All the perfect matches were lines that did not include method-
/function call, e.g., "#define USBLL_POISON OxFE .” For method calls, we observed that
changing the casing was against the convention used by the Wireshark community. The
suggested lines had similar structures and often included calls to function with similar
identifiers. For instance, for the line "prefs_register_enum_preference (smpp_module,

no”»

"decode_sms_over_smpp",” that we modified to Prefs_Register_Enum_Preference(smpp_module,

"decode_sms_over_smpp",”, the top suggestion was "prefs_register_uat_preference(someip_

module, "_udf_someip_parameter_list", "SOME/IP Parameter List",”.

22

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

code_design — ACoRA using CodeT5+ or GraphCodeBERT correctly suggested all ten mod-
ified lines as the most similar to the original ones. The variant using CodeBERT missed
one of the modified lines and ranked it at 173rd place. For BERT4Code, six out of ten
lines a change made to an identifier or adding/removing a keyword (adding else to an
if statement; removing a static keyword) resulted in suggesting the original line at the
top of the ranking. The lowest ranking position (219) was observed for an if statement
7if (skipped > 0)” converted to a while statement "while (skipped > 0)” (the
same as the one missed by CodeBERT). However, the top suggestion seemed more adequate
than the original line since it was also a while statement "while (cert_list._length >
0).” Therefore, once again, it is not clear whether, in this case, the most similar line is the
modified line or the one suggested by ACoRA.

code_compatibility — ACoRA variants using BERT4Code and CodeT5+ were able to cor-
rectly indicate the modified lines. However, the two remaining CodeEmbedders missed only
one line each that were ranked at positions 101 and 373 by CodeBERT and GraphCodeBERT,
respectively.

5.1.2. RQ2: Relevance of recommendations — Wireshark

We based the evaluation for Wireshark on the dataset containing lines from 3,475 revisions.
We wanted to balance the number of entriesin reference and validation databases. Therefore,
we added the first 1,760 revisions (40,430 comments) to the former database and the
remaining 1,715 revisions (46,850 comments) in the latter one. We made the split timewise
(2 years each).

We performed three analyses using different thresholds for matching lines belonging
to the reference and wvalidation databases. The thresholds were calculated based on the
distance measured between the CodeEmbedder’s embedding vectors representing the lines
within the reference database (the distance to the closest line in the reference database
other than the line itself). Such a strategy allowed us to avoid biasing the observations by
choosing such thresholds arbitrarily. Finally, we applied the filtering criteria described in
Section 4. As a result, we obtained 1,582 recommendations to be analyzed.

Figure 6 shows the quality of ACoRA’s recommendations (measured using the O measure)
for ACoRA using CodeT5+ (plots for the remaining CodeEmbedders are available in the repro-
duction package) depending on the maximum distance threshold between the recommended
and original lines, while the mean O values for all CodeEmbedders are presented in Table 3.
When we set the threshold to the 10th percentile of the distances in the reference database,
99.6% of suggestions were relevant (only true-positive suggestions), however, the threshold
limited the number of recommendations to 232 lines only (ca. 15% of all recommendations).
As we increased the distance threshold to the 50th and 100th percentile, the number of
relevant recommendations decreased to 82.8% and 40.7% while the number of irrelevant
recommendations increased to 5.4% and 15.9%, respectively. This shows, unsurprisingly,
that the possibility of providing correct recommendations for reviewers strongly depends on
the contents of the reference database. However, even for the worst-case scenario (i.e., always
recommending the comment of best-matching line in the reference database), ACORA was
able to provide at least partially relevant recommendations for 84.1% of the cases. These
observations were consistent among other CodeEmbedders, with only minor differences in
their accuracy of recommendations or the number of recommended lines depending on
the threshold. We observed a trade-off between the number of recommended lines and the

23

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron

e-Informatica Software Engineering Journal, 19 (2025), 250102

number of correct suggestions. Therefore, we cannot firmly state that either of the models

is unanimously superior.

< 10th percentile distance (n=232)

< 50th percentile distance (n=297)

600
220 225 550
200 200 500
180 450

175
6 160 400
£140 150 350
£120 125 300
€

g 100 100 250
+ 80 75 200
60 o 150
40 100
20 25 50
0 0 0

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

<100th percentile distance (n=1474)

The O measure for recommendations The O measure for recommendations The O measure for recommendations

Figure 6. Evaluation of the overlap of recommended vs. actual categories for Wireshark (CodeT5+).

Table 3. Evaluation of the overlap of recommended vs. actual categories for Wireshark (all

CodeEmbedders)
< 10th perc. dist. | < 50th perc. dist. | < 100th perc. dist.
CodeEmbedder n mean O n mean O n mean O
BERT4Code 233 0.98 465 0.78 1582 0.61
CodeBERT 233 0.99 366 0.83 1553 0.60
GraphCodeBERT 237 0.99 324 0.85 1609 0.61
CodeT5+ 232 0.998 297 0.88 1474 0.61

5.2. Cloudera
5.2.1. RQ1: Finding similar lines — Cloudera

We modified up to 10 lines for each of the categories in our taxonomy and searched for
similar lines in the dataset of 35,000 lines of code coming from Cloudera. Figure 7 presents
the distributions of ranking positions of the original lines recommended by ACoRA using
CodeT5+ while Table 4 summarizes the results for all CodeEmbedders. Similar to Wireshark,
most of the original lines were found as the most similar to their modified counterparts.

config commit_patch_review — most of the lines belonging to this category were com-
ments. Even for the recommendations having the original line ranked at 114 position, the
top suggestions seemed justifiable. For instance, the top recommendation for the line “//
initial transaction.” modified by adding an e-mail address at the end was “/// @note
The replication factor should be an odd number and range in”—the presence of
@ that was in the added e-mail address could have made the line more similar than the

24

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Table 4. Similarity of modified lines to their original counterparts for Cloudera (all

CodeEmbedders).

CodeEmbedder / taxonomy category original line similarity rank
config__commit__patch__review 1 314|516 789110 | 11+
BERT4Code 7 - - - --1- - 2
CodeBERT 9 | - | - - |-|-1=-1-]- - 2
GraphCodeBERT 8 | - | - |- |-1-1-1-1- _ 3
CodeTb5+ 8 111 -1- - - - 1
code__logic 1 (21345678910 11+
BERT4Code T -1-1-1-1-]11/1 o -
CodeBERT 9 I D D - =
GraphCodeBERT 9 | -] -1]-1-1- - - \
CodeT5+ 9 - s - -
code__data 1 1234|567 |8]9]10]| 11+
BERT4Code 8 | - | - -|-1-4-1]-1- - 2
CodeBERT 9 | - | -] -1-|-1-1-9-1 - 1
GraphCodeBERT 10 - -|-1<1-1-1-1- - -
CodeT5+ 10 | - | - - |- " -
code__style 1 12|34 |5[6|7/18{9]10/| 11+
BERT4Code 4 | 212 - -1=}-1-1- - 2
CodeBERT 9 | - =] - |-1-1=10-]- 4 -
GraphCodeBERT 8 S I S e 1
CodeTb5+ 9 | - - |- - -
code__doc 112134 (5(6|7|8]|9]10| 11+
BERT4Code 2 |- - -1-1=1-1-1-1- 7
CodeBERT 5 | | - - -=111-1- 1 9
GraphCodeBERT 8 |- |1 -|-1=<1]-1-]- - -
CodeT5+ 9 | - |- |- - - - -
code__i0 1 234|567 |8]9]10| 11+
BERT4Code 6 |1 |=|1 |- [-[-[-[-71- 2
CodeBERT 10 -1 -1-1-1-=1-1-1- - _
GraphCodeBERT 10 N R _ _
CodeTbh+ 9 -l -1 [I _ _
code__api 1 1234|567 |8[9]10] 11+
BERT4Code 100(-1-1-1-1-1-1-1- - -
CodeBERT 6 | - e - -] -] 3
GraphCodeBERT 10 -|-1|-1-1-1-1-1-1- -
CodeT5+ 10 -1 -1 - - - _ _
code__naming 1 (2134|5678 9]10|11+
BERT4Code 5 -y - - --1-1- 1 2
CodeBERT 6 [20 S IR I R R _ 1
GraphCodeBERT 70 -120-1-1-1-1-1- - -
CodeTb5+ 9 -l - - [I - _
code__design, 1 1234|567 |8]9]10]| 11+
BERT4Code 8 - - - - --1- - 1
CodeBERT 8 - - - - - - - -
GraphCodeBERT 9 N O T I D _ _
CodeTb+ 9 - I _ _
compatibility 1 (2134|5678 9]10| 11+
BERT4Code 6 1| -(2-]11]-1]- - -
CodeBERT 6 [2| -|-|1]-|-|-]-|-1]-n1
GraphCodeBERT 10 -1]-1-1- - - - - -
CodeT5+ 10(-1-1-1-1-1-1-1- - -

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron

e-Informatica Software Engineering Journal, 19 (2025), 250102

8
8
3° >
c C 6
S W g
g g4
[T w
2 2
0 O 0 ||
0 1 2 3 4 5 6 7 8 9 10 11+ 0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (config_commit_patch_review) Original line similarity rank (code_io)
10
8
8
T6 9
5 § 6
> >
o4 o
9} 9 4
i i
2 2
0 0
0 1 2 3 4 5 6 7 8 9 10 11+ 0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (code_logic) Original line similarity rank (code_api)
10
8]
8]
> Sel o
& 6 @
> >
8 al g4l
[w
2 (0 200
0 0
0 1 2 3 4 5 6 7 8 9 10 11+ 0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (code_data) Original line similarity rank (code_naming)
8 8
9 g
o 6 e 6
(] (]
& >
g 4 5 4
w w
2 2
0 0
0 1 2 3 4 5 6 7 8 9 10 11+ 0 1 2 3 4 5 6 7 8 9 10 11+
Original line similarity rank (code_style) Original line similarity rank (code_design)
10
8
8
36 9
5 g 6
3 3
o4 o
9} O 4
i i
2 2
0 0
0 1 2 3 4 5 6 7 8 9 10 11+ 0 1 2 3 4 5 6 7 8 9 10 11+

Original line similarity rank (code_doc)

Figure 7. Similarity of modified lines to their original counterparts for Cloudera (CodeT5+).

Original line similarity rank (compatibility)

original line. The second case was the line “ASSERT_FALSE (empty

.has_user());” modified by negating the parameter of the call (!empty...). Although
the original line was ranked at the 16th position, the other 13 top suggestions were also

the assert functions calls.

26

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

code_logic — ACoRA variants using CodeT5+, CodeBERT, and GraphCodeBERT correctly
indicated all modified lines as top suggestions, while ACoRA using BERT4Code missed two
lines. The first one was the line “if (schema_elem.__isset.field_id) {” modified by
negating the condition (!). The first six recommendations were also if statements with
negations, e.g., the top recommendation was the line“if (!step.has_add_column()) {"
The second line was “return percent/4;” with the operator changed to multiplication (*).
All recommendations were return statements. However, the top recommendation contained
a pointer reference instead of the multiplication “return *this;”

code_data — ACoRA variants using CodeT5+ and GraphCodeBERT correctly indicated mod-
ified lines, however, the two remaining CodeEmbedders missed only up to two lines. For
BERT4Code two missed cases were the same line “int percent = 0;” modified by changing
the declared type to double and string.

code_style — ACoRA variants using CodeT5+ and CodeBERT correctly suggested all modified
lines, while GraphCodeBERT missed one of the lines and recommended it as the 39th
similar line. For ACoRA using BERT4Code, we observed more original lines recommended at
high-ranking positions than for Wireshark, however, also the nature of changes made to the
lines was slightly different. Two lines for which the top recommendations were the original
lines were modified by removing a single indenting space (from six to five). Another one
was adding an additional space between the and operator (&&) and function call (“&&,
std::find...” to “&&,ustd: :find. ..”). Our general observation was that the the bigger
the difference in the number of indention spaces the less similar the original and modified
lines were. The extreme case was the line “,,Luuuuint num_micro_batches = ” with
all indention spaces removed (the original line was provided as the 282nd recommendation).

code_doc — ACoRA variants using CodeT5+ and GraphCodeBERT correctly indicated ten and
nine out of ten modified lines and performed visibly better than the remaining variants of
ACoRA using CodeBERT and BERT4Code. For these two models, we made a similar observation
to Wireshark that converting between commented and non-commented lines made them
perceived as non-similar. For BERT4Code, two exceptions were (1) an inline comment
changed to a single-line block comment and (2) an inline comment with preceding //
modified to /// for which the original lines were provided as the first suggestions.

code_io— ACoRA variants using CodeBERT and GraphCodeBERT correctly indicated all ten
modified lines as the most similar to the original ones. ACoRA using CodeT5+ made only one
mistake, however, the top-suggested line was a similar logging statement to the original
one. For ACoRA using BERT4Code changing the names to synonyms led to most modified
lines being recognized as the most similar to their original counterparts. The two extreme
cases were the lines “LOG(ERROR) << s;” and “return server_->Init();” modified by
changing ERROR to PROBLEM and server to computer. Interestingly, for the latter, one of
the top suggestions was the line “return client->DeleteTable(p.table_name

)';” containing a word client used in a similar context, which could mean that the word
computer was perceived by the model to be more similar to the word client than to the
word server.

code_api — three ACoRA variants using BERT4Code, CodeT5+, and GraphCodeBERT correctly
indicated all ten modified lines as the most similar to the original ones. The exception was
the ACoRA variant using CodeBERT which correctly suggested six lines but in three cases the
modified line appeared beyond the first ten positions of the ranking (592, 328, and 943).

27

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

code_naming — only ACoRA variant using CodeT5+ was able to correctly indicate all
modified lines as the most similar to the original ones. The variants using GraphCodeBERT
and CodeBERT were slightly worse. For the variant of ACoRA using BERT4Code, we made
similar observations as for Wireshark. However, we observed three lines for which the
original lines were recommended as a 104 option. The first one was changing the casing
in the name of struct “struct TestData {” (TestData to test_data). The second one
was changing “L0OG.debug(...” to “log.debug(...”". Interestingly, it turned out that
a line “log.info(...” was found as one of the top three recommendations. The third
line contained a call to a function “QUERY_OPT_FN(...” which identifier was changed to
“query_opt_fn(....” These changes had the biggest impact on similarity among the three
lines and the original line was ranked at the 307th position.

code_design — ACoRA variants using CodeT5+ and GraphCodeBERT correctly provided
all the modified lines as top-suggestions. Both BERT4Code and CodeBERT did not pro-
vide correct suggestions for one line—“FragmentState* fragment_state;” modified to
“RuntimeStatex fragment_state;”. Interestingly, the top suggestions were nearly identi-
cal lines “RuntimeState* state;” and “ Server

Statex server;.

compatibility — again, ACoRA variants using CodeT5+ and GraphCodeBERT correctly
provided all the modified lines as top-suggestions. For BERT4Code, we made a similar
observation as for Wireshark that adding a suffix _v2 to identifiers allowed for recognizing
the original lines as very similar. Even for the cases where the top suggestion was not the
original line, all of the recommended lines had a very similar structure. For instance, for
the modified line “import java.io.IOException_v2;” all six suggestions were imports
with “import java.io.InputStreamReader;” as the top recommendation.

5.2.2. RQ2: Relevance of recommendations — Cloudera

We followed the procedure described in Section 4 to select a sample of 29,599 lines as a
reference database and 51,024 lines as the validation database. For Cloudera, we focused on
scaling up the size of the validation dataset. The reference database was extracted from
the 74K review comments that we initially fetched from the Gerrit instance, while the
lines included in the validation database were extracted from the remaining (ca. 174K)
comments fetched in later runs. Next, we applied the filtering criteria, which resulted in
4,738 recommendations to be analyzed.

Table 5 presents the mean O values for all CodeEmbedders depending on the similarity
distance thresholds. The mean O value for the 10th percentile ranges between 0.69 and 0.89,
dropping to 0.53-0.57 for the 100th percentile. The plot in Figure 8 shows that when all the
recommendations were considered, the ACoRA variant using CodeT5+ provided irrelevant
suggestions in 23.7% of the lines (1,158 lines), i.e., the overlap between the actual categories
and the recommended categories was 0%. For 76.3% of the lines (3,721 lines), ACoRA
recommended at least one of the categories correctly. For 35.0% of the lines (1,707 lines),
the match was fully correct, i.e., the recommended categories were the same as the actual
categories of the comment. Once we lowered the distance threshold (a minimum distance
between the embedding vectors), we observed that the relevance of the recommendations
increased. For the threshold equal to the 50th percentile of the distances in the reference
database, the percentage of relevant recommendations increased to 46.5%, and for the most
strict threshold corresponding to the 10th percentile, 72.4% of suggestions were relevant.

28

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron

e-Informatica Software Engineering Journal, 19 (2025), 250102

< 10th percentile distance (n=58)

< 50th percentile distance (n=1037)

N w B
o o o

recommendations

=
o

0

0.0 0.5

500
450
400
350
300
250
200
150
100

50

1.0

0
0.0

0.5

The O measure for recommendations The O measure for recommendations

1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0

1.0

<100th percentile distance (n=4879)

0.0

0.5

The O measure for recommendations

1.0

Figure 8. Evaluation of the overlap of recommended vs. actual categories for lines for Cloudera

(CodeT5+).

Again, we observed a trade-off between the accuracy of the ACoRA and the number of
recommended lines depending on the choice of a CodeEmbedder model.

Table 5. Evaluation of the overlap of recommended vs. actual categories for Cloudera (all

CodeEmbedders)
< 10th perc. dist. | < 50th perc. dist. | < 100th perc. dist.
CodeEmbedder n mean O n mean O n mean O
BERT4Code 139 0.89 1997 0.57 4738 0.53
CodeBERT 85 0.69 1816 0.61 4343 0.54
GraphCodeBERT 62 0.73 1599 0.59 4513 0.55
CodeT5+ 58 0.83 1037 0.68 4879 0.57

We can conclude that the recommendations provided by ACoRA are relevant for the
majority of cases (76.3%) and that the differences are often observed in a few categories
(1-3), even when no similarity threshold is used.

5.3. Evaluation at the industrial partner

When evaluating the tool at the industrial partner, we analyzed a number of commits:

1..Comment on keyword const in a function parameter list. The reviewer asked for
removing the keyword, i.e., changing the parameter to a non-constant variable. ACoRA
identified this line as well, with the recommendation that code_logic should be
investigated. In the database of examples, there was only one similar comment, but it

was used in another context; therefore most of the examples were not relevant.

2. Reviewer questioned the re-location of a code fragment — he/she asked whether the code
was moved correctly. ACoRA could not isolate the code fragment which was relevant,
instead identified most lines in the commit as problematic, with different suggestions.
The examples were mostly not relevant.

29

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

3. A reviewer commented on the name of a function, asking for a change of the name
(not the entire signature). ACoRA identified the line with the name of the function as
problematic, but the suggestion was to fix the code__logic instead of code_naming.

4. Reviewer asked to change a number of #define statements to const. ACoRA identified
all such statements correctly, e.g. #define x 1 and omit statements which should be
omitted, e.g. #define (x | y), which cannot be changed to a const. There were no
relevant examples of the comments database and therefore the provided examples were
not relevant.

During the discussion, we identified two major challenges for making this type of tool
usable at the company.

The first challenge was the ability to capture the context of the code—not the lines
before or after the commented line, but the ability to trace what has been done to the line
in its context. For example:

— whether the line was newly added as part of the entire block or just a single line,

— whether the line was added as part of a large commit (e.g. more than three files were
changed),

— whether the code block where the line is located has been in the code-base from
the beginning or was added in a recent few commits (if it was not added in the
commit-under-review).

— what was previously discussed in this«code block, e.g. whether there was a discussion
about a design solution for this block, naming conventions, etc.

Understanding the context of a reviewed line in this way would mimic the understanding
of the context of the code reviews by human reviewers.

The second challenge was the ability to use meta-data in model training and prediction.

The meta-data could contain the information of the context as in the first challenge, and
the meta-information about the committed code fragment — its complexity, size, type of
changed code (e.g., the role of the class/module), type of the system (e.g., safety-critical
vs. web back-end). This information is available to the code reviewers as they know the
system, but it is not available to tools like ACoRA (or even systems like CodeX [53]).

6. Implications for practitioners

The key takeaway from our study for practitioners is that a complex problem of automatic
code review and repair can be simplified to a simpler problem of searching for similar lines
to those under review and providing a summary of issues previously raised by reviewers to
increase the accuracy of automatic code review support under the cost of increasing human
involvement in the review process. Another general lesson from our study is that setting
a similarity threshold while searching for similar lines of code based on language model
embeddings is a critical success factor. Our study shows that such a threshold should not
be set arbitrarily but should come from understanding how similar or different the code is
in the considered codebase. To tackle this problem, we propose determining the threshold
bysampling a codebase and using a percentile-based approach that allows for balancing
recall (higher percentile) and precision (lower percentile). Finally, we show that the concept
proposed by ACoRA can be implementedre using different CodeEmbedder models. Although
neither of the studied Transformer-based models turned out to be unanimously superior, we

30

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

suggest using large pre-trained models (e.g., CodeT5+) as a default option, however, in the
scenario where a codebase is unique (e.g., contains only in-house developed components or
developers use unique, company-specific coding guidelines), one might consider pre-training
a BERT4Code model from scratch, as it can be easily done even using standard graphics
processing units (GPU).

7. Validity evaluation

In our validity analysis, we use the framework advocated by Wohlin et al. [54], complemented
with the threats specific to studies embedded in external context as prescribed by Weringa
[17].

In the category of construct validity, our major threat is the use of machine-learning
language models to extract features. Although it is modern technology, using word em-
bedding networks does not allow us to construct a vocabulary manually. This means that
we do not know whether language constructs important for programmers (e.g., keywords)
are important for the neural network too. Our mitigation strategy is to study different
techniques for feature extraction (presented in [55] and [56]). We have also examined the
results of the similarity of lines, manually in this paper, in order to understand whether
this is a threat in our case.

Another construct validity threat is our classification of comments. Although it is based
on our previous studies [16] and the systematic review by [38], it is‘a generalization of a
natural language in a specific context. To minimize the risk of bias towards a project-specific
language, we used pre-trained models that provide the same classifications based on several
projects.

The most important threat to conclusion validity is measuring the relevance of the
suggestions provided by ACoRA."A single comment can relate to several issues belonging to
different taxonomy categories. This means that there is a risk that this is a multi-label
classification problem. Unfortunately, the multi-label classification makes the evaluation
of ACoRA suggestions challenging, as they must be assessed across multiple categories
simultaneously. Simplifying this assessment to a binary evaluation for individual categories
might seem straightforward, but it fails to capture the nuanced reality of multi-faceted
feedback. Therefore, we used a measure that captures the overlap between categories to
tackle this issue. Also, to minimize the threat of making wrong conclusions, we manually
analyzed a sample of suggestions with non-overlapping categories between suggested and
actual comments.

When conducting the study, we chose to evaluate it at a company. We’ve selected one
of our collaboration partners based on the domain—embedded systems, long experience
with programming, and access to experienced architects (>10 years). However, there could
be a threat to internal validity associated with how we worked with the company. Since
ACoRA uses source code from a company to operate, we set it up to connect directly to the
company’s code repository at their premises. We extracted code changes and the associated
comments, as prescribed by the process of using ACoRA. The time for that was limited due
to access to the premises and experts, and therefore, we could not conduct this evaluation
for'an extensive period of time. We collected and analyzed the data on-premises while
presenting the results off-site (via MS Teams). This could mean that there is a risk that
we missed an important aspect of the evaluation or that we did not manage to select the
most optimal code fragments to discuss (the selection was random).

31

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

Finally, since our evaluation is performed on two open source projects and one industrial
project, there is a risk of being too specific, i.e., an external validity risk. We have considered
this and therefore asked the company about this specific aspect, as well as we manually
examined the results (random samples of results). We concluded that the company or
project is not the decisive factor but the availability and quality of the data. We applied
ACoRA on two other projects (one industrial and one open source), where we extracted a
handful of comments only. The low number of data points did not provide any results, and
therefore, they are not included, but we’ve learned about the limitations and, therefore,
claim that the results are generalizable. They are generalizable to contexts where the
number of commented code fragments is >1,000 and when the comments are linked (in
the tool) to code fragments and not to entire commits/patches. Also, we assume that the
comments and lines of code in the historical database are similar to the lines in the code
under review—thus, we generalize our findings to an intra-organization/process application
of the proposed approach. More studies are needed to find if we can generalize findings across
different projects. Such studies are planned for our future work. Also, we suspect that the
accuracy and usefulness of the proposed approach might decrease‘even in an intra-project
application scenario if the context changes visibly over time, making the historical database
of comments invalid (e.g., the nature of the project changes significantly, and quality
standards evolve). Another threat to external validity concerns the number of code lines
selected per comment-taxonomy category while investigating the tool’s ability to find
similar lines for each category. We randomly queried the dataset to obtain representative
samples of lines of code and comments belonging to particular taxonomy categories (within
our dataset); however, we are not able to assess how well they cover the whole spectrum
of lines/comments in these categories. Finally, we identified one more threat to external
validity that regards the selection of “mutation” operations we applied to modify lines of
code. We made these choices subjectively to ensure that they regard those code constructs

that are decisive while categorizing a given line of code into a particular taxonomy category.

However, we are aware that the variety of such code constructs that seem valid in the
context of each category goes beyond the examples we provide.

8. Conclusions and future work

Code reviews are an integral part of modern software development, usually being integrated
with the continuous integration/deployment pipelines. Although there are tools that
automatically check the quality of source code, code reviews are still needed—they provide
the ability to comment on design aspects that cannot be formalized into checking rules,
they provide the ability to discuss design choices, and, not least important, they are a way
of onboarding new project members.

Although it has already been found that we can pinpoint which code fragments (even
down to a single line of code) would attract attention from reviewers, there is little support
for providing suggestions on what to focus on. In this work, we address this problem by
designing and evaluating a tool for automatically providing these suggestions based on the
previous review discussions available in code repositories. The tool uses a machine-learning
based language model and searches for similar lines of code to those under review that
were previously commented on. It analyzes the previous reviewers’ comments to indicate
the aspects of the code the reviewer should focus on while reviewing a given fragment of
code. The suggestions are based on company/community-specific culture and provide a

32

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

way to speed up the review process while allowing new team members to understand the
code and participate in the code review discussions.

By using two open-source projects and one industry project, we studied to which
degree it is possible to provide code reviewers with a suggestion on what they should
focus on when reviewing a given code fragment. The results show that the tool can give
fully correct suggestions (only true positives) in 35%-41% of the fragments and partially
correct suggestions in 76.3%-84.1% of the fragments. Compared to the state-of-the-art
tools for code repair, this is higher but requires human intervention (it is the reviewer who
has to review the code in the end). Also, we showed that one can control the recall and
precision of such recommendations by changing a similarity threshold between the code
fragments (for the distance between the line-embedding vectors). By setting the threshold
to the 10th percentile of the distances in the reference dataset, we were able to increase
the correctness of recommendations even to 72%-99%, however, at the cost of sacrificing
the number of recommendations provided by ACoRA. Therefore, a key takeaway from our
study for practitioners is that a complex problem of automatic code review and repair
can be simplified to the problem of finding previously commented-on lines of code that
are similar to those under review and summarizing the issues raised by reviewers. This
approach allows for increasing the accuracy of automatic code review support, however, at
the cost of increasing human involvement in the review process.

In future work, we plan to conduct a deeper analysis and comparison of machine-learning
language models and code representations to study their impact on the accuracy of ACoRA.
We plan to expand this study to design a pre-configured tool set-up to identify specific
aspects, e.g., security vulnerabilities in source code and SQL injection checks, and evaluate
them in an industrial context. In particular, we want to create portable (between contexts)
reference databases designed to detect certain types of issues in the code.

Acknowledgements

This research has been supported by Software Center (www.software-center.se), Chalmers
| University of Gothenburg and by National Science Centre, Poland within the research
project “Source code representations for machine-learning-based identification of defective
code fragments” (OPUS 21), registered with the no. 2021/41/B/ST6/02510.

The authors have no competing interests to declare that are relevant to the content of this
article.

References

[1] P.C. Rigby and C. Bird, “Convergent contemporary software peer review practices,” in
Proceedings of the 9th Joint Meeting on Foundations of Software Engineering, 2013, pp. 202-212.

[2] L. MacLeod, M. Greiler, M.A. Storey, C. Bird, and J. Czerwonka, “Code reviewing in the
trenches: Challenges and best practices,” IEFE Software, Vol. 35, No. 4, 2017, pp. 34-42.

[3] M.E. Fagan, “Design and code inspections to reduce errors in program development,” IBM
Systems Journal, Vol. 15, No. 3, 1976, pp. 182-211.

[4] L. Milanesio, Learning Gerrit Code Review. Packt Publishing Ltd, 2013.

[6] M. Meyer, “Continuous integration and its tools,” IEEE Software, Vol. 31, No. 3, 2014,
pp. 14-16.

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

(6]

M. Staron, W. Meding, O. Soder, and M. Béck, “Measurement and impact factors of speed of
reviews and integration in continuous software engineering,” Foundations of Computing and
Decision Sciences, Vol. 43, No. 4, 2018, pp. 281-303.

J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find bugs. How the current
code review best practice slows us down,” in IEEE/ACM 37th International Conference on
Software Engineering, Vol. 2. IEEE, 2015, pp. 27-28.

F. Huq, M. Hasan, M.M.A. Haque, S. Mahbub, A. Igbal et al., “Review4Repair: Code review
aided automatic program repairing,” Information and Software Technology, Vol. 143, 2022,
p. 106765.

M. Hasan, A. Igbal, M.R.U. Islam, A. Rahman, and A. Bosu, “Using a balanced scorecard to
identify opportunities to improve code review effectiveness: An industrial experience report,”
Empirical Software Engineering, Vol. 26, No. 6, 2021, pp. 1-34.

M. Staron, M. Ochodek, W. Meding, and O. Séder, “Using machine learning to identify code
fragments for manual review,” in 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2020, pp. 513-516.

D.S. Mendonga and M. Kalinowski, “An empirical investigation on the challenges of creating
custom static analysis rules for defect localization,” Software Quality Journal, 2022, pp. 1-28.
A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code review,” in

2013 85th International Conference on Software Engineering (ICSE). IEEE, 2013, pp. 712-721.

N. Fatima, S. Nazir, and S. Chuprat, “Knowledge sharing, a key sustainable practice is on risk:
An insight from modern code review,” in IEEFE 6th International Conference on Engineering
Technologies and Applied Sciences (ICETAS)TEEE; 2019, pp. 1-6.

A. Hindle, E.T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the naturalness of software,”
Communications of the ACM, Vol. 59, No. 5, 2016, pp. 122-131.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., “Attention is all you need,”
arXiv preprint arXiw:1706.03762, 2017.

M. Ochodek, M. Staron, W. Meding, and O. Soder, “Automated code review comment
classification to improve modern code reviews,” in International Conference on Software
Quality. Springer, 2022, pp. 23—40.

R. Wieringa, Design Science Methodology for Information Systems and Software Engineering,
2014. [Online]. http://portal.acm.org/citation.cfm?doid=1810295.1810446

M. Allamanis, E.T. Barr, P. Devanbu, and C. Sutton, “A survey of machine learning for big
code and naturalness,” ACM Computing Surveys (CSUR), Vol. 51, No. 4, 2018, pp. 1-37.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed representations

of code,” Proceedings of the ACM on Programming Languages, Vol. 3, No. POPL, 2019, pp. 1-29.

J. Devlin, M.W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

Z: Feng, D. Guo, D. Tang, N. Duan, X. Feng et al., “Codebert: A pre-trained model for
programming and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

B. Roziere, M.A. Lachaux, M. Szafraniec, and G. Lample, “DOBF: A deobfuscation pre-training
objective for programming languages,” arXiv preprint arXiv:2102.07492, 2021.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser et al., “Competition-level code
generation with alphacode,” arXiv preprint arXiv:2203.07814, 2022.

F. Huq, M. Hasan, M.M.A. Haque, S. Mahbub, A. Igbal et al., “Review4repair: Code review
aided automatic program repairing,” Information and Software Technology, Vol. 143, 2022,
p. 106765. [Online]. https://www.sciencedirect.com/science/article/pii/S0950584921002111
R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk et al., “Using pre-trained
models to boost code review automation,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 2291-2302.

C. Sadowski, E. S6derberg, L. Church, M. Sipko, and A. Bacchelli, “Modern code review: a case
study at google,” in Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, 2018, pp. 181-190.

A. Ram, A.A. Sawant, M. Castelluccio, and A. Bacchelli, “What makes a code change easier
to review: An empirical investigation on code change reviewability,” in Proceedings of the 26th

34

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2
http://portal.acm.org/citation.cfm?doid=1810295.1810446
https://www.sciencedirect.com/science/article/pii/S0950584921002111

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

[28]

[29]

[32]

[33]

[34]

[35]

ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 201-212.

Y. Arafat, S. Sumbul, and H. Shamma, “Categorizing code review comments using machine
learning,” in Proceedings of Sixth International Congress on Information and Communication
Technology. Springer, 2022, pp. 195-206.

Z. Li, Y. Yu, G. Yin, T. Wang, Q. Fan et al., “Automatic classification of review comments in
pull-based development model,” in International Conferences on Software Engineering and
Knowledge Engineering. KSI Research Inc. and Knowledge Systems Institute Graduate School,
2017.

Z.X.Li, Y. Yu, G. Yin, T. Wang, and H.M. Wang, “What are they talking about? Analyzing
code reviews in pull-based development model,” Journal of Computer Science and Technology,
Vol. 32, 2017, pp. 1060-1075.

L. Yang, J. Xu, Y. Zhang, H. Zhang, and A. Bacchelli, “EvaCRC: evaluating code review
comments,” in Proceedings of the 81st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2023, pp. 275-287.

J.K. Siow, C. Gao, L. Fan, S. Chen, and Y. Liu, “Core: Automating review recommendation
for code changes,” in IEEE 27th International Conference on Software Analysis, Fvolution
and Reengineering (SANER). IEEE, 2020, pp. 284-295.

R. Brito and M.T. Valente, “RAID: Tool support for refactoring-aware code reviews,” in
IEEE/ACM 29th International Conference on Program Comprehension (ICPC). IEEE, 2021,
pp. 265-275.

R. Tufano, O. Dabié, A. Mastropaolo, M. Ciniselli, and G. Bavota, “Code review automation:
Strengths and weaknesses of the state of the art,” IEEE Transactions on Software Engineering,
2024.

Y. Hong, C. Tantithamthavorn, P. Thongtanunam, and A. Aleti, “Commentfinder: a simpler,
faster, more accurate code review comments recommendation,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2022, pp. 507-519.

D. Badampudi, R. Britto, and M. Unterkalmsteiner, “Modern code reviews — Preliminary
results of a systematic mapping study,” Proceedings of the Fuvaluation and Assessment on
Software Engineering, 2019, pp. 340-345.

D. Badampudi, M. Unterkalmsteiner, and R. Britto, “Modern code reviews — Survey of
literature and practice,” ACM Transactions on Software Engineering and Methodology, Vol. 32,
No. 4, 2023, pp. 1-61.

N. Davila and I. Nunes, “A systematic literature review and taxonomy of modern code review,”
Journal of Systems and Software, Vol. 177, 2021, p. 110951.

H.A: Cetin, E. Dogan, and E. Tiiziin, “A review of code reviewer recommendation studies:
Challenges and future directions,” Science of Computer Programming, Vol. 208, 2021, p. 102652.
B. Roziere, M.A. Lachaux, L. Chanussot, and G. Lample, “Unsupervised translation of
programming languages,” Advances in Neural Information Processing Systems, Vol. 33, 2020,
pp. 20601—20611.

Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi et al., “Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation,” arXiv preprint
arXiv:1609.08144, 2016.

M. Ochodek, M. Staron, D. Bargowski, W. Meding, and R. Hebig, “Using machine learning to
design a flexible loc counter,” in 2017 IEEE Workshop on Machine Learning Techniques for
Software Quality Fvaluation (MaLTeSQuE). IEEE, 2017, pp. 14-20.

M. Ochodek, R. Hebig, W. Meding, G. Frost, and M. Staron, “Recognizing lines of code
violating company-specific coding guidelines using machine learning,” Empirical Software
Engineering, Vol. 25, No. 1, 2020, pp. 220-265.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi et al., “Roberta: A robustly optimized bert pretraining
approach,” arXiv preprint arXiv:1907.11692, 2019.

I. Turc, M.W. Chang, K. Lee, and K. Toutanova, “Well-read students learn better: On the
importance of pre-training compact models,” arXiv preprint arXiv:1908.08962, 2019.

35

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

Mirostaw Ochodek, Miroslaw Staron e-Informatica Software Engineering Journal, 19 (2025), 250102

[46]

[47]

[56]

H. Akoglu, “User’s guide to correlation coefficients,” Turkish journal of emergency medicine,
Vol. 18, No. 3, 2018, pp. 91-93.

J.N. Mandrekar, “Receiver operating characteristic curve in diagnostic test assessment,” Journal
of Thoracic Oncology, Vol. 5, No. 9, 2010, pp. 1315-1316.

M. Staron, Action research in software engineering. Springer, 2020.

S.K. Pandey, M. Staron, J. Horkoff, M. Ochodek, N. Mucci et al., “TransDPR: design pattern
recognition using programming language models,” in ACM/IEEFE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 2023, pp. 1-7.

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang et al., “Graphcodebert: Pre-training code representa~
tions with data flow,” arXiv preprint arXiv:2009.08366, 2020.

Y. Wang, H. Le, A.D. Gotmare, N.D. Bui, J. Li et al., “CodeT5+: Open code large language
models for code understanding and generation,” arXiv preprint, 2023.

V. Antinyan, M. Staron, A. Sandberg, and J. Hansson, “Validating software measures using
action research a method and industrial experiences,” in Proceedings of the 20th International
Conference on FEvaluation and Assessment in Software Engineering, 2016, pp. 1-10.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H.P.d.O. Pinto et al., “Evaluating large language models
trained on code,” arXiv preprint arXiv:2107.03374, 2021.

C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell et al., Experimentation in software
engineering. Springer Science & Business Media, 2012:

K.W. Al-Sabbagh, M. Staron, M. Ochodek, R. Hebig, and W. Meding, “Selective regression
testing based on big data: Comparing feature extraction techniques,” in IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 2020,
pp- 322-329.

M. Staron, W. Meding, O. Séder, and M."Ochodek, “Improving quality of code review datasets
— Token-based feature extraction method,” in International Conference on Software Quality.
Springer, 2021, pp. 81-93.

36

Article number 250102

https://www.e-informatyka.pl/EISEJ/papers/2025/1/2

	ACoRA – A Platform for Automating Code Review Tasks
	Introduction
	Related Work
	Natural Language Processing models applied to code
	Using language models for code repair and generation tasks
	Modern Code Reviews

	Automated Code Review Assistant platform
	CodeEmbedder Language Models
	CommentClassifier Language Model

	Research Methodology
	Problem formulation
	Treatment design
	Initial treatment evaluation and improvements
	Wireshark and Cloudera

	Evaluation at the industrial partner

	Results
	Wireshark
	RQ1: Finding similar lines – Wireshark
	RQ2: Relevance of recommendations – Wireshark

	Cloudera
	RQ1: Finding similar lines – Cloudera
	RQ2: Relevance of recommendations – Cloudera

	Evaluation at the industrial partner

	Implications for practitioners
	Validity evaluation
	Conclusions and future work
	Acknowledgements
	References

